• 901 •

•基础研究•

阿奇霉素对高氧暴露新生大鼠肺损伤保护作用的研究

王燕琼,黄智峰,陈雪雨,韩东山,林冰纯,黄子璐,杨传忠*

南方医科大学第一临床医学院,深圳市妇幼保健院新生儿科,广东 深圳 518000

[摘 要]目的:探讨阿奇霉素(azithromycin, AZM)对治疗新生大鼠支气管肺发育不良(bronchopulmonary dysplasia, BPD)的 有效性。方法:将新生大鼠随机分成空气-生理盐水(RA-Saline)组、空气-阿奇霉素(RA-AZM)组、氧气-生理盐水(O₂-Saline)组、 氧气-阿奇霉素(O₂-AZM)组,O₂-Saline组和O₂-AZM组大鼠组在出生12h内暴露于浓度为95%~100%的高氧中以建立BPD新生 大鼠模型,RA-AZM组、O₂-AZM组在生后第1~10天每天腹腔注射AZM(40 mg/kg),RA-Saline组和O₂-Saline组给予等剂量的生 理盐水,观察大鼠的生存率;qPCR检测炎症因子和趋化因子的表达;测量肺泡平均线性截距(mean linear intercept, MLI)及次级 肺泡隔的生成、肺血管密度来评估AZM对BPD新生大鼠肺发育的影响,并通过免疫组化检测肺组织中性粒细胞及巨噬细胞来 评估AZM对炎症细胞的影响。结果:与O₂-Saline组比较,O₂-AZM组大鼠10d存活率差异无统计学意义(P>0.05);qPCR结果 显示,与O₂-Saline组比较,O₂-AZM组大鼠白介素-6(interleukin-6,IL-6)、单核细胞趋化蛋白-1(monocyte chemotactic protein-1, MCP-1)、纤溶酶原激活物抑制剂-1(plasminogen activator inhibitor-1,PAI-1)表达显著下降(P<0.05),中性粒细胞趋化因子-1 (cytokine induced neutrophil chemoattractant-1,CINC-1)表达差异无统计学意义(P>0.05);ELISA结果表明,与O₂-Saline组比 较,O₂-AZM组大鼠IL-6水平显著下降(P<0.05);免疫组化结果显示,O₂-AZM组大鼠肺组织巨噬细胞及中性粒细胞聚集显著 减少,肺血管密度及次级肺泡隔计数增加,差异均有统计学意义;HE病理分析结果显示,与O₂-Saline组比较,O₂-AZM组大鼠 MLI显著缩短,差异有统计学意义(P<0.05)。结论:AZM可降低高氧暴露新生大鼠肺组织炎症因子和趋化因子的释放,抑制炎 症细胞的趋化或募集,改善高氧暴露新生大鼠 BPD样肺损伤。

[关键词] 阿奇霉素;支气管肺发育不良;高氧暴露;炎症;肺发育 [中图分类号] R722.6 [文献标志码] A doi:10.7655/NYDXBNSN240102

[文章编号] 1007-4368(2024)07-901-08

Investigation of the protective effect of azithromycin on pulmonary injury in neonatal rats exposed to hyperoxia

WANG Yanqiong, HUANG Zhifeng, CHEN Xueyu, HAN Dongshan, LIN Bingchun, HUANG Zilu, YANG Chuanzhong^{*} Department of Neonatal, Shenzhen Maternal and Child Health Care Hospital, the First School of Clininical Medicine, Southern Medical Unversity, Shenzhen 518000, China

[Abstract] Objective: To investigate the effectiveness of azithromycin (AZM) on bronchopulmonary dysplasia (BPD) in neonatal rats. Methods: Neonatal rats were randomly assigned to four groups: room air-saline (RA-Saline) group, room air-azithromycin (RA-AZM) group, oxygen-saline (O_2 -Saline) group, and oxygen-azithromycin (O_2 -AZM) group. The O_2 -Saline group and O_2 -AZM groups were exposed to 95% to 100% oxygen within 12 hours of birth to establish a BPD rat model. The RA-AZM and O_2 -AZM groups received daily intraperitoneal injections of AZM at a dosage of 40 mg/kg from postnatal day 1 to day 10, while the RA-Saline and O_2 -Saline groups were administered an equal volume of saline. The survival rate of the rats was carefully observed. qPCR analysis was conducted to detect the expression of inflammatory factors and chemokines. Additionally, the alveolar mean linear intercept (MLI), the formation of secondary alveolar septa, and pulmonary vascular density were measured to assess the impact of AZM on lung development in BPD neonatal rats. Immunohistochemical detection of neutrophils and macrophages in lung tissue was also performed to evaluate the anti-inflammatory effect of AZM on inflammatory cells. **Results:** Compared to the O_2 -Saline group, the 10-day survival rate of rats in the O_2 -AZM group did not exhibit a statistically significant difference (P > 0.05). qPCR analysis revealed that the

