信息技术在大学生创新训练项目中的应用

唐淑榕

(福建医科大学药学院,福建 福州 350108)

摘 要:开展大学生创新训练项目是本科院校教学改革的重要举措,对提高实验教学质量、增强学生综合素质具有重要作用。针对目前该项目实施过程中存在的一些问题,探讨如何利用信息技术进一步提高项目的指导与实践效率,为促进实验教学改革以及培养大学生的创新思维、操作技能、独立思考、团队协作、分析与解决实际问题等能力提供新思路。

关键词:大学生创新训练项目;信息技术;综合素质培养

中图分类号: G642.0

文献标志码: A

文章编号: 1671-0479(2016)06-487-003

doi:10.7655/NYDXBSS20160618

国家教育部在 2007 年开始面向全国高等院校正式启动大学生创新训练计划(以下简称"大创"),旨在促进教学模式改革以提高大学本科教育质量[1]。开展"大创"项目是深化本科实验教学改革、培养创新型人才的一项重要举措。近年来,许多高校都相继开展了"大创"项目,覆盖的学生人数也逐渐增多,在项目实施过程中也发现了一些问题。笔者结合自身指导的关于环境样品中重金属检测的"大创"项目实施情况,探讨如何利用信息技术有效解决项目开展过程中遇到的问题,以确保其顺利有效地进行。

一、开展"大创"项目的重要意义

大学时期是学生思维模式、处事方式、科研能力等方面形成的关键阶段。然而,在传统灌输式的教育模式下,实践教学环节十分薄弱,大学生普遍存在动手能力不足、创新意识薄弱、缺乏吃苦耐劳的科研精神等情况。开展"大创"项目具有以下重要作用[2]:①使学生提前进入相关科学领域进行研究工作,锻炼科研毅力,激发创新意识,提高科研能力。通过学习新知识了解本学科的前沿并拓宽视野,为以后继续深造奠定良好的基础。②有利于学生在实践中运用知识,培养学生将理论与实际相结合,提高自学能力,增强勇于探索未知领域的精神。③在科研训练过程中,项目组成员必须相互配合开展实验,共同对

实验存在的问题进行分析并提出解决方法,同时还要与指导教师进行交流,从而使学生的操作能力、发现与解决问题的能力、表达能力以及团队协作能力都得到充分锻炼。④使学校的教学、科研资源得到充分利用,提高仪器设备利用率,促进实验室开放。⑤有利于提高教师的素质和能力。为确保项目顺利进行,要求教师不仅要有深厚、宽广的理论知识以及时解决学生在实验中遇到的难题,还要具备专业的操作技能以指导学生规范、科学地进行实验操作。这就促使教师不断再学习,努力提高理论水平与技术能力。因此,开展"大创"项目不仅可提高学生的综合素质,还可激发教师教学科研的热情,对提高教学质量大有裨益。

二、"大创"项目实施过程中存在的问题

自"大创"项目开展以来,我国大部分高校均积极响应并已获得一些显著的成效,学生的科研能力以及教师的教学水平都有所提高。但由于项目开展时间较短、指导教师经验不足、管理与评价制度不完善等原因,项目实施过程中仍存在许多问题,使项目预期效果大打折扣甚至失败③。主要问题归纳如下:①项目选题不合理。由于本科生首次接触科研实验,自主选题容易出现选题不科学、题目过大或过小、脱离社会实际,研究内容不具体,操作性不强的现象。②学生缺乏主动性,对指导教师依赖性大。由于学生

专业知识薄弱,多数项目从申报到结题的材料都是 由指导教师填写,降低了学生对选题、方案设计等过 程的参与热情,只能被动地了解研究内容。③指导 教师缺乏经验和能力,责任心不强。一些教师在指 导学生选题时没有从学生的兴趣爱好出发,而是从 自己的课题中抽取选题,导致学生无法自主设计实 验方案,降低其参与科研的积极性。由于指导本科 生要花费较多的时间和精力且较难获得高水平成 果,致使教师缺乏指导热情,任由学生自行探索或主 动求助,使项目难以按期完成。④沟通效率低,师生 互动少。由于学生学习压力大、教师教学科研任务 繁重等因素,导致组员之间缺乏交流,教师与学生沟 通少,影响实验效率。⑤评价机制不完善,重申报轻 建设、重结果轻过程。各高校主要注重对项目立项 和结题的审核而忽略了人才培养的过程。要解决这 些问题,需要老师和学校共同努力,寻找新的管理与 指导方式,使"大创"项目的实施获得最佳效果。

