·基础研究·

Caspase-3 抑制剂所致氧化应激状态下肾小管上皮细胞差异表 达基因的筛选及功能验证

骆长亮1,张秋红2,孙林春3*

'苏州大学附属儿童医院检验科,江苏 苏州 215000;²南京鼓楼医院集团宿迁医院检验科,江苏 宿迁 223800;³南京医科 大学附属儿童医院儿科研究所,江苏 南京 210008

[摘 要] 目的:研究 caspase-3 抑制剂引起的氧化应激状态下肾小管上皮细胞基因表达特点,筛选潜在的候选基因,为揭示 caspase-3 调控活性氧(reactive oxygen species, ROS)损伤肾小管上皮细胞的机制奠定基础。方法:将人肾小管上皮细胞HK-2用 H₂O₂(300 µmol/L)处理6h后,随机分为对照组和 caspase-3 抑制剂组(Ac-DEVD-CHO, 15 µmol/L),运用 Illumina Hiseq 2500 测 序平台完成基因测序,筛选差异基因并进行相关富集分析,用定量PCR对筛选到的前10位差异表达基因(differentially expressed gene, DEG)进行验证。将H2O2(300 µmol/L)处理6h后的HK-2细胞随机分为对照组、caspase-3抑制剂组(Ac-DEVD-CHO, 15 µmol/L)、CTNNB1组[pcDNA3.1(+)-CTNNB1]、caspase-3 抑制剂+CTNNB1组[Ac-DEVD-CHO, 15 µmol/L+pcDNA3.1 (+)-CTNNB1]以及 caspase-3 抑制剂+CTNNB1 NC组[Ac-DEVD-CHO, 15 µmol/L+pcDNA3.1(+)-CTNNB1 NC], MTT 法检测细胞 增殖,流式细胞技术检测细胞凋亡和ROS水平,Western blot检测细胞凋亡相关蛋白表达。结果:芯片共筛选出185个DEG,经 定量PCR 验证,显著性差异排名前10的基因中FIS1、EZR、COL7A1、RPL5、MAP4、CEBPB和CTNNB1 mRNA在 caspase-3 抑制 剂组细胞中低表达(P均 < 0.05), SNRPB mRNA 高表达(P < 0.05)。Caspase-3 抑制剂组增殖率高于对照组(P < 0.05), CTNNB1 组增殖率低于对照组(P < 0.05), caspase-3抑制剂+CTNNB1组增殖率低于 caspase-3抑制剂组(P < 0.05),但仍高于对照组 (P < 0.05)。Caspase-3 抑制剂组细胞凋亡率、cleaved-caspase-3 和 cleaved-PARP 蛋白水平低于对照组(P均 < 0.05), CTNNB1 组细胞凋亡率、cleaved-caspase-3和 cleaved-PARP 蛋白水平高于对照组(P均 < 0.05), caspase-3抑制剂+CTNNB1组细胞凋亡 率、cleaved-caspase-3和cleaved-PARP蛋白水平均较 caspase-3 抑制剂组高(P<0.05),但仍低于对照组(P<0.05)。 caspase-3 抑 制剂组ROS较对照组降低(P<0.05),CTNNB1组ROS较对照组升高(P<0.05),caspase-3抑制剂+CTNNB1组ROS较caspase-3抑 制剂组高(P<0.05),但仍低于对照组(P<0.05)。结论:Caspase-3抑制剂引起的肾小管上皮基因异常表达与氧化应激状态下 的肾损伤有关;氧化应激对肾小管上皮细胞的损伤具有 caspase-3 依赖性,抑制 caspase-3 对肾损伤有保护作用,CTNNB1参与了 这一过程。

[关键词] 肾损伤;氧化应激;线粒体;生物信息学;β-连环蛋白
 [中图分类号] R393
 [文献标志码] A
 doi:10.7655/NYDXBNS20230103

[文章编号] 1007-4368(2023)01-017-10

Screening and functional verification of differentially expressed genes induced by caspase-3 inhibitor in renal tubular epithelial cells under oxidative stress

LUO Changliang¹, ZHANG Qiuhong², SUN Linchun^{3*}

¹Clinical Laboratory, Children's Hospital of Soochow University, Suzhou 215000, ²Clinical Laboratory, Suqian Hospital of Nanjing Drum Tower Hospital Group, Suqian 223800; ³Pediatric Research Center, Children's Hospital of Nanjing Medical University, Nanjing 210009, China

[Abstract] Objective: To study the gene expression characteristics of renal tubular epithelial cells under oxidative stress caused by caspase-3 inhibitors via screening the potential candidate genes, which will lay the foundation for revealing the mechanism of caspase-3 regulating ROS injury in renal tubular epithelial cells. **Methods:** The renal tubular epithelial cells HK-2 were treated with H₂O₂ at a

[基金项目] 南京市卫生科技发展专项(YKK20125)

