长链非编码 RNA BANCR 对非小细胞肺癌增殖和侵袭的影响

陈志强1,尹凌帝1,孙 倩1,刘博巽1,秦 宇2,孙 明3,德 伟3,刘志军3*

('南京医科大学第一临床医学院,江苏 南京 210029; '正大天晴药业南京研究所生物药室,江苏 南京 210042; '南京医科大学生物化学与分子生物学系,江苏 南京 210029)

[摘 要] 目的:探讨长链非编码 RNA BANCR 在非小细胞肺癌(non-small cell lung cancer, NSCLC)组织及细胞系中的表达水平,以及 BANCR 对 NSCLC 细胞增殖和侵袭的影响。方法:用定量 PCR 技术检测 NSCLC 组织及细胞系中 BANCR 的表达水平;通过转染 pcDNA-BANCR 上调 BANCR 的表达水平,并通过 qPCR 检测转染效率。用 Transwell 实验检测上调 BANCR 的水平对 SPC-A1 细胞和 A549 细胞增殖和侵袭能力的影响,Western blot 检测这 2 种细胞中上调 BANCR 的水平对上皮—间质转化 (epithelial-mesenchymal transition,EMT)标志物上皮型钙黏蛋白(E-cadherin)和波形蛋白(Vimentin)表达水平的影响。结果:相比正常肺组织及细胞,在 NSCLC 组织和细胞中 BANCR 的表达出现显著下调。MTT 实验显示,上调 BANCR 的表达能降低 SPCA1 细胞和 A549 细胞的增殖和侵袭能力。BANCR 过表达能通过上调 E-cadherin 表达并下调 Vimentin 表达,影响 EMT。结论: BANCR 可通过影响 EMT,抑制 NSCLC 细胞的增殖和侵袭。

「关键词】 非小细胞肺癌:长链非编码 RNA:BANCR:细胞增殖:侵袭:上皮-间质转化

[中图分类号] R734.2

[文献标志码] A

[文章编号] 1007-4368(2015)05-650-06

doi:10.7655/NYDXBNS20150510

Down-regulated long noncoding RNA BANCR promotes cell proliferation and invasion in non-small cell lung cancer

Chen Zhiqiang¹, Yin Lingdi¹, Sun Qian¹, Liu Boxun¹, Qin Yu², Sun Ming³, De Wei³, Liu Zhijun³*

(¹First School of Clinical Medicine, NJMU, Nanjing 210029; ²Nanjing Research and Development Center of CTTQ Pharmaceutical Research Institute, Nanjing 210042; ³Department of Biochemistry and Molecular Biology, NJMU, Nanjing 210029, China)

[Abstract] Objective: To investigate the expression level of long noncoding RNA BANCR in non-small cell lung cancer (NSCLC) tissues and cell lines, and to study the effect of BANCR on NSCLC cell proliferation and invasion. Methods: Quantitative PCR was performed to detect the relative expression of BANCR in NSCLC cell lines and tissues. pCDNA-BANCR was transfected into SPC-A1 cells and A549 cells to up-regulate BANCR expression. Transwell assays were performed to detect the effect of BANCR on NSCLC proliferation and invasion. Western blotting was used to detect the expression level of E-cadherin and Vimentin, markers of epithelial-mesenchymal transition. Results: This study showed that BANCR was lowly expressed both in NSCLC samples and cell lines compared with their corresponding normal tissues and cell lines. MTT assays indicated that up-regulated BANCR inhibited the proliferation and invasion of SPC-A1 and A549 cells. BANCR overexpression elevated the expression of E-cadherin and suppressed the level of Vimentin, thus influencing epithelial-mesenchymal transition. Conclusion: BANCR promotes NSCLC cell proliferation and invasion by affecting epithelial-mesenchymal transition.

[Key words] non-small cell lung cancer; long noncoding RNA; BANCR; cell proliferation; invasion; epithelial-mesenchymal transition

[Acta Univ Med Nanjing, 2015, 35(05); 650-655]

[基金项目] 国家自然科学基金资助(81070620)

*通信作者 (Corresponding author), E-mail: liuzhijun 100200@126.com

肺癌是我国高发的恶性肿瘤,5年生存率仅为13%,其中非小细胞肺癌(non-small cell lung cancer, NSCLC) 占到所有肺癌类型的80%^[1-2]。NSCLC主要致死原因之一是肿瘤转移,而癌细胞侵袭是其关键