[基金项目] 深圳市"医疗卫生三名工程"(SZSM 202211001);广东省高水平临床重点专科(SZGSP009) *通信作者(Corresponding author), E-mail: yangczgd@163.com expressions of interleukin-6(IL-6), monocyte chemotactic protein-1(MCP-1), and plasminogen activator inhibitor-1(PAI-1) were significantly reduced in the O₂-AZM group compared to the O₂-Saline group (P < 0.05), while the expression of cytokine induced neutrophil chemoattractant-1(CINC-1) showed no significant difference (P > 0.05). ELISA analysis further confirmed a significant reduction in IL-6 levels in the O₂-AZM group compared to the O₂-Saline group (P < 0.05). Immunohistochemical analysis revealed a marked reduction in the accumulation of macrophages and neutrophils in the lung tissues of the O₂-AZM group, along with an increase in pulmonary vascular density and the count of secondary alveolar septa, all of which were statistically significant. Furthermore, HE pathological examination revealed a significantly shortened MLI in the O₂-AZM group compared to the O₂-Saline group, indicating a statistically significant difference (P < 0.05). **Conclusion:** AZM reduces the release of inflammatory factors and chemokines in lung tissues of neonatal rats exposed to hyperoxia, inhibits the chemotaxis or recruitment of inflammatory cells, and alleviates BPD-like lung injury in neonatal rats after hyperoxia exposure.

[Key words] azithromycin; bronchopulmonary dysplasia; hyperoxia exposure; inflammation; lung development

[J Nanjing Med Univ, 2024, 44(07): 901-908]

支气管肺发育不良(bronchopulmonary dysplasia, BPD)是早产儿最常见的并发症之一,据报道,我国 超未成熟儿 BPD 的发生率为 74.2%^[1],这使得婴幼 儿死亡风险增加,并使患儿更易罹患慢性肺部疾病及 心血管疾病、神经系统发育延迟及生长发育障碍^[2]。 但到目前为止, BPD 仍然没有有效的治疗方法。 BPD 的发病机制尚不明确,可能因为感染、炎症、氧 中毒、机械通气以及其他因素阻碍了出生后肺的成 熟^[3]。抗炎因子及促炎因子的失衡是影响肺泡生成 和肺血管发育的重要因素^[4-5]。既往研究也发现,巨 噬细胞及中性粒细胞从血管向肺组织聚集是 BPD 的一个特征性表现^[6]。炎症对 BPD 的发生发展起到 重要作用^[5,7]。

研究表明,糖皮质激素可一定程度提高机械通 气拔管成功率,但其对 BPD 的有效性仍不确切^[8],而 且糖皮质激素也会增加近远期严重的不良反应,如 高血糖、高血压、自发性肠穿孔和中枢神经系统发 育落后等^[9],因此,临床上并未将糖皮质激素作为 BPD 的常规预防用药。阿奇霉素(azithromycin, AZM)是一种大环类酯类抗生素,它兼具抗感染及 抗炎作用^[10-11]。它可通过抑制核因子-KB发挥独特 的免疫调节作用来限制促炎细胞因子如白介素 (interleukin, IL)-6和IL-8的产生来减少肺部炎症, 它还可以抑制中性粒细胞迁移,通过改变巨噬细胞 的极化状态增加巨噬细胞的吞噬作用而发挥抗炎 作用^[12]。有研究显示,预防性应用 AZM 可以通过 清除解脲脲原体(ureaplasma urealyticum, UU),并 抑制肺部炎症反应,从而降低 BPD 的发病率和死亡 率^[13],然而,AZM 对治疗 BPD 有效性仍存在争议^[8]。 本研究通过建立 BPD 新生大鼠模型, 探讨 AZM 对