*通信作者(Corresponding author), E-mail: 451377086@qq.com

final concentration of 300 µmol/L for 6 h, and then randomly divided into control group and caspase-3 inhibitor group (Ac-DEVD-CHO, 15 µmol/L). The sequencing was completed by using the Illumina Hiseq 2500 platform. Enrichment analysis and an interaction network were performed to screen differential genes. Quantitative PCR was used to verify the first 10 differentially expressed genes (DEGs). The HK-2 cells treated with $H_2O_2(300 \ \mu mol/L)$ for 6 h were then divided into control group, caspase-3 inhibitor group $(Ac-DEVD-CHO, 15 \ \mu mol/L), CTNNB1 \ group (pcDNA3.1(+)-CTNNB1), caspase-3 \ inhibitor+CTNNB1 \ group (Ac-DEVD-CHO, CHO), and a caspase-3 \ inhibitor+CTNNB1 \ group (Ac-DEVD-CHO), and a c$ 15 μmol/L+pcDNA3.1(+)-CTNNB1) and caspase-3 inhibitor+CTNNB1 NC group (Ac-DEVD-CHO, 15 μmol/L+pcDNA3.1(+)-CTNNB1 NC) randomly. MTT assay was used to detect cell proliferation, flow cytometry was used to detect cell apoptosis and ROS level, Western blot was used to detect apoptosis-related proteins. Results: A total of 185 DEGs were selected in the control group and the caspase-3 inhibitor group. Quantitative PCR showed FIS1, EZR, COL7A1, RPL5, MAP4, CEBPB and CTNNB1 mRNA were lowly expressed (all P < 0.05) and SNRPB mRNA was highly expressed in caspase-3 inhibitor group (P < 0.05). The proliferation was higher in the caspase-3 inhibitor group and was lower the CTNNB1 group compared to the control (both P < 0.05). The proliferation of the caspase-3 inhibitor+CTNNB1 group was lower than that of the caspase-3 inhibitor group (P < 0.05), but still higher than the control (P < 0.05). The apoptosis and the expression of cleaved-caspase-3 and cleaved-PARP were lower in caspase-3 inhibitor group and were higher in CTNNB1 group compared to the control (both P < 0.05). The apoptosis and the expression of cleaved-caspase-3 and cleaved-PARP in caspase-3 inhibitor+CTNNB1 group were higher than those in the caspase-3 inhibitor group (P < 0.05), but were still lower than the control (P < 0.05). The ROS in the caspase-3 inhibitor group was lower but was higher in CTNNB1 group compared to that of the control group (P < 0.05). The ROS in the caspase-3 inhibitor+CTNNB1 group was higher than that of the caspase-3 inhibitor group (P < 0.05), but was still lower than the control (P < 0.05). **Conclusion**: Aberrant gene expression induced by caspase-3 inhibitor is associated with renal injury under oxidative stress. The injury of oxidative stress on renal tubular epithelial cells is caspase - 3 dependent. Inhibition of caspase-3 has a protective effect on renal injury and CTNNB1 is involved in this process.

[Key words] kidney injury; oxidative stress; mitochondria; bioinformatics; CTNNB1

[J Nanjing Med Univ, 2023, 43(01):017-026]

氧化应激损伤是造成急性和慢性肾损伤的重要机制之一。人体正常的生物代谢会产生超氧阴离子自由基、过氧化氢等活性氧(reactive oxygen species, ROS),体内完善的抗 ROS 系统能及时将多余的 ROS 清除,较低水平的 ROS 对肾小管和微循环的生理调节有积极作用^[1];但是在受到各种病原体或炎症因子刺激时,肾小管细胞中氧化还原状态调控失衡,造成 ROS 在肾组织蓄积、细胞膜损伤和超氧阴离子渗漏,最终导致肾损伤^[2]。以氧化应激为治疗靶点已经成为肾损伤治疗的热点。

Caspase-3介导的线粒体途径凋亡是经典的细胞凋亡通路。有研究指出,氧化应激损伤和 caspase-3 介导的线粒体途径细胞凋亡存在关联^[3-4]。我们在 前期研究中发现,H₂O₂处理的人肾小管上皮细胞 HK-2中氧化应激水平升高,细胞增殖受到抑制、细 胞凋亡增多;而 caspase-3抑制剂能降低H₂O₂处理后 肾小管细胞 ROS 水平,对氧化应激引起的细胞损伤 有改善作用,说明肾小管上皮细胞的氧化应激损伤 具有 caspase-3 依赖性,抑制 caspase-3 途径的细胞凋 亡对 ROS 引起的脓毒症肾小管上皮细胞损伤有一 定保护作用^[5]。Kaleem等^[6]指出, caspase 的释放受 细胞中超氧阴离子浓度的调节。但是目前对肾小 管上皮损伤中ROS和caspase-3途径细胞凋亡的研 究还较少,caspase-3对ROS的调控是直接起作用, 还是引起了其他基因、蛋白或通路的变化?除了线 粒体-caspase途径介导细胞凋亡,其他凋亡通路是 否也参与其中?这些问题目前尚不清楚。

