·基础医学·

模拟过氧化微环境中的钛表面特性及其腐蚀行为研究

高红媛^{1,2},周以恒¹,邱 憬^{1*}

¹南京医科大学附属口腔医院种植科,江苏省口腔疾病研究重点实验室,江苏省口腔转化医学工程研究中心,江苏 南京 210029; ²泰州市口腔医院修复科,江苏 泰州 225300

[摘 要]目的:研究模拟过氧化微环境对钛表面特性及其腐蚀行为的影响。方法:将纯钛试件浸泡于不同模拟体液中,分为Hanks'平衡盐溶液(HBSS)组、HBSS+牛血清白蛋白(BSA)组、HBSS+过氧化氢(H₂O₂)组、HBSS+BSA+H₂O₂组。收集浸泡7d后的试件及浸提液,采用扫描电镜(scanning electron microscopy,SEM)、X射线光电子能谱仪(X-ray photoelectron spectroscopy, XPS)分析钛表面特性;采用电化学工作站检测不同模拟体液中纯钛试件的腐蚀行为;采用电感耦合等离子体发射光谱仪(inductively coupled plasma optical emission spectrometer,ICP-OES)检测各组浸提液中的钛离子释放量。结果:SEM和XPS分析结果显示,HBSS+H₂O₂组钛表面微形貌变化明显,钛和氧元素含量显著升高,其余各组无明显差异。电化学测试获得的奈奎斯特图(Nyquist)、波特阻抗图、波特相位图以及等效电路拟合数据显示,HBSS+H₂O₂组钛表面氧化膜的腐蚀阻抗最小,HBSS+BSA+H₂O₂组次之,HBSS+BSA 组和HBSS组最高。ICP-OES检测发现,HBSS+H₂O₂组的钛离子释放量较其余各组显著增加。结论:模拟过氧化微环境中H₂O₂会破坏钛表面氧化膜,加剧钛腐蚀行为,引发钛离子释放,而BSA和H₂O₂共同作用时,BSA可抑制H₂O₂对钛表面的腐蚀。

[关键词] 钛;腐蚀;过氧化氢;牛血清白蛋白 [中图分类号] R783.1 [文献标志码] A doi:10.7655/NYDXBNS20221007

[文章编号] 1007-4368(2022)10-1394-08

Study of surface property and corrosion behavior of pure titanium in a simulated peroxidation microenvironment

GAO Hongyuan^{1,2}, ZHOU Yiheng¹, QIU Jing^{1*}

¹Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Privince Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029; ²Department of Prosthodontics, Taizhou Stomatological Hospital, Taizhou 225300, China

[Abstract] Objective: To study the effects of surface property and corrosion behavior of pure titanium in a simulated peroxidation microenvironment. Methods: The pure titanium specimens were immersed in different simulated body fluids and divided into Hanks' balanced salt solution(HBSS) group, HBSS+ bovine serum albumin(BSA) group, HBSS+hydrogen peroxide(H₂O₂) group and HBSS+ BSA+H₂O₂ group. The test samples and soaking solutions after 7 days of immersion were collected, and the titanium surface properties were analyzed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). An electrochemical potentiostat was used to investigate the corrosion behaviors of pure titanium specimens in different simulated body fluids. The quantities of titanium ion release in soaking solutions of different groups were detected by inductively coupled plasma optical emission spectrometer (ICP-OES). Results: SEM and XPS analysis results demonstrated that the micro-morphology of titanium surface in HBSS+H₂O₂ group changed obviously with significant increases in the contents of titanium and oxygen, whereas there were no remarkable differences in other groups. The Nyquist plots, Bode |Z| diagrams, Bode-phase diagrams and equivalent circuit fitting data obtained by electrochemical

[[]基金项目] 国家自然科学基金(81870799);江苏省重点研发计划(社会发展)项目(BE2019728);江苏高校优势学科建设工程资助项目(2018-87)

test showed that the corrosion resistance of titanium surface oxide film in HBSS+H₂O₂ group was the lowest, followed by HBSS+BSA+ H₂O₂ group, and HBSS+BSA group and HBSS group were the highest. ICP-OES revealed that the release of titanium ions in HBSS+ H₂O₂ group was significantly higher than those in other groups. **Conclusion**: In the simulated peroxidation microenvironment, H₂O₂ could destroy the oxide film on titanium surface, aggravate the corrosion behavior of titanium and trigger the release of titanium ions. When BSA and H₂O₂ act together, BSA could inhibit the corrosion of titanium surface by H₂O₂.