三、信息技术在"大创"项目开展中的应用

信息技术是利用计算机和现代通信手段,实现数字化信息的输入、检索、获取、存储、处理、输出等过程的相关技术^[4]。若在"大创"项目中引进现代信息技术将文字、图形、表格、声音、动画等有机组合,可大大激发学生的学习热情,充分调动其积极性与创造性,并促进师生互动。"大创"项目的实施环节包括自主选题、方案设计、项目执行、结题验收等阶段。以笔者指导的关于环境样品中重金属检测的"大创"项目为例,探讨如何将信息技术有效应用到项目的各个环节,充分发挥教师的主导作用与学生的主体地位,以提高项目的实施效果。

(一)自主选题

正确的选题是确保"大创"项目顺利开展的重要环节,应从学生的兴趣出发,充分发挥其主观能动性。由于基础知识、科研能力的局限性,本科生对学科的最新发展动态及相关知识的横向联系很难准确把握。因此,教师应对选题方向、创新性、合理性等方面予以适当指导。例如,学生提出想对环境水样中的重金属含量进行检测的初步想法。首先,指导学生利用学校图书馆的数字资源查阅文献资料,常用的网络数据库如表1所示。先教学生下载一些近几年发表的重金属检测综述性文献,了解目前已有的检测方法及未来的发展趋势。浏览文章标题、摘要以大致了解其主要研究内容,再从中下载感兴趣的文献。此外,也可通过百度学术、谷歌学术等网站搜索文献。通过仔细阅读文献,学生不仅初步了解

了重金属检测的研究现状,而且还发现生物传感检测法是目前研究的热点。指导学生进一步查阅生物传感器相关文献,对基于不同信号输出方式的生物传感技术进行分析比较,发现电化学检测方法具有仪器便携、操作简单、灵敏度高等优点。基于此,学生拟以"构建电化学传感器用于铅离子的检测"为研究课题。不难看出,该题目太宽泛。因此,建议学生进一步查阅电化学传感方面的文献以寻找创新点。通过文献调研,学生发现石墨烯具有大比表面积、良好的导电性及生物相容性,可显著提高电化学响应。经过集体讨论,最终确立课题名为"基于石墨烯放大的电化学传感器用于铅离子的检测"。利用丰富、便捷的电子资源进行选题,大大提高了学生的参与热情与文献调研能力。

表 1 常用的文献网络数据库一览表

数据库名称	文献种类	阅读浏览器
CNKI 中国知网	期刊、学位、会议论文	PDF、CAJ
万方数字知识服务平台	期刊、学位、会议论文	PDF、CAJ
维普中文科技期刊数据库	期刊	PDF、CAJ
Wiley 在线期刊数据库	期刊	PDF
Springer Link 外文期刊	期刊	PDF
Nature 电子期刊	期刊	PDF

(二)方案设计

课题确定后,指导学生根据现有的实验条件设计具体的实验方案。从外文数据库中输入"electrochemistry biosensor", "metal ions", "nanomaterial"等关键词,重点查阅《Analytical Chemistry》、《Chemical Communications》等期刊上高水平的学术论文,从这些文献中捕捉到亮点与可改进的地方。经过反复推敲、不断调整与仔细论证,最终确立创新性强、可行性较高的研究方案。在此过程中,培养了学生多方面思考问题,独立分析与解决问题的能力。

原理图设计是实验方案的重要组成部分,通过绘制实验原理图能够使学生更直观、清晰地理解实验原理及主要步骤。指导学生利用网络途径了解一些常用画图软件的专长与使用方法,如绘制化学结构的 ChemDraw 软件,只需输入分子名称即可得出化学结构图,还可用于化学反应方程、化工流程图、简单的实验装置图等的绘制;矢量图绘制与排版的CorelDRAW 软件,可为设计者提供一整套绘图工具和变形控制方案;功能强大的图片编辑软件Photoshop等[5]。学生可通过观看视频教程学习不同软件的使用流程,再根据实际需求选择合适的软件进行作图,在绘图过程中学生的自由创造能力、逻辑

思维能力均得到有效提高。

制作技术路线图不仅有助于学生了解"大创"项目的整体流程、主要研究内容及采用的技术手段,还便于学生按照各主要环节进行分工合作。Microsoft Office Visio、Microsoft Office PowerPoint (PPT)等软件可将复杂的文本转换为简单的图表,被广泛用于技术路线图的绘制。指导学生利用PPT 软件将实验主要内容按照研究的先后顺序进行合理、有序的排列组合,方框、箭头的搭配应用使制得的技术路线图条理清晰,使学生对实验流程一目了然。