本研究拟利用芯片测序,对caspase-3抑制剂处理的氧化应激状态下肾小管上皮细胞转录组进行分析,筛选caspase-3抑制剂引起的差异表达基因(differentially expressed gene, DEG),对DEG进行GO分析和KEGG富集分析,对筛选出的关键基因进行生物学验证,深入探讨和揭示caspase-3调控ROS损伤肾小管上皮细胞的机制。

1 材料和方法

1.1 材料

人肾小管上皮细胞HK-2(上海中科院典型培养物保藏中心)。Ac-DEVD-CHO(上海碧云天生物技术有限公司)、VigoFect转染试剂盒(北京威格拉斯生物技术有限公司)、TRIzol试剂盒(TaKaRa公司,日本)、SuperReal PreMix Plus(北京天根生化科技有

限公司)、MTT试剂盒(南京建成生物工程研究所)、 细胞凋亡试剂盒(BD公司,美国)、Western blot一抗 (ABI公司,美国)、Western blot二抗(上海优宁维生 物科技股份有限公司)。荧光定量PCR仪(ABI公 司,美国)、凝胶成像系统(Bio-Rad公司,美国),流式 细胞仪(Beckman公司,美国)。

1.2 方法

第43卷第1期

2023年1月

1.2.1 芯片样本制备

本研究利用H₂O₂诱导HK-2细胞建立氧化应激 状态,通过酶生化法检测HK-2细胞内的抗氧化指 标的含量:超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶(catalase,CAT)和丙二醛(malonic dialdehyde,MDA),验证模型是否成功。将对数生长 期的人肾小管上皮细胞HK-2接种在直径90 mm 的细胞培养皿,用终浓度为300 μ mol/L的H₂O₂处 理6h后,随机分为对照组(不做处理)和 caspase-3 抑制剂组(Ac-DEVD-CHO,15 μ mol/L),各组设置3 个独立样本,将样本送公司完成测序及分析。

1.2.2 DEG的筛选

本次所用测序平台为 Illumina Hiseq 2500, 100PE。用R软件Affy包(Version:R3.4.0)的RMA 法通过质控标准过滤去除原始数据中的接头序 列、低质量数据和未检出碱基等无效数据,得到有 效数据;将原始图像数据转化为序列数据。用R 语言的Limma包^[7]分析各组基因表达,采用随机 方差t检验筛选差异基因,计算P值并多重检验进 行校正,将校正后的P值由小到大排列,同时满足 llog₂FC(fold change)l≥2和校正P值<0.05的基因 为差异表达基因。用完全链接聚类法(completelinkage clustering)对差异基因进行聚类分析,用 pheatmap包绘制热图,用ggplot2包做火山图。

1.2.3 GO分析和KEGG通路富集分析

用 DAVID 数据库^[8]对筛选出的 DEG 进行 GO 通路^[9]和 KEGG 通路^[10]富集分析。当通路上的差异基因数>2个,且矫正后的 P < 0.05 时,认为富集结果有统计学意义。

1.2.4 候选基因的定量PCR验证

用TRIzol 试剂盒提取各组细胞的总 RNA,反转 录为 cDNA 后,以其为模板,用荧光定量 PCR 仪,用 SuperReal PreMix Plus 进行定量 PCR 反应,20 μL总 体系中包含 2×SuperReal PreMix Plus 10 μL,上下游 引物(10 μmol/L)各 0.6 μL,50×ROX Reference Dye II 2 μL, cDNA 2 μL,用灭菌去离子水补足体积。定量 PCR 引物序列见表 1。扩增程序为:95 ℃ 15 min; 95 ℃ 10 s,55 ℃ 30 s,72 ℃ 32 s,共进行 36 个循环; 4 ℃ 10 min。以 5 批独立 cDNA 为模板,每组设 3 个 复孔,以 GAPDH 为内参基因。根据内参基因和候 选基因的 Cr值,用 $\Delta\Delta$ Cr法进行基因表达的相对定量 分析。

1.2.5 CTNNB1表达载体转染HK-2细胞

将 HK-2 细胞接种到 6 孔板中,以铺满板底 40%密度为宜,用终浓度为 300 μ mol/L 的 H₂O₂处 理 6 h 后,将细胞随机分组:对照组(不做处理)、 caspase-3 抑制剂组(Ac-DEVD-CHO,15 μ mol/L)、 CTNNB1 组[pcDNA3.1(+)-CTNNB1]、caspase-3 抑 制剂+CTNNB1 组[Ac-DEVD-CHO,15 μ mol/L+pcD-NA3.1(+)-CTNNB1]以及 caspase-3 抑制剂+CTNNB1 NC 组[Ac-DEVD-CHO,15 μ mol/L+pcDNA3.1(+)-CTNNB1 NC]。转染前1h更换新鲜培养基,用VigoFect 转染试剂盒,根据操作说明进行转染,将细胞放回 培养箱培养,6h后更换新鲜完全培养基。48 h后收 集细胞检测转染效率。