[Key words] titanium; corrosion; hydrogen peroxide; bovine serum albumin

[J Nanjing Med Univ, 2022, 42(10):1394-1401]

近年来,随着种植成功率的日益提高,越来越多 的牙列缺损及缺失患者选择种植的修复方式^[1-2]。 纯钛因具有良好的机械性能、生物相容性以及耐腐 蚀性等优点,成为牙科植入物的首选材料。然而在 复杂的口腔微环境中,依然存在一些使钛的腐蚀易 感性增加的不利因素,如局部pH值、蛋白分子、微 生物及各类化合物等^[3-4]。因此,为了提高种植义齿 的成功率,除了关注钛种植体的骨结合性能,钛金 属的腐蚀行为研究也具有重要意义。

由于种植体植入的成功与否和宿主的生理环 境密切相关,氧化性损伤对于手术预后非常关键。 而众所周知,生物材料容易受到氧化损伤的影响。 种植体在植入牙槽骨后,便会立即暴露于反应性环 境中。手术创伤本身,或者种植体以及植入过程中 摩擦产生的颗粒,均可能诱发免疫反应,导致种植 体周围环境产生大量活性氧(reactive oxygen species, ROS), 进而引发氧化应激^[5]。ROS由活化的巨 噬细胞释放,可在金属表面驱动腐蚀,其中的过氧 化氢(hydrogen peroxide, H₂O₂)作为强氧化剂,是上 述过程的主要驱动因素^[6]。近年来,H₂O₂所形成的 过氧化微环境已被证明能够增强钛的腐蚀易感性, 促进钛及钛合金的腐蚀行为,导致钛表面粗糙化, 且氧化膜缺陷增多[7-8]。本课题组的前期研究亦发 现,破骨细胞能黏附于钛表面,造成生物腐蚀,导致 钛离子的大量释放^[9]。

当种植体植入骨组织后,蛋白吸附是率先发生的生物学反应,血液中的蛋白质会在瞬间吸附至钛表面,成为后续细胞黏附的基础。因此,种植体周围 微环境中蛋白质在种植体表面的存在不可忽视。白蛋白是人体血浆中含量最多的蛋白质。诸多研究发现,血清白蛋白与钛材料的腐蚀关系密切^[4,10-14]。Clark 等^[10]研究发现,蛋白质对具有稳定氧化膜的纯金属 如钛的腐蚀几乎无影响。另有研究报道,在生理盐 水中添加牛血清白蛋白(bovine serum albumin,BSA)可加速纯钛的静态腐蚀^[11]。其他研究报道,白蛋

白可抑制纯钛的腐蚀,保护其免受氟离子等引起 的溶解^[12-13]。在磷酸盐缓冲液(phosphate buffered solution,PBS)中加入白蛋白会促进钛合金的金属离 子释放,促进钛合金的溶解^[4],但其对纯钛的影响较 小^[14]。由此可见,蛋白质对纯钛腐蚀行为影响的研 究结果不完全一致,难以形成共识,仍有待进一步 的探索。

 H_2O_2 和白蛋白各自对钛腐蚀行为的影响已有 相关报道。而在口腔内的复杂生理微环境中,两种 因素往往同时存在,并共同作用。Xu等^[15]通过浸泡 和电化学实验发现,在含 H_2O_2 和白蛋白的模拟体液 中316L不锈钢的腐蚀加速,两者具有协同作用。截 至目前,白蛋白和 H_2O_2 共同存在时对钛腐蚀行为的 影响尚未见报道。因此,本实验拟构建模拟过氧化 微环境,通过扫描电镜(scanning electron microscopy,SEM)、X射线光电子能谱仪(X-ray photoelectron spectroscopy,XPS)、电化学腐蚀检测和电感耦合等 离子体发射光谱仪(inductively coupled plasma optical emission spectrometer, ICP-OES)研究 H_2O_2 和白蛋 白对钛表面特性及其腐蚀行为的影响。

1 材料和方法

1.1 材料

纯钛片(99.5%,宝鸡盛辉钛业有限公司),SiC 砂纸(天津南景研磨工业有限公司),BSA(≥98%, Biofroxx公司,德国),H₂O₂溶液(3%,广东南国药业 有限公司),Hanks'平衡盐溶液(Hanks' balanced salt solution,HBSS)(pH:7.2±0.2,不含氯化钙、氯化 镁、硫酸镁和酚红,Gibco公司,美国),环氧树脂(湖 北回天胶业股份有限公司),超声清洗机(广东固 特超声股份有限公司),细胞恒温培养箱(Thermo 公司,美国),恒温水浴箱HH-2(常州金坛良友仪器 有限公司),铂片电极、Ag/AgCl电极(武汉科斯特仪 器股份有限公司),扫描电子显微镜(MAIA3 RISE, Tescan公司,捷克),X射线光电子能谱仪(ESCALAB 250Xi, Thermo公司,美国), CS310H电化学工作站 (武汉科斯特仪器股份有限公司), CS Studio 5 腐蚀 测试软件(武汉科斯特仪器股份有限公司), 电感耦 合等离子体原子发射光谱仪(Vista AX, Varian公司, 美国)。