步骤,与上皮-间质转化(epithelial-mesenchymal transition, EMT)密切相关。EMT 能提高肿瘤细胞对 外界环境的适应能力,并破坏细胞连接及细胞骨架结 构,导致肿瘤的扩散[3-4]。EMT 与上皮型钙黏蛋白(Ecadherin)、神经型钙黏蛋白(N-cadherin)及波形蛋白 (Vimentin) 等多个指标相关[5-6]。长链非编码 RNA (long noncoding RNA, lncRNA) 作用于 EMT 相关的 信号分子.从而调节上皮细胞的表型转变。LncRNA 在 肿瘤发展中所起的作用正日益受到学界重视[7-9]。 BRAF 激活的非编码 RNA (BRAF activated noncoding RNA, BANCR) 是一长度为 693 bp 的 lncR-NA,参与黑色素瘤的侵袭过程[10-12]。然而,BANCR 在 NSCLC 中所起的生物学作用目前仍知之甚少。 本研究旨在阐明 IncRNA BANCR 在 NSCLC 中的表 达情况,探索 BANCR 对 NSCLC 细胞增殖和侵袭的 影响,希望为 NSCLC 诊断、早期干预治疗提供新的 靶点。

1 材料和方法

1.1 材料

32 对 NSCLC 和癌周正常肺组织样本来自于南京医科大学第一附属医院 2008~2010 年被诊断为 NSCLC 并接受手术的患者,这些患者经过病理科严格鉴定(分期 II、IV,依据美国癌症联合会癌症分期指南第 7 版)。在手术前所有患者均未接受局部或全身治疗。所有样本取下后立即液氮冷冻,在取用前储存在-80℃冰箱。本研究经南京医科大学伦理委员会批准,并取得了患者的知情同意。

2 株 NSCLC 腺癌细胞系 (SPC-A1 和 A549)与 1 株人正常支气管上皮细胞系(16HBE)(中国科学院生物化学与细胞生物学研究所)。SPC-A1 细胞用含 10%胎牛血清(fetal bovine serum,FBS)、100 U/ml 青霉素和 100 mg/L 链霉素的 DMEM 培养基,置于 37%、5%CO₂ 的恒温培养箱中培养; A549 和 16HBE 细胞在 RPMI1640 培养基中进行常规培养。

1.2 方法

1.2.1 RNA 抽提和定量聚合酶链反应(quantitative PCR,qPCR)分析

使用 TRIzol 试剂(Invitrogen 公司,美国)提取总 RNA。使用 PrimeScript RT 试剂盒 (TaKaRa 公司,大连) 在标准条件下的随机引物,将总 RNA (500 ng)反转录为 10 μL 的最终体积。BANCR 表达水平的检测按照 STBR Premix Ex Taq(TaKaRa 公司,大连)的使用说明进行。结果用 3-磷酸甘油

醛脱氢酶 (glyceraldehyde-3-phosphate dehydrogenase, GAPDH)的表达量标化。BANCR 的上游引物: 5'-ACAGGACTCCATGGCAAACG-3', 下游引物: 5'-ATGAAGAAAGCCTGGTGCAGT-3'; GAPDH 上游引物: 5'-GGGAGCCAAAAGGGTCAT-3', 下游引物: 5'-GAGTCCTTCCACGATACCAA-3'; E-cadherin 上游引物: 5'-TCCCATCAGCTGCCCAGAAA-3', 下游引物: 5'-TGACTCCTGTTTCCTGTTTA-3'; si-BANCR 引物: 5'-GGAAAUAGACUGCAGCACCAATT-3'。 qPCR 和数据收集基于 ABI 7500 平台。 qPCR 结果的分析及表达与循环阈值(C_T值)进行比较,并转化为倍数改变。

1.2.2 质粒构建

BANCR 序列被合成并亚克隆至 pcDNA3.1 载体(Invitrogen 公司,上海)。BANCR 的过表达通过转染 pcDNA-BANCR 实现,对照是空 pcDNA3.1 载体。利用 qPCR 检测 BANCR 的 mRNA 表达水平。

1.2.3 细胞转染

用于转染的质粒载体 (pcDNA3.1-BANCR 和pcDNA3.1)经 DNA Midiprep(Qiagen 公司,德国)提取,并转染至 SPC-A1 或 A549 细胞。si-BANCR 转染至 SPC-A1 或 A549 细胞。A549 和 SPC-A1 细胞在 6 孔平板上培养至融合状态,并按照使用说明书通过 Lipofectamine 2000(Invitrogen 公司,上海)进行转染。48 h 后收集细胞用于 qPCT 或 Western blot分析。

1.2.4 细胞增殖试验

本研究使用 MTT 试剂盒(Roche Applied Science 公司,瑞士)进行细胞增殖试验。用 si-BANCR 转染的 A549 细胞(每孔 3 000 个细胞)以及用 pcDNA-BANCR 转染的 A549 或 SPC-A1 细胞在 96 孔平板上培养。按照使用说明书每隔 24 h 检测细胞生存状况。所有实验重复 4 次。在克隆形成实验中,pcDNA-BANCR 转染的 SPC-A1 或 A549 细胞(500 个/孔)在含有 10%FBS 的 6 孔平板上培养。计数可见的集落。每个处理组做 3 个复孔。