1.2.6 细胞增殖和凋亡检测

将HK-2细胞按1×10³个/孔接种到96孔板,根 据不同分组给予相应处理,在第0h和第48h,向 每孔各加入20μLMTT溶液,放在培养箱中培养 4h,取出用酶标仪检测490nm的吸光度,换算成 存活率,并以时间为横坐标,存活率为纵坐标绘制 细胞生长曲线。将HK-2细胞制成1×10⁵个/mL悬 液,并加入100μL至流式管中,分别加入20μL Annexin-FITC和PI染料,避光孵育20min后,加入 500μLPBS,用涡旋仪震荡混匀后,流式细胞仪检测 凋亡细胞百分数。

1.2.7 Western blot 检测

胰蛋白酶消化并收集各组HK-2细胞,提取总 蛋白,用BCA蛋白定量后,加入1×上样缓冲液煮沸 蛋白5min。先用80V恒压电泳20min,再120V 恒压电泳90min;用硝酸纤维素薄膜90V恒压转 膜120min。用5%脱脂奶粉封闭蛋白膜2h,分别用 1:1000稀释的一抗4℃孵育过夜和用1:500稀释的 二抗溶液室温孵育45min;洗膜后,用显影剂显影并 用凝胶成像系统记录分析蛋白条带。

1.2.8 细胞ROS检测

胰蛋白酶消化并收集各组HK-2细胞,将细胞 制成1×10⁵个/mL的单细胞悬液,向流式细胞管中加 入100μL细胞悬液,再加入5μmol/LDHE,室温避 光孵育30min,用PBS洗涤后,流式细胞仪检测 ROS。

· 19 ·

· 20 ·

Table 1 Quantitative FCK primer sequences				
基因名称	引物序列(5'→3')	长度(bp)		
FIS1	上游:GTAGGGTTACATGGATGCCCAGAGA	181		
	下游:GGCAAAAGCTCCTCCAGCAG			
SOX18	上游:CGCGTGTATGTGGTFC	126		
	下游:ATGTAACCCTGGCAACTC			
EZR	上游:TAGAGGCTGACCGTATGGCT	178		
	下游:TGTGCTGCCACTCTTCAACTT			
SPARC	上游:CATTGGCGAGTTTGAGAAGG	117		
	下游:GGAATTCGGTCAGCTCAGAGT			
COL7A1	上游:GGGTGTAGCTGTACAGCCAC	100		
	下游: CCCTCTTCCCTCACTCTCCT3			
SNRPB	上游:GAGATAAGATGGGAAAAGG	109		
	下游:GGGGACGAGGTGGAACA			
RPL5	上游:GAAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	112		
	下游:CTGCGCAGAGACTATCATATC			
MAP4	上游:CCGGGAACTCAGAGTCAAAGA	134		
	下游:CTCCATGACCACCATTGGCT			
ATF3	上游:CGAAGACTGGAGCAAAATGATG	153		
	下游:CATCCAGGCCAGGTCTCTGCCTCAG			
CEBPB	上游:TGTCCAAACCAACCGCACAT	119		
	下游:ATCAACTTCGAAACCGGCCC			
CTNNB1	上游:CCCAGAATGCAGTTCGCCTT	122		
	下游:TAGTCGTGGAATGGCACCCT			
β-actin	上游:AGCGAGCATCCCCCAAAGTT	131		
	下游:GGGCACGAAGGCTCATCATT			

表1 定量PCR引物序列

 Table 1
 Quantitative PCR primer sequences

1.3 统计学方法

数据分析用 SPSS 17.0软件,服从正态分布的计 量资料统一表示为均数 ± 标准差($\bar{x} \pm s$),两组间比 较用独立样本 t 检验,多组间比较用单因素方差分 析 (One-Way ANOVA),组间两两比较采用 LSD 法。P < 0.05 为差异有统计学意义。

2 结 果

2.1 H₂O₂干预后HK-2细胞SOD、CAT和MDA的表 达变化

由图1可见,H₂O₂处理后的HK-2细胞的SOD和 CAT水平分别为(23.07±1.62)kU/g和(1.28±0.10) kU/g,较正常HK-2细胞的SOD和CAT水平降低 (P<0.05),MDA水平为(33.18±2.16)μmol/g,较正 常HK-2细胞升高(P<0.05),说明H₂O₂干预成功诱 导了细胞的氧化应激状态。

2.2 差异基因筛选

统计结果如图2所示,在对照组和caspase-3抑

图 1 H₂O₂干预后HK-2细胞SOD、CAT和MDA水平 Figure 1 SOD, CAT and MDA levels of HK-2 cells after H₂O₂ intervention

制剂组中共筛选出185个DEG,聚类热图和火山图 见图2A、B。筛选出的显著性最高的前10位差异表 达基因依次为FIS1、SOX18、EZR、SPARC、COL7A1、 SNRPB、RPL5、MAP4、CEBPB和CTNNB1。