1.2 方法

1.2.1 试件准备

制备纯钛试件(直径10 mm,厚度1 mm),SiC砂 纸逐级打磨(400、600、800、1 000、1 200 目),依次采 用双蒸水、无水乙醇、双蒸水分别超声清洗10 min, 吹干后备用。用导电胶将1根铜线固定于纯钛试件 背面,裸露的铜线及试件的背面和侧面用环氧树脂 胶包裹,仅暴露直径10 mm的圆形试件正面,待环氧 树脂凝固后,按上述方法完成超声清洗,吹干备用。

1.2.2 电解质溶液配制

电化学腐蚀实验和浸泡实验采用相同的电解 质溶液。在HBSS中加入BSA和/或H₂O₂,配制模拟 不同体液环境的电解质溶液。HBSS组设为对照, 实验组包括HBSS+BSA组、HBSS+H₂O₂组、HBSS+ BSA+H₂O₂组。溶液中的BSA和H₂O₂的最终浓度分 别为40g/L和500μmol/L。

1.2.3 浸泡试验

将上述4组的纯钛试件分别置于12孔细胞培 养板中,每孔加入1 mL模拟不同体液环境的电解质 溶液,置于细胞培养箱(37℃、5% CO₂)中。每天采 集浸提液,并更换相应的溶液,浸泡7 d后,收集试 件和浸提液样本。

1.2.4 表面微形貌观察

收集4组浸泡7d后的试件,双蒸水、无水乙醇、 双蒸水依次超声清洗10min,吹干,采用扫描电子显 微镜观察试件的表面微形貌。

1.2.5 表面元素分析

收集4组浸泡7d后的试件,超声清洗吹干,采 用XPS检测分析试件的表面元素组成和化学状态, 使用单色Al-Kα电极(15kV,150W,45°入射角), 使用160eV和40eV的通能分别进行表面元素广 谱分析和高像素窄谱分析。国家标准与技术研究 所XPS在线数据库(http://srdata.nist.gov/xps/)用作 确定参考结合能值的参考。参照外来污染碳的 C1s的结合能(284.8eV)确定XPS谱的特征。根据 峰面积和原子灵敏度因子对表面化学成分进行半 定量分析。

1.2.6 电化学腐蚀测试

采用经典三电极体系,纯钛试件为工作电极,

铂片和Ag/AgCl分别为辅助电极和参比电极,以各 组的不同模拟体液为电解质,每组3个样本,在 (37.0±0.5)℃温度下进行电化学腐蚀测试。三电极 放入反应池后,通过导线与电化学工作站相连。先 测试开路电位1h,待电位波动不超过2mV时开始电化 学阻抗谱(electrochemical impedance spectroscopy, EIS)测试,在1~10 mHz的频率范围内选择振幅为 10 mV的正弦微扰信号,自高频向低频扫描。采集 奈奎斯特图、波特阻抗图、波特相位图,获得的阻抗 谱导入ZSimpWin软件,选择适当的等效电路进行 数据分析和参数拟合。

1.2.7 钛离子释放检测

通过浸泡试验评估不同模拟体液环境下纯钛 试件的钛离子释放量。ICP-OES检测各组收集的浸 提液中钛离子含量,每组3个样本。

1.3 统计学方法

采用SPSS 22.0 软件进行统计分析,对电化学腐 蚀参数和金属离子释放量进行方差齐性检验,显示 方差齐,进行单因素方差分析和LSD多重比较,检 验水准α=0.05。

2 结 果

2.1 钛表面微形貌

扫描电镜观察纯钛试件在4种不同模拟体液中 浸泡7d后的表面形貌见图1。浸泡于含BSA的 HBSS液中试件的表面微形貌与HBSS组无明显差 异,均可见整齐的机械划痕,偶见微小孔洞。HBSS+ BSA+H₂O₂组试件表面的微孔稍有增多。而对于 HBSS+H₂O₂组试件,表面机械划痕几乎消失,清晰可 见大量点蚀孔,高倍镜下见局部点蚀孔大而深,形 状不规则。

2.2 钛表面元素分析

对4组在不同模拟体液中浸泡7d后的纯钛试件表面进行XPS广谱和高像素窄谱分析。图2A的XPS广谱分析显示,4组试件表面均检测到钛和氧元素,相比于HBSS组,HBSS+BSA组无明显变化,HBSS+H2O2组试件表面的钛、氧峰强度明显升高,HBSS+BSA+H2O2组的钛、氧峰强度低于HBSS+H2O2组。图2B、C分别为Ti2p和O1s的XPS高像素窄谱分析,结果表明:试件表面的Ti2p包含458.5eV、464.4eV处的2个TiO2峰,相比对照组,HBSS+BSA 组无明显变化,HBSS+H2O2组试件表面Ti2p的2个TiO2峰均明显升高,而加入BSA后则呈下降趋势。试件表面O1s峰的变化趋势与Ti2p峰一致,HBSS+ BSA组与对照组无明显差异,而含 H_2O_2 实验组试件 表面的O1s峰则明显呈现531.5 eV(OH⁻)处和 529.9 eV(O²⁻)处的2个峰, 且HBSS+H₂O₂组的O1s 峰在4组中最为显著。