(三)项目执行

制定好实验方案,即可指导学生准备实验所需 的仪器设备并采购相关试剂与耗材。首先,利用 Excel 或 Word 软件制作表格,将仪器名称、规格与 型号,试剂名称、规格、产地,耗材名称、材质、数量等 信息分别列出。然后,通过互联网查找国药集团、上 海生工、爱思进等试剂公司的主页,在产品搜索框中 输入产品名称查询对应的价格、性能、用途等信息, 若符合实验需求则可在网上直接下单订购。在等待 药品期间,指导学生通过阅读说明书或观看视频的 方式学习电化学工作站、激光粒度仪、紫外分光光度 计、红外光谱仪等仪器的工作原理与操作方法。操 作视频集声音与动态画面于一体,将操作过程形象 直观地展现出来,从而充分刺激学生的感官,调动学 习积极性。在开展实验的过程中,应监督学生严格 按照要求进行规范操作、仔细观察实验现象并做好 记录,养成细致严谨的科研习惯。通过建立专门的 QQ 讨论组或微信群, 学生可实时向指导教师汇报 实验进展,促进师生交流。当实验遇到问题时,应鼓 励学生先通过查阅文献、相互讨论、到网上科研论坛 求助等方式寻找失败原因及解决办法,改变实验条 件再次尝试,培养学生坚持不懈的探索精神,促进其 思考能力、沟通能力、团队合作能力、发现与解决问 题能力的提高。

(四)结题验收

在项目结题验收阶段,学生必须独立完成结题 报告的撰写,将实验内容完成情况、获得成果等进行 归纳总结。因此,实验任务完成后要指导学生利用 科学的方法整理实验数据,并对获得的结果进行深 人分析与讨论,为撰写研究论文做准备。通过使用 图表可将实验结果与实验条件之间的关系清晰明了 地体现出来,便于学生寻找实验规律。教学生一些常用办公软件图表制作与处理的技巧,如用 Word 软件制作三线表;利用 Origin 软件绘制柱形图、折线图、工作曲线等,可将图片快速导出并存储为多种格式。同;利用 Photoshop 软件处理原子力显微镜、透射电子显微镜、凝胶电泳等分析仪器所拍摄的图片。在论文写作前,指导学生参考已发表的论文熟悉文章的主要框架,包括标题、摘要、引言、实验部分、结果与讨论、结论等。通过使用 EndNote、Reference Manager 等软件可将引用的文献快速、准确地插入论文中,且可方便地更换文献格式。在此阶段,培养了学生规范的数据处理与学术论文写作能力,为未来继续深造打下良好的基础。

在项目实施过程中,学生对科研的整体流程有了清晰认识,较好地掌握了利用信息技术进行文献检索、实验方案设计、分析与解决实际问题、数据处理、图表制作、学术论文撰写等方面的技巧,培养了良好的科研素养、操作技能、团队合作、人际沟通等让人终身受益的能力。高校作为高素质人才培养的重要基地,应加快师资队伍建设,提高教师应用信息技术等现代教育手段进行教学研究的能力,从而进一步优化教学体系,实现培养创新型综合人才的目标。

参考文献

- [1] 教育部,财政部. 高等学校本科教学质量与教学改革工程项目管理暂行办法[D]. 2007
- [2] 张友琴,王萍,朱昌平,等. 以大学生创新性实验计划为 契机培养创新型人才[J]. 实验技术与管理,2011,28 (7):167-170,212
- [3] 赖晓晨,惠煌,夏锋,等. 大学生创新性实验计划实施的 关键问题分析[J]. 实验技术与管理,2012,29(7):17-20,28
- [4] 黄宽娜,刘徽,李木华.基于信息技术的高等数学实验 教学模式研究[J].西南师范大学学报(自然科学版), 2011,36(2);210-215
- [5] 黎新. 化学软件在化学教学中的应用 [J]. 重庆文理学 院学报(自然科学版),2008,27(5):90-92
- [6] 吕东灿,袁帅,赵仲麟,等. Origin 软件在大学化学实验中的应用[J]. 农业网络信息,2015(11):139-141
- [7] 王子熙. 参考文献管理软件在科技信息工作中的应用研究[J]. 情报探索,2014(6):101-103,106