A:聚类热图,红色代表高表达,蓝色代表低表达;B:火山图,横坐标为log-FC,纵坐标为lgP值。 图2 差异基因的聚类热图和火山图

Figure 2 Clustering heatmap and volcano map of DEG

表2 排名前10的GO通路名称 Table 2 The top 10 GO entries

组别	名称	P值	基因名称
BP	GO:0032989(细胞成分的形态发生)	0.014	FIS1、ATOH1、CCK、EZR、SSBP1、CTNNB1
	GO:0048562(胚胎器官形态发生)	0.030	STRA6,MTHFD1L,SOX18,KCNQ4,HOXA2
	GO:0030522(细胞内受体介导的通路)	0.030	DNAJA1、CALR、CTNNB1
	GO:0070584(线粒体形态发生)	0.034	FIS1 SSBP1
CC	GO:0005815(微管组织中心)	0.012	KIF2B_EZR_FAM110C_DCTN3_CTNNB1
	GO:0044420(细胞外基质成分)	0.012	COL7A1、COL11A2、SPARC、TNXB
	GO:0005581(胶原蛋白三聚体)	0.019	COL13A1、COL7A1、COL11A2、TNXB
	GO:0030529(核糖核蛋白复合物)	0.033	RPSA_SND1_SNRNP200_SNRPB_RPL5_CALR
MF	GO:0005198(结构分子活性)	0.001	RPSA_TUBB2A_ARPC2_MAP4_RPL5_DCTN3_PLEC
	GO:0015171(氨基酸跨膜转运蛋白活性)	0.026	SLC7A11\SLC7A5\SLC7A1\SLC7A9

2.3 差异基因的GO通路和KEGG通路富集分析

GO注释表明,DEG的功能主要集中在细胞成分的形态发生、胚胎器官形态发生、细胞内受体介导的通路、线粒体形态发生等生物学过程(biological process,BP),微管组织中心、细胞外基质成分、胶原蛋白三聚体、核糖核蛋白复合物等细胞组分

(cell constitutes, CC),以及结构分子活性、氨基酸 跨膜转运蛋白活性等分子功能(molecule function, MF)(表2)。KEGG通路富集分析显著性排名前5的 条目包括 RAC1 信号通路、RNA 代谢通路、RhoA 信 号通路、糖尿病途径和细胞蛋白的凋亡裂解通路 (表3)。

ĩ	Table 3 The top 5 KEGG pathway entries	
名称	基因	P值
RAC1信号通路	PREX2_CTNNB1_EZR_ARPC2	0.022
RNA代谢通路	SNRPB、PSMC3、KHSRP、RPL5、RPSA	0.022
RhoA 信号通路	PREX2_CTNNB1_EZR_ARPC2	0.022
糖尿病途径	CALR RPN1 RPL5 RPSA	0.023
细胞蛋白的凋亡裂解通路	CTNNB1 \PLEC	0.036

表3 排名前5的KEGG通路名称 Table 3 The top 5 KEGG pathway entrie

Figure 3 Quantitative PCR to verify the expression of candidate genes

2.4 候选基因的定量PCR验证

由图3可见,显著性排名前10的DEG中,FIS1、 EZR、COL7A1、RPL5、MAP4、CEBPB和 CTNNB1 mRNA 在对照组细胞中高表达(P均 < 0.05), SNRPB mRNA 在对照组细胞中低表达(P < 0.05), 与芯片结果一致。

2.5 CTNNB1对 caspase-3 抑制剂处理的氧化应激 状态HK-2 细胞增殖和凋亡的影响

由图 4A 可见, 对照组、caspase-3 抑制剂组、 CTNNB1组、caspase-3抑制剂+CTNNB1组和 caspase-3 抑制剂+CTNNB1 NC 组的细胞增殖率为分别 (125.20 \pm 5.24)%、(166.21 \pm 3.85)%、(116.43 \pm 3.08)%、 (140.27 \pm 7.31)%和(170.45 \pm 8.23)%。结果显示, caspase-3抑制剂组增殖率高于对照组(P < 0.05); CTNNB1组增殖率低于对照组(P < 0.05), caspase-3 抑制剂+CTNNB1组增殖率较 caspase-3抑制剂组低 (P < 0.05), 但仍高于对照组(P < 0.05)。

Caspase-3抑制剂组 cleaved-caspase-3和 cleaved-PARP 蛋白水平低于对照组 (P < 0.05); CTNNB1 组 cleaved-caspase-3和 cleaved-PARP 蛋白水平高于对 照组 (P < 0.05); caspase - 3抑制剂+CTNNB1 组 cleaved-caspase-3和 cleaved-PARP 蛋白水平均较 caspase-3抑制剂组高 (P < 0.05), 但低于对照组 (P < 0.05)。对照组、caspase-3抑制剂组、CTNNB1 组、caspase-3抑制剂+CTNNB1 组和 caspase-3抑制 剂+CTNNB1 NC 组细胞的凋亡率分别为(16.35± 2.45)%、(7.21±0.98)%、(22.24±1.21)%、(12.17±1.67)% 和(6.90±0.48)%。caspase-3抑制剂组凋亡率低于 对照组(*P* < 0.05), CTNNB1组凋亡率高于对照组 (*P* < 0.05); caspase-3抑制剂+CTNNB1组凋亡率高 于 caspase-3组(*P* < 0.05), 但低于对照组(*P* < 0.05, 图4B、C)。