图2 纯钛试件在4种不同模拟体液中浸泡7d后的XPS表面元素分析

2.3 电化学阻抗谱分析

以不同模拟体液为电解质对纯钛试件进行电 化学腐蚀测试获得的代表性EIS谱见图3。图3A为 奈奎斯特(Nyquist)图,各组试件呈现为不同半径的 容抗弧,其中HBSS+H₂O₂组的半径最小,加入BSA 后半径又有所增大。容抗弧的半径与材料的耐腐 蚀性能呈正相关,即半径越大,耐腐蚀性能越好。 图3B为波特阻抗图,显示不同模拟体液中纯钛试件 在各频率区段的阻抗绝对值,其中HBSS+H₂O₂组在 低频区的阻抗幅度最低,表明试件的耐腐蚀性能最 弱。图3C为波特相位图。相位角可用于评价材料 表面氧化膜结构的完整度,相位角越高,提示材料 的表面结构越稳定、致密^[9]。在最低频率0.01 Hz 处,HBSS+H₂O₂组的相位角降至57°,其余3组则介 于75°~80°。由图可见,3种电化学阻抗谱图的结果 保持一致。

采用合适的等效电路对上述电化学阻抗谱数 据进行拟合。图4中的R_s(R_eQ)等效电路模型可解 析 HBSS 组和 HBSS+H₂O₂组纯钛试件的阻抗谱,而 R_s(R_{pro}Q)(R_eQ)为 HBSS+BSA 组和 HBSS+BSA+H₂O₂ 组试件的等效电路模型,两者均体现表面氧化层的 典型特征。在这些模型中,R_s表示电解质电阻;R_{pro} 表示蛋白质吸附膜电阻;R_e为电荷转移电阻,代表 表面氧化层的抗腐蚀性,与腐蚀速率成反比;Q表示 恒定相位元件(constant phase elemant,CPE),由于纯 钛试件采用SiC砂纸打磨获得粗糙表面,故在EIS 拟 合中使用CPE代替纯电容,CPE包括电容Y₀和弥散 指数,代表了从理想电容行为的转变。表1为拟合

Figure 3 The typical EIS diagrams of pure titanium specimens in four different simulated body fluids

获得的电荷转移阻抗 R_{et} 及相应的 Y_0 -CPE、弥散指数 和 χ^2 值。表1中,各组的弥散指数在0.9左右,均<1, 且 χ^2 值均<10⁻³,表明实验数据和拟合值之间高度吻 合。由表1可见,纯钛试件在含 H_2O_2 溶液中浸泡后, R_{et} 值显著降低,且 HBSS+ H_2O_2 组的 R_{et} 值最低,表明 该组试件的耐腐蚀性能最弱。

A:Rs(RctQ);B:Rs(RproQ)(RctQ)_o

图4 用于拟合EIS数据的等效电路模型

Figure 4 Models of equivalent circuit used for fitting the EIS data

T 1 1 T

Tunte I - Ins parameter (and s optimite i tom equivalent of out interactions of the second se					
八 /日	电化学阻抗谱参数				
万组	$Rct(M\Omega/cm^2)$	Y_0 -CPE(μ F/cm ²)	弥散指数	χ²值	
HBSS组	$2.59 \pm 0.48^{\scriptscriptstyle \bigtriangleup}$	6.98×10^{-5}	0.89	1.27×10^{-3}	
HBSS+BSA组	$2.45 \pm 0.18^{\scriptscriptstyle \bigtriangleup}$	6.65×10^{-5}	0.91	2.47×10^{-4}	
HBSS+H2O2组	$0.29 \pm 0.03^{*\#}$	8.47×10^{-5}	0.92	1.00×10^{-3}	
HBSS+BSA+H2O2组	$1.54 \pm 0.32^{* \# \triangle}$	7.17×10^{-5}	0.90	3.81×10^{-4}	
分组 HBSS组 HBSS+BSA组 HBSS+H2O2组 HBSS+BSA+H2O2组	Rct(MΩ/cm²) 2.59 ± 0.48 ^Δ 2.45 ± 0.18 ^Δ 0.29 ± 0.03 ^{*#} 1.54 ± 0.32 ^{*#Δ}	$\frac{Y_0-CPE(\mu F/cm^2)}{6.98 \times 10^{-5}}$ 6.65×10^{-5} 8.47×10^{-5} 7.17×10^{-5}	<u>弥散指数</u> 0.89 0.91 0.92 0.90	χ^{2} 值 1.27×10 ⁻³ 2.47×10 ⁻⁴ 1.00×10 ⁻³ 3.81×10 ⁻⁴	