BPD的有效性及潜在的作用机制。

1 材料和方法

15只健康清洁的SD孕鼠由南方医科大学实验动物中心提供,动物许可证号[SCXK(粤)2021-0041]。 将动物饲养于 SPF 级实验动物房,饲养温度为 20~24 ℃,湿度为50%~60%,新生SD大鼠作为实验 对象。本实验通过中国科学院深圳先进技术研究 院实验动物管理和使用委员会批准,伦理审核批件 编号:SFYLS[2021]019。

1.1.2 试剂

AZM(辉瑞公司,美国)、鼠单克隆抗α-平滑肌肌 动蛋白(a-smooth muscle actin, a-SMA)抗体(A2547, Sigma-Aldrich公司,美国)、兔多克隆抗血管性血友 病因子(von Willebrand factor, vWF)抗体(A0082, Dako Cytomation 公司,丹麦)、抗CD68抗体(ab31630, Abcam 公司,美国)、抗髓过氧化物酶(myeloperoxidase, MPO)抗体(ab208670, Abcam 公司,美国)、 TRIzol 试剂(#15596026, Invitrogen 公司,美国)、HRP 标记山羊抗兔二抗(ab6728, Abcam公司,美国)、 HRP标记兔抗小鼠二抗(ab6721, Abcam 公司,美 国)、1% BSA(A1933, Sigma-Aldrich 公司,美国)、 NovaRed(K-4800, Vector公司,美国)、cDNA 合成试 剂盒(K1622, Thermo Scientific 公司, 美国)、内源性 过氧化物酶强力封闭液(上海碧云天生物技术有限 公司)、HE染色试剂盒(北京索莱宝科技有限公 司)、大鼠白介素-6(interleukin-6, IL-6) ELISA Kit (#PI328,上海碧云天生物技术有限公司)、大鼠单核

^{1.1} 材料

^{1.1.1} 动物

细胞趋化蛋白1(monocyte chemotactic protein - 1, MCP-1)ELISA Kit(#KE20009, Proteintech公司,美国)。 1.1.3 仪器

HM315石蜡切片机(Thermo Microm 公司,美国)、生物组织包埋机+冷台(Leica公司,德国)、脱色 摇床(江苏南达生物技术开发公司)、光学显微镜 (Olympus公司,日本)、涡旋振荡器、组织匀浆机 (IKA公司,德国)、高速冷冻离心机(Eppendorf公 司,美国)、凝胶成像分析系统(BIO-RAD公司,美 国)、定量PCR仪-7300 Plus系统(Applied Biosystems 公司,美国)。

1.2 方法

1.2.1 造模及分组

将SD新生大鼠在生后12h内随机分为空气-生 理盐水(RA-Saline)组22只、空气-AZM(RA-AZM) 组22只,氧气组分为氧气-生理盐水(O₂-Saline)组 23只、氧气-AZM(O2-AZM)组22只,每组动物雌雄 比例相同。空气组置于空气环境[吸入氧浓度(fraction of inspirtion O₂, FiO₂)=21%], 氧气组在出生12h内 置于自制氧箱内,持续暴露于高氧中,维持FiO2于 95%~100%。在生后第1天, RA-AZM、O₂-AZM组每 日给予大鼠 AZM 40 mg/kg 腹腔注射连续 10 d, 生理 盐水对照组给予等剂量的生理盐水,实验方案如 图1所示。每组动物在第11天进行安乐死并取 材。所有动物饲养于SPF级实验动物房,饲养温度 为20~24℃,湿度为50%~60%,自动设置12h明暗 交替,仔鼠予母乳喂养,每天空气组母鼠与氧气组 母鼠进行交换以防止母鼠氧气中毒导致母乳量减 少,每天更换垫料及仔鼠称重,及时补充饲料及饮 用水。

1.2.2 标本收集

在大鼠生后第11天,腹腔注射戊巴比妥钠 (160 mg/kg)进行安乐死,剪开腹腔皮肤,暴露出腹 腔动静脉,剪断腹腔动静脉进行排血。排血完成 后,其中24只鼠打开胸腔,直接取肺组织,迅速置于