2.6 CTNNB1对 caspase-3 抑制剂处理的氧化应激 状态HK-2 细胞ROS 的影响

由图 5 可见, 对照组、caspase-3 抑制剂组、CTN-NB1 组、caspase-3 抑制剂+CTNNB1 组和 caspase-3 抑制剂+CTNNB1 NC 组细胞中 ROS 平均荧光强度 分别为1 615±112、1 212±69、1 798±85、1 476±101 和1 179±76。caspase-3 抑制剂组 ROS 水平较对照 组降低(P < 0.05), CTNNB1组 ROS 水平较对照组升 高(P < 0.05), caspase-3 抑制剂+CTNNB1 组细胞中 ROS 水平较 caspase-3 抑制剂组高(P < 0.05), 但仍 高于对照组(P < 0.05)。

3 讨 论

我们在对照组和 caspase-3 抑制剂组中共筛选 到 185 个 DEG,可见无论在 caspase-3 抑制剂处理 还是氧化应激状态下,肾小管上皮细胞内时刻都 在发生着大量复杂的生物学事件。KEGG分析主 要富集到的有 RAC1 信号通路、RNA 代谢通路、 RhoA 信号通路、糖尿病途径和细胞蛋白的凋亡裂 解通路。CTNNB1 基因的编码产物——β-连环蛋

Figure 4 Detection of proliferation and apoptosis in each group

白(β-catenin)是经典 Wnt 信号通路的核心组分, Wnt/β-catenin通路是一条非常重要的信号通路, 在人类诸多生理活动和病理过程中都有广泛的调 节作用。在结肠癌中,活化 caspase-3 能特异性降 解β-catenin,抑制 Wnt/β-catenin通路诱导的细胞凋 亡^[11];而抑制 Wnt/β-catenin通路信号能加速 H₂O₂诱 导的成纤维细胞凋亡^[12]。

H₂O₂诱导ROS依赖的信号转导能抑制β-catenin 下游转录因子的活性^[13]。在恶性肿瘤中存在 β-catenin信号转导和ROS积累的复杂相互作用。 可见,β-catenin和氧化应激存在关联。β-catenin参 与了RAC1信号通路和RhoA信号通路,过度激活的 RACI参与了氧化应激和炎症反应过程,而RhoA 通路也能激活 Nox4,通过产生 ROS 产物引起氧化 应激,都从侧面印证了β-catenin 与氧化应激的关 系。Wnt/β-catenin 通路与肾脏疾病的关系已经有 大量研究,Zhou 等^[14]报道 Wnt/β-catenin 能将氧化 应激与肾足细胞损伤和蛋白尿联系起来。考虑到 Wnt/β-catenin 通路在人类疾病中的重要作用、 β-catenin 与氧化应激的关系,以及芯片和定量 PCR 结果都证实了其在 H₂O₂处理的 HK-2 细胞中异常表 达,提示β-catenin 可能参与氧化应激状态下肾小管 细胞损伤,值得更多研究。

我们关注的重点是β-catenin对ROS和线粒体 途径的细胞凋亡之间的调控。用Ac-DEVD-CHO 联合H₂O₂处理HK-2细胞,细胞中ROS水平较对照

与对照组相比, P < 0.05; 与 caspase-3 抑制剂组相比, P < 0.05(n=5)。

图 5 各组细胞 ROS 检测 Figure 5 Detection of ROS in each group

组降低,提示H2O2诱导的氧化应激具有一定的caspase-3依赖性,抑制 caspase-3 能部分减弱 HK-2 细胞的氧 化应激损伤。细胞生物行为检测显示, caspase-3抑 制剂联合H₂O₂处理的HK-2细胞增殖率较对照组升 高, 凋亡率降低, 且凋亡蛋白水平降低, 说明氧化应 激对肾小管细胞增殖和凋亡的作用具有 caspase-3 依赖性, caspase-3抑制剂能逆转氧化应激对肾小管 细胞的增殖和凋亡的效应。用CTNNB1表达载体转 染细胞后, caspase-3抑制剂+CTNNB1组细胞增殖率 较 caspase-3 抑制剂组低(P < 0.05),说明 β-catenin 对 caspase-3 抑制剂促进氧化应激状态下肾小管上皮 细胞增殖有抑制作用;而细胞凋亡率高于 caspase-3 抑制剂组, β -catenin能部分抵消 caspase-3 抑制剂对 氧化应激状态下肾小管上皮细胞凋亡的抑制作 用。caspase-3抑制剂+CTNNB1组细胞的ROS水平 较 caspase-3 抑制剂组高 (P < 0.05), 表明 caspase-3 抑制剂能降低H₂O₂诱导的HK-2细胞氧化应激水 平,而β-catenin对这一效应有一定逆转作用。我们 也观察到, caspase-3抑制剂+CTNNB1组细胞的增殖 能力减弱,而凋亡增强,但与对照组相比仍有差异, 提示除了β-catenin, caspase-3途径对氧化应激状态 下肾小管上皮的效应可能还有其他作用途径。