与HBSS组比较, *P<0.01;与HBSS+BSA组比较, *P<0.01;与HBSS+H₂O₂组比较, ^P<0.01(n=3)。

2.4 钛离子释放

采用电感耦合等离子体发射光谱仪(ICP-OES) 检测纯钛试件在不同模拟体液中浸泡7d后浸提液 的钛离子释放量(图5)。HBSS+H₂O₂组的钛离子释 放量最高,其余3组浸提液中的钛离子释放量均显 著低于HBSS+H₂O₂组。

3 讨 论

钛表面的天然氧化膜对金属和电解液之间的 电子流起着非导电屏障或电阻器的作用,以抵抗腐 蚀的发生^[16]。复杂的口腔微环境可能破坏钛表面 的天然氧化膜,造成腐蚀,导致钛离子的释放,进而 影响周围细胞和组织的生物学行为,包括成骨作 用、炎症反应等,而后者可进一步加剧腐蚀行为,最 终导致种植失败^[17-19]。一些研究报道了纯钛在模拟

与HBSS+H₂O₂组比较, $P < 0.01(n=3)_{\circ}$

- 图 5 纯钛试件在4种不同模拟体液中浸泡7d 后的钛离子 释放量
- Figure 5 Quantity of titanium ions released from pure titanium specimens after 7 days of immersion in four different simulated body fluids

体液中的腐蚀行为,观察到在不同模拟环境中钛表 面微观结构的变化,电化学测试也证实其耐腐蚀性 能降低[20-22]。因此,对于在医用金属领域广泛应用 的纯钛材料,深入探索钛表面微形貌、氧化膜组成 等特性至关重要。在种植体植入人体后,血液中的 蛋白质会快速吸附至钛表面。人体血清白蛋白约 占血液蛋白质总量的55%,其正常浓度为30~50g/L, 在初始蛋白吸附过程中发挥重要作用[23]。作为体 外测试溶液中的重要组成部分,本研究将BSA以 40 g/L的生理浓度添加至实验溶液中。据报道,炎 症细胞释放的H2O2可在体外相对较低浓度下增加 CoCrMo和不锈钢合金的腐蚀速率^[6],而纯钛亦存 在类似的腐蚀风险。作为炎症细胞的代谢产物, 已发现在生理性氧化应激中H2O2的细胞外浓度可 达µmol/L范围^[24]。现有关于氧化应激模型的文献 中,H₂O₂对MC3T3-E1成骨细胞的损伤浓度约为 500 µmol/L^[25-26]。因而本研究将H₂O₂以500 µmol/L 的生理浓度添加至实验溶液中,构建模拟过氧化微

蚀行为的影响。 为了更好地了解过氧化微环境下钛表面氧化 膜特性的变化,本研究采用XPS 检测纯钛试件表面 10 nm 范围内的元素组分和化学状态^[27]。通过 XPS 分析发现,钛表面氧化膜的主要成分为二氧化钛 (TiO₂),HBSS+H₂O₂组试件表面的钛和氧峰值明显 增强(图2)。究其原因,可能是H2O2作为强氧化剂, 改变了金属基底上天然氧化层的形成,导致表面过 氧化和/或氧化层增厚。Foneseca-Garcia等^[28]研究 证实,由于与富含H₂O₂的溶液相互作用,钛表面发 生溶解/氧化反应,形成较厚的氧化层,从而使钛表 面出现较高的孔隙率。本实验中的其余3组未见显 著差异,表明BSA的存在可减轻H₂O₂对纯钛试件表 面的氧化作用。这归因于白蛋白吸附在钛表面后 形成的蛋白薄膜起到保护膜的作用。该现象与含 氟环境中蛋白质膜的保护作用相一致,后者亦减轻 了腐蚀介质对钛的侵蚀[11-12]。

环境,以探索蛋白质和H2O2对纯钛表面特性及其腐

为进一步检测过氧化微环境中钛的耐腐蚀性能,本研究采用了电化学阻抗谱法。电化学阻抗谱法是一种有利于表征金属表面氧化膜而又不破坏材料表面特性的"准稳态"检测方法。实验中采集的奈奎斯特图显示,纯钛试件在HBSS+H₂O₂溶液中的耐腐蚀性能最差,而在含H₂O₂的模拟体液中加入BSA可改善纯钛的耐腐蚀性能。在波特相位图中,HBSS+H₂O₂组试件的相位角下降至57°,远低于其