液氮中冷冻,然后放置于-80℃冰箱保存,用于qPCR 检测。26只动物在排血完成后,剪开颈部皮肤,分 离气管周围肌肉组织,暴露气管,利用24G动脉留 置针行气管插管,退出针芯,手术线扎紧固定,用 4%多聚甲醛进行肺组织原位固定后,拔除气管插 管,沿胸骨正中打开胸腔,可见肺组织膨胀,分离出 肺组织和心脏,置于装有4%多聚甲醛的EP管中 4℃冰箱放置24h,石蜡包埋切片,用于HE染色及 免疫组化。

1.2.3 HE 染色及肺泡平均线性截距(mean linear intercept, MLI)的测量

将在4%多聚甲醛中固定24h后的肺组织进 行石蜡包埋。连续切片(厚度4 μ m),放于60℃烤 箱中6h。然后进行HE染色,树脂封片,光镜下观 察肺组织形态结构。选取染色良好的肺组织,在 200倍放大倍数下拍摄10张照片,避开大血管和大 气道,使用CellSens软件(Olympus公司,日本)载入 照片,每张照片载入平均分布的21条直线,计数测 量线末端两点落在肺泡(pulmonary alveoli,PA)里的 个数N₁、测量线末端两点落在气道(air duct,AD)里 的个数N₂、测量线与肺泡间隔(alveolar septum,AS) 相交的次数N₃,按照公式MLI=d×(N₁+N₂)/N₃计算, d代表直线长度120 μ m^[14]。

1.2.4 qPCR检测炎症因子的表达

使用组织匀浆机将肺组织进行匀浆,分离并提取 出RNA,用cDNA合成试剂盒合成cDNA。在Applied Biosystems 7300 Plus 系统上进行实时定量 PCR。 β-actin用作管家基因。引物列于表1中。

Table 1 Sequences of primers		
Gene	Forward $(5' \rightarrow 3')$	$\text{Reverse}(5' \rightarrow 3')$
IL-6	ATATGTTCTCAGGGAGATCTTGGAA	TGCATCATCGCTGTTCATACAA
CINC-1	GCACCCAAACCGAAGTCATA	GGGGACACCCTTTAGCATCT
MCP-1	ATGCAGTTAATGCCCCAGTCA	TTCTCCAGCCGACTCATTGG
PAI-1	AGCTGGGCATGACTGACATCT	GCTGCTCTTGGTCGGAAAGA
β-actin	TTCAACACCCCAGCCATGT	AGTGGTACGACCAGAGGCATACA

表1 引物序列 Table 1 Sequences of primers

CINC-1: cytokine induced neutrophil chemoattractant-1; PAI-1: plasminogen activiator inhibitor-1.

• 903 •

1.2.5 免疫组织化学分析

将肺组织进行切片,用抗vWF抗体(标记肺 血管,1:5000稀释)、抗CD 68单克隆抗体(标记巨 噬细胞,1:500稀释)、抗MPO抗体(标记中性粒细 胞,1:1000稀释)、抗a-SMA抗体(标记次级肺泡隔, 1:10 000 稀释)作为一抗孵育,1% BSA 作为对照,二 抗孵育用HRP偶联的抗小鼠/兔抗体(1:1000稀 释)。使用显色底物 NovaRed 显色。在 200 倍放大 倍数下观察vWF染色阳性的切片,每个组织取非重 叠10个代表性视野,计数每个视野肺血管的个数, 取平均值代表每只动物的肺血管密度;在400倍放 大倍数下观察CD68及MPO染色阳性的切片,每个 组织取10个代表性视野,计数每视野巨噬细胞及中 性粒细胞数量,最后求平均值;在400倍放大倍数下 观察a-SMA染色阳性的切片,在10个非重叠视野中 对每个组织中的次级肺泡隔的数量进行计数,并校 正/标准化组织面积[15]。所有计数方式均为双人双 盲计数取平均值。

1.2.6 ELISA 检测细胞因子

将肺组织进行匀浆,用蛋白裂解液提取蛋白, 待充分裂解后,台式离心机预冷至4℃,14000 r/min 离心20 min,取上清液分装至EP管备用,用BCA法 测定溶液总蛋白的浓度。将蛋白提取液稀释至合 适的浓度进行IL-6、MCP-1细胞因子浓度检测,最 终根据总蛋白浓度算得IL-6、MCP-1的终浓度,以 pg/mg表示。