除了CTNNB1,我们还筛选到了其他一些基因可 能与caspase-3途径调控ROS,参与氧化应激所致肾 小管上皮损伤有关。线粒体分裂蛋白1(mitochondrial fission protein 1, FIS1)主要调控线粒体融合蛋白和 视神经萎缩蛋白。FIS1 主要定位在细胞线粒体外 膜,能促进线粒体分裂,抑制线粒体融合,造成动力 学平衡破坏,形成小球或小泡状的异常形态结构, 线粒体嵴不清或消失,导致细胞的线粒体受损;呼 吸链断裂会导致钙离子内流和氧自由基形成,加重 氧化应激损伤[15]。降低大鼠肺泡巨噬细胞中线粒 体的 FIS1 水平,能抑制内毒素所致的肺泡内巨噬 细胞凋亡,减轻氧化应激和炎症反应^[16]。虽然目 前尚未见FIS1在肾小管上皮氧化应激的研究,但 以上结果都提示 FIS1 与氧化应激状态下的肾小管 上皮细胞损伤有关。EZR 基因编码埃兹蛋白 Ezrin, 主要参与细胞骨架重组、细胞内信号转导,并与 细胞存活、黏附、迁移等有关,在肿瘤发生发展和 转移中有重要作用^[17]。目前尚未见EZR与氧化应 激或肾小管损伤的相关报道。有研究报道,糖体蛋 白L5(ribosomal protein L5, RPL5)突变与先天性纯 红细胞再生障碍性贫血有关,并会增加癌症的发病 风险^[18]。小核核糖核蛋白肽B和B1(small nuclear ribonucleoprotein polypeptides B and B1, SNRPB), 负 责参与对前mRNA的选择性剪接,通过剪接复合体 的核心成分,调控细胞的增殖、凋亡和活性^[19]。选 择性剪接能参与基因调控、细胞分化和内环境平衡 等,导致肌萎缩等的发生,其与肿瘤的关系受到较 多关注,但是RPL5和SNRPB在脓毒症肾损伤或与 氧化应激之间的关系均未见报道。微管相关蛋白 4(microtubule-associated protein 4, MAP4)的C-末端 的微管结合域磷酸化对细胞周期有重要的调控作 用^[20]。近来一些研究发现, MAP4 与肿瘤的过程有 关^[21-22],但与肾小管氧化应激损伤无报道。转录因子 CCAAT 增强结合蛋白 β(CCAAT enhancer-binding protein β , CEBPB)在多种人类实体肿瘤和血液肿瘤 中表达异常,与肿瘤的发生发展关系密切^[23-25]。 CEBPB 主要通过对胞外信号分子产生应答,进而实 现对靶基因水平的调节,是一种对细胞增殖、分化、 凋亡、周期等过程有调控作用的转录因子;还参与 炎症、能量代谢等过程[26-27]。但目前也未见与氧化 应激的报道。这些新的差异基因的筛选和鉴定为 后续深入探讨 caspase-3 调控 ROS 损伤肾小管上皮 细胞的机制提供目标靶点。

综合以上,本研究通过基因芯片,筛选到185个 在H₂O₂处理的肾小管上皮细胞和 caspase-3 抑制剂 结合H₂O₂处理的肾小管上皮细胞中差异表达的基 因,对显著性排名前10的基因进行定量PCR 验证, 证实了FIS1、EZR、COL7A1、RPL5、MAP4、CEBPB、 CTNNB1和 SNRPB mRNA表达水平与芯片结果一 致。利用 CTNNB1表达载体转染细胞,结合细胞生 物学行为分析,证明了氧化应激对肾小管细胞的增 殖和凋亡的作用具有 caspase-3 依赖性,而 CTNNB1 可能参与了 caspase-3 依赖的氧化应激对肾小管上 皮细胞的损伤作用。

[参考文献]

第43卷第1期

2023年1月

- [1] 曾小娜,尹连红,许丽娜.脓毒症性急性肾损伤发病机制[J].生理科学进展,2020,51(2):122-126
- [2] XU W, MAO Z, ZHAO B, et al. Vitamin C attenuates vancomycin induced nephrotoxicity through the reduction of oxidative stress and inflammation in HK-2 cells[J]. Ann Palliat Med, 2021, 10(2): 1748–1754
- [3] HUANG J, HUANG A, POPLAWSKI A, et al. PAK2 activated by Cdc42 and caspase 3 mediates different cellular responses to oxidative stress-induced apoptosis [J]. Biochim Biophys Acta Mol Cell Res, 2020, 1867(4):118645
- [4] LI D, NI S, MIAO K S, et al. PI3K/Akt and caspase path-

ways mediate oxidative stress-induced chondrocyte apoptosis[J]. Cell Stress Chaperones, 2019, 24(1): 195–202