余3组的相位角(75°~80°),说明纯钛表面因H₂O₂氧 化造成氧化层缺陷,氧化膜的稳定性和致密度降 低,从而增加了钛表面的腐蚀易感性,其化学反应 性和腐蚀速率增加,而BSA对试件表面无明显影 响,并且能够保护钛表面抵御H₂O₂的氧化溶解作 用。该结果得到了电化学阻抗谱数据拟合的验证, 等效电路相关元件的主要参数值见表1。其中,电 荷转移电阻(R_a)越大表示材料表面氧化膜的抗腐 蚀性越好。与不含H₂O₂的模拟体液相比,H₂O₂存在 时,R_a值显著降低,表明在H₂O₂条件下形成的钛氧 化物难以作为腐蚀屏障。而在BSA和H₂O₂共存的 模拟体液中,R_a值有所增加,表明BSA吸附形成的 蛋白膜可有效抵御腐蚀介质对钛表面的侵蚀。

生物材料植入人体后,免疫细胞介导的炎症 反应某些情况下可能触发氧化应激,导致大量 ROS的释放和累积^[29]。根据植入部位的损伤程度, 种植体植入后的炎症反应通常在1周内消失[28],故 本实验将试件在不同模拟体液中的浸泡周期设 定为7d,以评估其对钛表面腐蚀行为的影响。 浸泡7d后,扫描电镜观察显示HBSS+H₂O₂组划痕 消失,纯钛试件的表面形貌发生明显改变,大而深 的点蚀孔广泛分布。这一结果与马俊峰^[30]的研究 结果相一致,即不同浓度过氧化氢处理后的纯钛表 面粗糙度增加,并出现不同程度的腐蚀破损。此 外,相比于其余3组,HBSS+H₂O₂组的钛离子释放量 明显增加(图5),表明H₂O₂会引发钛基体金属释放 钛离子,而溶液中加入BSA后钛离子释放量恢复正 常,说明BSA膜可维持钛氧化膜优良的化学稳定 性,减少H2O2对纯钛表面的破坏,发挥屏障作用,有 效阻止钛离子的释放。该发现亦验证了上述XPS 和EIS的实验结果。

过往研究报道,BSA和H₂O₂共存时,两者具有 协同作用,可强化Ti-6Al-4V的腐蚀^[31-32]。结合本实 验结果可知,H₂O₂会导致纯钛和Ti-6Al-4V的耐腐蚀 性能下降,但在BSA存在条件下,Ti-6Al-4V的H₂O₂ 腐蚀产物溶解增强,在金属表面形成较薄的氧化 层,而纯钛则通过蛋白吸附作用降低对H₂O₂的腐蚀 易感性,表面氧化膜几乎未受影响。该现象的差异 可能与金属材料自身的组成及钝化性能不同有 关。提示在过氧化生理微环境中,纯钛的耐腐蚀性 能优于Ti-6Al-4V,钛离子释放更少,可减轻应激性 炎症反应的影响,有利于提高种植体植入后的成功 率。因而,纯钛可作为临床上牙种植体的优选材 料。为了增强种植体的骨结合,通常对纯钛表面进

第42卷第10期 2022年10月 行改性和修饰,如大颗粒喷砂-酸蚀、双酸酸蚀、阳极 氧化等^[33-35]。考虑到这一点,不同形貌的钛表面在 模拟过氧化微环境下的腐蚀行为特征还有待于更 深入的研究。

综上所述,BSA 对纯钛表面天然氧化膜的稳定 性无明显影响,模拟过氧化微环境中的H2O2会损害 钛表面氧化膜,减弱钛的耐腐蚀性能,造成电化学 腐蚀和钛离子释放,而BSA与H2O2同时存在时,BSA 对H2O2引发的钛腐蚀行为具有一定的抑制作用。 本研究在体外模拟构建过氧化微环境,为深入探究 钛种植体在体内的腐蚀行为提供实验依据。然而, 本研究中腐蚀测试采用的电解质溶液为静止态,而 人体体液多处于流动态,这种流动态是否会对测试 结果产生额外的影响尚未可知。在进一步的研究 中,有必要模拟更真实的电解质物理状态来评估钛 表面特性及其腐蚀行为。

[参考文献]