1.3 统计学方法

实验数据统计及分析用 GraphPad Prism 8 软件,实验数据结果以均数±标准误($\bar{x} \pm s_x$)表示,多组间比较采用单因素方差分析,通过Sidak校正的t检验进行多重比较,用 Kaplan-Meier分析方法绘制生存曲线,通过Log-rank检验进行统计分析,采用双侧检验,P < 0.05为差异有统计学意义。

2 结 果

2.1 AZM 对高氧暴露组新生大鼠生存率的影响

如图2所示, RA-Saline 组新生大鼠无死亡, O₂-Saline 组对比RA-Saline 组生存率明显下降(*P* < 0.001), O₂-AZM 组对比O₂-Saline 组10 d存活率差异 无统计学意义(*P* > 0.05)。

2.2 AZM 对高氧暴露肺损伤炎症因子/炎症趋化因子的作用

与RA-Saline组比较,O₂-Saline组MCP-1、CINC-1、IL-6、PAI-1 mRNA表达水平明显升高(P < 0.05),与

The 10-day survival curve of neonatal rats in the RA-Saline group (n=22), RA-AZM group(n=22), O₂-Saline group(n=23), and the O₂-AZM group(n=22), ***P < 0.001.

图 2 AZM 对高氧暴露新生大鼠生存率的影响 Figure 2 Effect of AZM on the survival rate of neonatal rats exposed to hyperoxia

 O_2 -Saline 组比较, O_2 -AZM组MCP-1、PAI-1、IL-6表达 水平明显降低(P < 0.05), CINC-1水平有下降趋势, 但差异无统计学意义(P=0.07)。肺组织匀浆的 ELISA 定量结果显示, IL-6及MCP-1在高氧暴露组 表达明显升高(P均 < 0.05), O_2 -AZM组较 O_2 -Saline 组IL-6表达明显降低(P < 0.05), 而MCP-1的表达有 下降趋势, 但差异无统计学意义(P > 0.05, 图3)。

2.3 AZM 对高氧暴露新生大鼠肺部炎症细胞的影响

分别用 CD68 和 MPO 标记巨噬细胞和中性粒细胞,如图 4 所示,RA-Saline 及 RA-AZM 组肺组织无明显炎症细胞聚集,而 O₂-Saline 组表现出明显炎症细胞聚集现象,表现为 O₂-Saline 组巨噬细胞计数明显增加(*P* < 0.001),中性粒细胞计数明显增加(*P* < 0.001);而 AZM 干预后炎症细胞聚集现象明显受到抑制,表现为 O₂-AZM 组巨噬细胞数量明显减少(*P* < 0.01),中性粒细胞计数也显著减少(*P* < 0.001, 图4)。

2.4 AZM 对高氧暴露新生大鼠肺发育的影响

如图5所示,RA-Saline组及RA-AZM组新生大 鼠肺组织肺泡大小均匀,形态规则,肺泡间隔无明 显增厚,而O₂-Saline组新生大鼠肺组织结构排列紊 乱,肺泡腔明显增大,肺泡间隔增厚,肺血管减少, O₂-Saline对比RA-Saline组MLI明显增大(P<0.001), 次级肺泡隔(a-SMA染色)数量明显减少(P<0.001), 提示 BPD模型成功,而O₂-AZM组对比O₂-Saline组 肺泡腔有所减小,MLI明显减小(P<0.05),次级肺 泡隔数量明显增多(P<0.05)。

2.5 AZM 对高氧暴露新生大鼠肺血管发育的影响

 O_2 -Saline 组对比 RA-Saline 组肺血管密度明显 下降(P < 0.001), O_2 -AZM 组肺血管密度明显增加

图3 AZM 对高氧暴露新生大鼠肺损伤炎症因子/炎症趋化因子的作用

Figure 3 Effect of AZM on inflammatory factors/inflammatory chemokines in lung injury of neonatal rats induced by hyperoxia

A: Representative images of lung sections stained for the macrophage marker CD68(×400). B: Representative images of lung sections stained for the neutrophils marker MPO(×400). C: Statistical analysis of macrophage count (n=5). D: Statistical analysis of neutrophil count, RA-Saline group (n=4), RA-AZM group(n=5), O₂-Saline group(n=5), O₂-AZM group(n=6). **P < 0.01 and ***P < 0.001.