- [5] 孙林春,刘建璟,张利. Caspase依赖的氧化应激对脓毒 症肾小管上皮细胞损伤的作用及机制[J]. 南京医科大 学学报(自然科学版),2022,42(1):23-29
- [6] KALEEM S, SIDDIQUI S, SIDDIQUI H H, et al. Eupalitin induces apoptosis in prostate carcinoma cells through ROS generation and increase of caspase - 3 activity [J]. Cell Biol Int, 2016, 40(2): 196–203
- [7] DIBOUN I, WERNISCH L, ORENGO C A, et al. Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma [J]. BMC Genomics, 2006, 7:252
- [8] HUANG DA W, SHERMAN B T, LEMPICKI R A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources [J]. Nat Protoc, 2009, 4 (1):44-57
- [9] ASHBURNER M, BALL C A, BLAKE J A, et al. Gene ontology: tool for the unification of biology [J]. Nat Genet, 2000,25(1):25-29
- [10] KANEHISA M, GOTO S. KEGG: Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Res, 2000, 28(1): 27-30
- [11] BECER E, HANOĞLU D Y, KABADAYı H, et al. The effect of Colchicum pusillum in human colon cancer cells via Wnt/β-catenin pathway [J]. Gene, 2019, 686: 213– 219
- [12] KOOK S H, LEE D, CHO E S, et al. Activation of canonical Wnt/beta-catenin signaling inhibits H₂O₂-induced decreases in proliferation and differentiation of human periodontal ligament fibroblasts [J]. Mol Cell Biochem Int J Chem Biol, 2016, 411(1/2):83–94
- [13] TIAN L, SHAO W, IP W, et al. The developmental Wnt signaling pathway effector β -catenin/TCF mediates hepatic functions of the sex hormone estradiol in regulating lipid metabolism[J]. PLoS Biol, 2019, 17(10):e3000444
- [14] ZHOU L, CHEN X, LU M, et al. Wnt/β-catenin links oxidative stress to podocyte injury and proteinuria [J]. Kidney Int, 2019, 95(4):830–845
- [15] WANG H H, WU Y J, TSENG Y M, et al. Mitochondrial fission protein 1 up-regulation ameliorates senescence-related endothelial dysfunction of human endothelial progenitor cells[J]. Angiogenesis, 2019, 22(4):569–582
- [16] 康元元,史 佳,余剑波,等. CORM-2通过p38MAPK信
 号通路对脂多糖刺激大鼠肺巨噬细胞中线粒体分裂蛋
 白 Fis1 的影响[J]. 中华急诊医学杂志,2017,26(4):
 401-404
- [17] AHMED S S, LIM J C T, THIKE A A, et al. Epithelial-

mesenchymal transition and cancer stem cell interactions in breast phyllodes tumours: immunohistochemical evaluation of EZH2, EZR, HMGA2, CD24 and CD44 in correlation with outcome analysis [J]. J Clin Pathol, 2022, 75 (5):316-323

- [18] YU L, LEMAY P, LUDLOW A, et al. A new murine Rpl5 (uL18) mutation provides a unique model of variably penetrant Diamond-Blackfan anemia [J]. Blood Adv, 2021, 5 (20):4167-4178
- [19] LIU N, WU Z, CHEN A, et al. SNRPB promotes the tumorigenic potential of NSCLC in part by regulating RAB26[J]. Cell Death Dis, 2019, 10(9):667
- [20] YANG H, MAO W, RODRIGUEZ-AGUAYO C, et al. Paclitaxel sensitivity of ovarian cancer can be enhanced by knocking down pairs of kinases that regulate MAP4 phosphorylation and microtubule stability [J]. Clin Cancer Res, 2018, 24(20): 5072–5084
- [21] YANG H, MAO W, RODRIGUEZ-AGUAYO C, et al. Correction: paclitaxel sensitivity of ovarian cancer can be enhanced by knocking down pairs of kinases that regulate MAP4 phosphorylation and microtubule stability [J]. Clin Cancer Res, 2020, 26(18):5050
- [22] ZHANG S, DEEN S, STORR S J, et al. Expression of Syk and MAP4 proteins in ovarian cancer [J]. J Cancer Res

Clin Oncol, 2019, 145(4):909-919

- [23] ZHOU Q, SUN X, PASQUIER N, et al. Cell-penetrating CEBPB and CEBPD leucine zipper decoys as broadly acting anti-cancer agents [J]. Cancers (Basel), 2021, 13 (10):2504
- [24] SUN X, JEFFERSON P, ZHOU Q, et al. Dominant-negative ATF5 compromises cancer cell survival by targeting CEBPB and CEBPD[J]. Mol Cancer Res, 2020, 18(2): 216-228
- [25] WANG F, GAO Y, TANG L, et al. A novel PAK4-CEBPB-CLDN4 axis involving in breast cancer cell migration and invasion [J]. Biochem Biophys Res Commun, 2019, 511 (2):404-408
- [26] LU J, CHEN W, LIU H, et al. Transcription factor CEBPB inhibits the proliferation of osteosarcoma by regulating downstream target gene CLEC5A [J]. J Clin Lab Anal, 2019,33(9):e22985
- [27] GUERZONI C, BARDINI M, MARIANI S A, et al. Inducible activation of CEBPB, a gene negatively regulated by BCR/ABL, inhibits proliferation and promotes differentiation of BCR/ABL-expressing cells [J]. Blood, 2006, 107 (10):4080-4089

[收稿日期] 2022-04-11 (责任编辑:蒋 莉)