- [1] PJETURSSON B E, ASGEIRSSON A G, ZWAHLEN M, et al. Improvements in implant dentistry over the last decade: comparison of survival and complication rates in older and newer publications[J]. Int J Oral Maxillofac Implants, 2014, 29(Suppl): 308-324
- [2] FUGAZZOTTO P A. Survival rates of 8-mm or shorter tissue-level implants in function for up to 228 months [J]. Int J Oral Maxillofac Implants, 2020, 35(6):1239–1247
- [3] SUITO H, IWAWAKI Y, GOTO T, et al. Oral factors affecting titanium elution and corrosion: an *in vitro* study using simulated body fluid [J].PLoS One, 2013, 8 (6) : e66052
- KARIMI S, ALFANTAZI A M. Ion release and surface oxide composition of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V alloys immersed in human serum albumin solutions
 [J]. Mater Sci Eng C, 2014, 40:435–444
- [5] HAMEISTER R, KAUR C, DHEEN S T, et al. Reactive oxygen/nitrogen species (ROS/RNS) and oxidative stress in arthroplasty[J]. J Biomed Mater Res Part B Appl Biomater, 2020, 108(5):2073-2087
- [6] GILBERT J L, SIVAN S, LIU Y P, et al. Direct *in vivo* inflammatory cell-induced corrosion of CoCrMo alloy orthopedic implant surfaces [J]. J Biomed Mater Res A, 2015, 103(1):211-223
- [7] AL-MOBARAK N A, AL-MAYOUF A M, AL-SWAYIH A A. The effect of hydrogen peroxide on the electrochemical behavior of Ti and some of its alloys for dental applications[J]. Mater Chem Phys, 2005, 99(2):333–340
- [8] MABILLEAU G, BOURDON S, JOLY-GUILLOU M L, et

al. Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium[J]. Acta Biomater, 2006, 2(1):121–129

- [9] YU X Y, ZHU W Q, CHEN W, et al. Osteoclast-mediated biocorrosion of pure titanium in an inflammatory microenvironment [J]. Mater Sci Eng C Mater Biol Appl, 2021, 119:111610
- [10] CLARK G C, WILLIAMS D F. The effects of proteins on metallic corrosion[J]. J Biomed Mater Res, 1982, 16(2): 125-134
- [11] 王鲁宁,刘丽君,岩 雨,等.蛋白质吸附对医用金属材 料体外腐蚀行为的影响[J].金属学报,2021,57(1):1-15
- [12] TAKEMOTO S, HATTORI M, YOSHINARI M, et al. Corrosion behavior and surface characterization of Ti-20Cr alloy in a solution containing fluoride [J]. Dent Mater J, 2004, 23(3): 379–386
- [13] TAKEMOTO S, HATTORI M, YOSHINARI M, et al. Suppression of fluoride-induced corrosion of titanium by albumin in oral modified environment [J]. J Biomed Mater Res Part B Appl Biomater, 2008, 87(2):475-481
- [14] CHENG X L, ROSCOE S G. Corrosion behavior of titanium in the presence of calcium phosphate and serum proteins[J]. Biomaterials, 2005, 26(35):7350-7356
- [15] XU W C, YU F, YANG L H, et al. Accelerated corrosion of 316L stainless steel in simulated body fluids in the presence of H₂O₂ and albumin[J]. Mater Sci Eng C Mater Biol Appl, 2018, 92:11–19
- [16] TARDELLI J D C, BOLFARINI C, DOS REIS A C. Comparative analysis of corrosion resistance between beta titanium and Ti-6Al-4V alloys: a systematic review [J]. J Trace Elem Med Biol, 2020, 62:126618
- [17] NOUMBISSI S, SCARANO A, GUPTA S. A literature review study on atomic ions dissolution of titanium and its alloys in implant dentistry [J]. Materials, 2019, 12(3): 368–368
- [18] KIM K T, EO M Y, NGUYEN T T H, et al. General review of titanium toxicity [J]. Int J Implant Dent, 2019, 5 (1):10
- [19] CHEN W, ZHU W Q, QIU J. Impact of exogenous metal ions on peri-implant bone metabolism: a review [J]. RSC Adv, 2021, 11(22):13152–13163
- [20] CHEN W Q, ZHANG S M, QIU J. Surface analysis and corrosion behavior of pure titanium under fluoride exposure[J]. J Prosthet Dent, 2020, 124(2):239.e1-239.e8
- [21] ZHU W Q, SHAO S Y, XU L N, et al. Enhanced corrosion resistance of zinc-containing nanowires-modified titanium surface under exposure to oxidizing microenvironment [J].

J Nanobiotechnology, 2019, 17(1):55

第42卷第10期

2022年10月

- [22] CHEN X D, FU Q S, JIN Y Z, et al. In vitro studying corrosion behavior of porous titanium coating in dynamic electrolyte[J]. Mater Sci Eng C Mater Biol Appl, 2017, 70 (Pt 2): 1071–1075
- [23] HÖHN S, BRAEM A, NEIRINCK B, et al. Albumin coatings by alternating current electrophoretic deposition for improving corrosion resistance and bioactivity of titanium implants[J]. Mater Sci Eng C Mater Biol Appl, 2017, 73: 798-807
- [24] SIES H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress; oxidative eustress[J]. Redox Biol, 2017, 11:613-619
- [25] 张恩南,郭晓宁,李 丹. 柚皮苷对H₂O₂处理小鼠前成 骨细胞MC3T3-E1骨形成的影响[J]. 山东中医药大学 学报,2016,40(2):178-181
- [26] 朱建红,薛照芸,黄光业,等.四氢小檗碱对过氧化氢致 前成骨细胞MC3T3-E1氧化损伤的防治作用及机制探 讨[J].今日药学,2018,28(10):649-654
- [27] WANG L T, MERCIER D, ZANNA S, et al. Study of the surface oxides and corrosion behaviour of an equiatomic CoCrFeMnNi high entropy alloy by XPS and ToF-SIMS [J]. Corros Sci,2020,167:108507
- [28] FONSECA-GARCÍA A, PÉREZ-ALVAREZ J, BARRE-RA C C, et al. The effect of simulated inflammatory conditions on the surface properties of titanium and stainless