图4 AZM 对高氧暴露新生大鼠肺组织炎症细胞的影响

Figure 4 Effect of AZM on inflammatory cells in lung tissue of neonatal rats exposed to hyperoxia

A: Representative images of HE staining (×200). B: Representative image of α -SMA stained lungs (×400). C: Statistical analysis of MLI. RA-Saline group (n=5), RA-AZM group (n=5), O₂-Saline group (n=5), O₂-AZM group (n=6). D: Statistical analysis of secondary alveolar septal density, RA-Saline group (n=5), RA-AZM group (n=5), O₂-Saline group (n=5), O₂-AZM group (n=4). *P < 0.05 and ***P < 0.001.

图5 AZM对高氧暴露新生大鼠肺发育的影响

Figure 5 Effect of AZM on lung development in neonatal rats exposed to hyperoxia

A: Representative images of lung vessels stained with vWF(×400). B: Statistical analysis of pulmonary vascular density. RA-Saline group (n=5), RA-AZM group (n=4), O₂-Saline group (n=5), O₂-AZM group (n=5), *P < 0.05 and ***P < 0.001.

图6 AZM 对高氧暴露新生大鼠肺血管发育的影响

Figure 6 Effect of AZM on pulmonary vascular development in neonatal rats exposed to hyperoxia

(*P* < 0.05), RA-AZM 组对比 RA-Saline 组肺血管密 度差异无统计学意义(*P* > 0.05, 图 6)。

3 讨论

本研究采用高氧暴露成功制造 BPD 大鼠模型,

并且氧气暴露组使用 AZM 干预后显示出明显的抗炎作用,表现为炎症因子的下调及炎症细胞向肺组织聚集减少,同时也证实了 AZM 可减轻新生大鼠 BPD 样肺损伤。

本研究用新生大鼠暴露于高氧中建立BPD的

模型,该模型稳定,可重复性强。高氧是BPD发生 机制中的一个重要因素, BPD 的特征是不成熟肺的 肺泡化和肺血管化减少^[16]。新生大鼠是研究 BPD 的良好动物模型,啮齿类动物出生时肺处于发育的 囊状期,可模拟早产婴儿的肺发育阶段,暴露于高 氧后发生慢性肺部炎症,随后发生持续性肺泡结构 简单化、肺纤维化等[17-18]。有研究发现,高氧暴露 的新生大鼠,CINC-1、MCP-1、IL-6、组织因子、PAI-1、 分泌性白细胞蛋白酶抑制剂、基质金属蛋白酶 (matrix metalloproteinases, MMP)-12、p21、金属硫蛋 白和血红素加氧酶等均有所上调[6.19]。本研究中, 高氧暴露组IL-6、CINC-1、MCP-1、PAI-1的表达均有 明显上调。中性粒细胞和单核巨噬细胞被认为在 慢性肺疾病的炎症过程中起重要作用[5,20-21]。本研 究也观察到高氧暴露后肺组织中性粒细胞及巨噬 细胞迁移/募集增多,与既往研究一致^[6]。

AZM不仅具有抗感染作用,还具有抗炎/免疫调 节作用,其作用机制已有研究报道。研究发现 AZM 可通过抑制 NF-κB的活性^[22],降低许多炎性细胞因 子水平,包括IL-6、IL-8、肿瘤坏死因子和粒细胞-巨 噬细胞集落刺激因子,以及 MMP^[11,23-24]来发挥抗炎 作用。它还可以直接或间接影响中性粒细胞而发 挥抗炎作用,如减少中性粒细胞聚集,抑制中性粒 细胞氧化爆发,减轻炎症因子的释放等^[12,25]。AZM 还可以通过影响巨噬细胞的极化状态、增加巨噬细 胞的吞噬作用来发挥抗炎作用^[23,26]。在本研究中也 观察到高氧暴露组予 AZM 处理后炎症因子/炎症趋 化因子下降及炎症细胞的聚集减少。