(上接第1370页)

- [18] CHEN W H, TZEN J T C, HSIEH C L, et al. Attenuation of TRPV1 and TRPV4 expression and function in mouse inflammatory pain models using electroacupuncture [J]. Evid Based Complementary Altern Med, 2012, 2012: 636848
- [19] NAVARRO ALVAREZ N, GONÇALVES B M M, AN-DREWS A R, et al. A CFA-induced model of inflammatory skin disease in miniature swine [J]. Int J Inflamm, 2018,2018:6916920
- [20] ZHANG C J, WANG Y, PENG Y N, et al. METTL3 regulates inflammatory pain by modulating m6A-dependent primiR-365-3p processing[J]. FASEB J, 2020, 34(1):122– 132
- [21] FENG S F, YU H H, YU Y, et al. Levels of inflammatory cytokines IL-1 β , IL-6, IL-8, IL-17A, and TNF- α in aqueous humour of patients with diabetic retinopathy[J]. J Diabetes Res, 2018, 2018:8546423
- [22] YANG Q Q, LI H N, ZHANG S T, et al. Red nucleus IL-6 mediates the maintenance of neuropathic pain by induc-

steel and their importance as biomaterials [J]. Mater Sci Eng C Mater Biol Appl,2016,66:119-129

- [29] 黄静燕,王 焱.氧化应激状态对骨生物材料理化性能 及成骨效能的影响[J].中华口腔医学研究杂志(电子 版),2020,14(5):334-338
- [30] 马俊峰. 过氧化氢浓度对纯钛及钴铬合金表面特性的 影响[D]. 郑州:郑州大学, 2019
- $\label{eq:stability} \begin{array}{l} \mbox{[31]} & \mbox{YU F, ADDISON O, DAVENPORT A J. A synergistic effect of albumin and H_2O_2 accelerates corrosion of Ti-6Al-$4V[J]. Acta Biomater, 2015, 26:355–365 \end{array}$
- $\label{eq:states} \begin{array}{l} \mbox{[32]} \mbox{ ZHANG Y, ADDISON O, YU F, et al. Time-dependent} \\ \mbox{ enhanced corrosion of Ti-6Al-4V in the presence of H_2O_2} \\ \mbox{ and albumin} \mbox{[J]. Sci Rep, 2018, $8(1): 3185} \end{array}$
- [33] MING P P, SHAO S Y, QIU J, et al. Superiority of calciumcontaining nanowires modified titanium surface compared with SLA titanium surface in biological behavior of osteoblasts: a pilot study [J]. Appl Surf Sci, 2017, 416: 790– 797
- [34]周晓,邵水易,明盼盼,等.双酸酸蚀钛表面复合含钙纳米薄片膜层对成骨细胞行为的影响[J].南京医科大学学报(自然科学版),2017,37(10):1251-1256
- [35] 刘 婧,孙 华,何奕德,等.TiO₂纳米管表面对成骨细 胞与巨噬细胞黏附、形态及迁移的影响[J].实用口腔 医学杂志,2020,36(5):748-752

[收稿日期] 2021-10-24 (本文编辑:蒋 莉)

ing the productions of TNF - α and IL - 1 β through the JAK2/STAT3 and ERK signaling pathways [J]. Neuropathology, 2020, 40(4): 347–357

- [23] 李秋月,许海玉,杨洪军. 促炎因子TNF-α,IL-1β,IL-6 在神经病理性疼痛中的研究进展[J]. 中国中药杂志, 2017,42(19):3709-3712
- [24] KAMEDA T, ZVICK J, VUK M, et al. Expression and activity of TRPA1 and TRPV1 in the intervertebral disc: association with inflammation and matrix remodeling [J]. Int J Mol Sci, 2019, 20(7): 1767
- [25] VINCENT F, DUNCTON M A J. TRPV4 agonists and antagonists [J]. Curr Top Med Chem, 2011, 11(17): 2216– 2226
- [26] SUI F, HUO H R, ZHANG C B, et al. Emodin down-regulates expression of TRPV1 mRNA and its function in DRG neurons *in vitro*[J]. Am J Chin Med, 2010, 38(4): 789-800

[收稿日期] 2021-10-11 (本文编辑:蒋 莉)