AZM的抗感染、抗炎及免疫调节特性使它有别 于其他的抗生素而在临床上广泛应用,包括慢性阻 塞性肺病、囊性纤维化、支气管扩张、闭塞性细支气 管炎、弥漫性泛细支气管炎和哮喘等[27-28]。并且,有 研究发现AZM 对新冠肺炎可能也有治疗效果^[29]。 因此, 推测 AZM 可能对 BPD 这种慢性疾病也有效。 研究表明,5d疗程的AZM治疗可降低炎症因子的 水平,并减少机械通气早产儿的死亡率及28 d/死亡 时氧气依赖^[30]。然而,关于AZM对BPD的有效性研 究仍存在争议[8.13.31],并且,两项动物实验也存在不 一致的结果^[32-33]。本研究在前人研究的基础上进一 步从炎症因子、炎症细胞、肺组织及肺血管发育的 角度对AZM对高氧暴露肺损伤的保护作用进行了 深入研究。并且,本研究在前期也做了AZM 药物剂 量摸索以确定 AZM 的最佳药物剂量。本研究的局 限性在于没有深入研究 AZM 的抗炎作用机制, 后期

需要进一步研究。且本研究只是证实了AZM可改 善高氧暴露新生大鼠BPD样肺损伤,但是应用于临 床还需要进一步探讨剂量、疗程及安全性等问题, 并进行临床试验来进一步明确。

总之,本研究表明AZM对高氧暴露新生大鼠具 有抗炎作用,且能减轻新生大鼠BPD样肺损伤。但 AZM在临床上对BPD的有效性及安全性还有待进 一步明确,需要大型的随机对照试验来进一步证实。

[参考文献]

- [1] CAO Y, JIANG S Y, SUN J H, et al. Assessment of neonatal intensive care unit practices, morbidity, and mortality among very preterm infants in China [J]. JAMA Netw Open, 2021, 4(8): e2118904
- [2] HWANG J S, REHAN V K. Recent advances in bronchopulmonary dysplasia: pathophysiology, prevention, and treatment[J]. Lung, 2018, 196(2): 129-138
- [3] SHUKLA V V, AMBALAVANAN N. Recent advances in bronchopulmonary dysplasia[J]. Indian J Pediatr, 2021, 88(7):690-695
- [4] GILFILLAN M, BHANDARI A, BHANDARI V. Diagnosis and management of bronchopulmonary dysplasia[J]. BMJ, 2021, 375: n1974
- [5] HOLZFURTNER L, SHAHZAD T, DONG Y, et al. When inflammation meets lung development - an update on the pathogenesis of bronchopulmonary dysplasia[J]. Mol Cell Pediatr, 2022, 9(1):7
- [6] O'REILLY M, THÉBAUD B. Animal models of bronchopulmonary dysplasia. The term rat models [J]. Am J Physiol Lung Cell Mol Physiol, 2014, 307 (12): L948– L958
- [7] THÉBAUD B, GOSS K, LAUGHON M, et al. Bronchopulmonary dysplasia[J]. Nat Rev Dis Primers, 2019, 5: 1–23
- [8] JENSEN E A.Prevention of bronchopulmonary dysplasia: asummary of evidence-based strategies [J]. Neoreviews, 2019, 20(4):e189-e201
- [9] DOYLE L W, CHEONG J L, EHRENKRANZ R A, et al. Early (< 8 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants[J]. Cochrane Database Syst Rev, 2017, 10(10): CD001146
- [10] VISCARDI R M, TERRIN M L, MAGDER L S, et al. Randomised trial of azithromycin to eradicate ureaplasma in preterm infants [J]. Arch Dis Child Fetal Neonatal Ed, 2020, 105(6):615-622
- [11] XING Y W, LIU K Z. Azithromycin inhibited oxidative stress and apoptosis of high glucose-induced podocytes by inhibiting STAT1 pathway [J]. Drug Dev Res, 2021, 82

• 908 •

(7):990-998

- [12] HEIDARY M, EBRAHIMI SAMANGANI A, KARGARI A, et al. Mechanism of action, resistance, synergism, and clinical implications of azithromycin[J]. J Clin Lab Anal, 2022, 36(6): e24427
- [13] RAZAK A, ALSHEHRI N. Azithromycin for preventing bronchopulmonary dysplasia in preterm infants: a systematic review and meta - analysis [J]. Pediatr Pulmonol, 2021, 56(5):957–966
- [14] CHEN X Y, HAN D S, WANG X, et al. Vascular and pulmonary effects of ibuprofen on neonatal lung development[J]. Respir Res, 2023, 24(1):39
- [15] HUANG Z L, LIN B C, HAN D S, et al. Platelets are indispensable for alveolar development in neonatal mice [J]. Front Pediatr, 2022, 10: 943054
- [16] SAHNI M, BHANDARI V. Patho-mechanisms of the origins of bronchopulmonary dysplasia[J]. Mol Cell Pediatr, 2021,8(1):21
- [17] GIUSTO K, WANCZYK H, JENSEN T, et al. Hyperoxiainduced bronchopulmonary dysplasia: better models for better therapies [J]. Dis Model Mech, 2021, 14 (2): dmm047753
- [18] SHAHZAD T, CHAO C M, HADZIC S, et al. TRAIL protects the immature lung from hyperoxic injury [J]. Cell Death Dis, 2022, 13(7):614
- [19] WAGENAAR G T, TER HORST S A, VAN GASTELEN M A, et al. Gene expression profile and histopathology of experimental bronchopulmonary dysplasia induced by prolonged oxidative stress [J]. Free Radic Biol Med, 2004, 36(6): 782-801
- [20] HIRANI D, ALVIRA C M, DANOPOULOS S, et al. Macrophage-derived IL-6 trans-signalling as a novel target in the pathogenesis of bronchopulmonary dysplasia[J]. Eur-Respir J, 2022, 59(2): 2002248
- [21] KALYMBETOVA T V, SELVAKUMAR B, RODRÍGUEZ-CASTILLO J A, et al. Resident alveolar macrophages are master regulators of arrested alveolarization in experimental bronchopulmonary dysplasia [J]. J Pathol, 2018, 245 (2):153-159
- [22] HAYDAR D, CORY T J, BIRKET S E, et al. Azithromycin polarizes macrophages to an M2 phenotype via inhibition of the STAT1 and NF-κB signaling pathways[J]. J Immunol, 2019, 203(4): 1021–1030
- [23] OLIVER M E, HINKS T S C. Azithromycin in viral infec-

tions[J]. Rev Med Virol, 2021, 31(2): e2163

- [24] BARKS J D E, LIU Y Q, DOPP I A, et al. Azithromycin reduces inflammation - amplified hypoxic - ischemic brain injury in neonatal rats [J]. Pediatr Res, 2022, 92 (2): 415-423
- [25] HAFNER M, PAUKNER S, WICHA W W, et al. Antiinflammatory activity of lefamulin versus azithromycin and dexamethasone *in vivo* and *in vitro* in a lipopolysaccharide-induced lung neutrophilia mouse model[J]. PLoS One, 2021, 16(9):e0237659
- [26] TARIQUE A A, TULADHAR N, KELK D, et al. Azithromycin augments bacterial uptake and anti-inflammatory macrophage polarization in cystic fibrosis [J]. Cells, 2024, 13(2): 166
- [27] CRAMER C L, PATTERSON A, ALCHAKAKI A, et al. Immunomodulatory indications of azithromycin in respiratory disease: a concise review for the clinician [J]. Postgrad Med, 2017, 129(5):493-499
- [28] PŁUSA T. Azithromycin in the treatment of patients with exacerbation of chronic obstructive pulmonary disease[J]. Pol Merkur Lekarski, 2020, 48(283):65-68
- [29] ECHEVERRÍA ESNAL D, MARTIN ONTIYUELO C, NAVARRETE - ROUCO M E, et al. Azithromycin in the treatment of COVID-19: a review [J]. Expert Rev Anti Infect Ther, 2021, 19(2): 147–163
- [30] NUNES C R, PROCIANOY R S, CORSO A L, et al. Use of azithromycin for the prevention of lung injury in mechanically ventilated preterm neonates: arandomized controlled trial[J]. Neonatology, 2020, 117(4): 522-528
- [31] CHANG E, BALLARD K E, JOHNSON P N, et al. Azithromycin for eradication of Ureaplasma and prevention of bronchopulmonary dysplasia in preterm neonates in the neonatal intensive care unit[J]. J Pediatr Pharmacol Ther, 2023, 28(1): 10–19
- [32] BALLARD H O, BERNARD P, QUALLS J, et al. Azithromycin protects against hyperoxic lung injury in neonatal rats[J]. J Investig Med, 2007, 55(6): 299–305
- [33] LONDHE V A, SUNDAR I K, LOPEZ B, et al. Hyperoxia impairs alveolar formation and induces senescence through decreased histone deacetylase activity and upregulation of p21 in neonatal mouse lung[J]. Pediatr Res, 2011,69(5 Pt 1):371-377

[收稿日期] 2024-01-26 (本文编辑:戴王娟)