1.2.5 Transwell 侵袭实验

转染 48 h 后,将无血清培养液中的 5×10⁴ 个细胞置于 Transwell (孔径 8 μm,Millipore 公司,美国)的上层小室用于迁移分析。取 1×10⁵ 个细胞,并滴加无血清培养液重悬细胞,放入铺 Matrigel 胶(Sigma-Aldrich 公司,美国)的 Transwell 上层小室中。下层小室加入 10%FBS 的培养液。经 24 h 孵化后,用棉签擦除小室内细胞。固定染色后,显微镜下

取随机视野进行拍照计数。实验独立重复 3 次。 1.2.6 Western blot 检测

对过表达 BANCR 的 A549 细胞行 Western blot,以检测 E-cadherin 和 Vimentin 的表达。使用哺乳动物蛋白提取试剂 RIPA,并补充部分蛋白酶抑制剂混合物和苯甲基磺酰氟化物来溶解细胞。用Bio-Rad 蛋白分析盒确定蛋白浓度。取 50 μg 蛋白提取物进行 10%的 SDS-PAGE 实验,将蛋白质转到硝酸纤维素膜(Sigma 公司,美国),并用 1:1 000 稀释的 E-cadherin 抗体(BD 公司,美国)、Vimentin 抗体(Cell Signaling Technology 公司,美国)解育。通过凝胶图像处理系统(Quantity One 软件,Bio-Rad 公司,美国)对放射自显影图片进行量化,以 GAPDH 作为对照。实验独立重复进行 3 次。

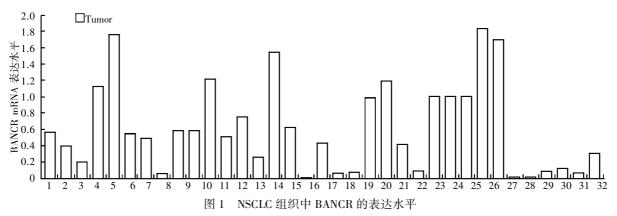
1.3 统计学方法

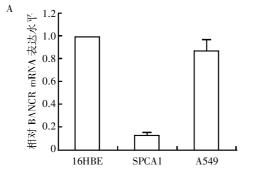
使用 SPSS 16.0 软件包(IBM 公司,美国)进行数据分析,包括 Student's t 检验(双侧)、单因素方差分析和 Mann-Whitney U 检验。两两比较使用 Student's t 检验。 $P \leq 0.05$ 认为差异具有统计学意义。

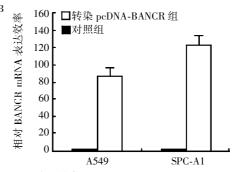
2 结 果

2.1 NSCLC 组织中 BANCR 的 mRNA 表达水平

将 32 位患者的 NSCLC 样本与癌旁的正常组织进行配对,使用 qPCR 分别检测 BANCR mRNA 的表达水平。结果显示 78.13%(25/32) 的癌组织中,BANCR 的 mRNA 表达水平与正常组织相比存在显著降低(P < 0.01,图 1)。



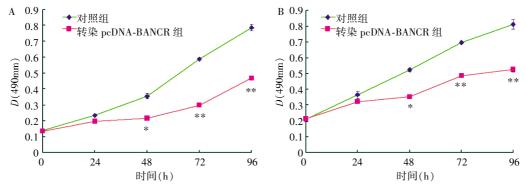

Figure 1 Expression level of BANCR in NSCLC tissue


与正常支气管上皮细胞系(16HBE)相比,2 株 NSCLC 腺癌细胞系(SPC-A1 和 A549)BANCR mR-NA 表达水平均有下降(图 2A)。将质粒载体(pcD-NA3.1-BANCR 和 pcDNA3.1)转染至 SPC-A1 或 A549细胞,对 BANCR mRNA 表达进行分析。A549细胞系中 BANCR 的过表达效率为 87 倍,SPC-A1 细胞系中 BANCR 的过表达效率是 124 倍(图 2B)。

2.2 过表达 BANCR 对 NSCLC 细胞增殖的影响

为研究 BANCR 对 NSCLC 细胞增殖所起的生物学作用,本实验研究了 BANCR 表达上调对 SPC-A1或 A549细胞增殖的影响。MTT 实验显示与对照组相比,转染 pcDNA-BANCR 的 SPC-A1和 A549细胞的增殖过程被抑制(图 3A、B)。

2.3 过表达 BANCR 对 NSCLC 细胞侵袭的影响



A:BANCR mRNA 表达水平;B:BANCR 过表达效率。

图 2 NSCLC 细胞系中 BANCR 的表达水平

Figure 2 Expression level of BANCR in NSCLC tissue and cell lines

A:MTT 实验显示与转染了空载体的对照组细胞相比,转染 pcDNA-BANCR 的 SPC-A1 细胞生长情况明显受抑, $^*P < 0.05$, $^*P < 0.01(n=3)$; B:MTT 实验显示与转染了空载体的对照组细胞相比,转染 pcDNA-BANCR 的 A549 细胞生长情况明显受抑, $^*P < 0.05$, $^*P < 0.01(n=3)$ 。

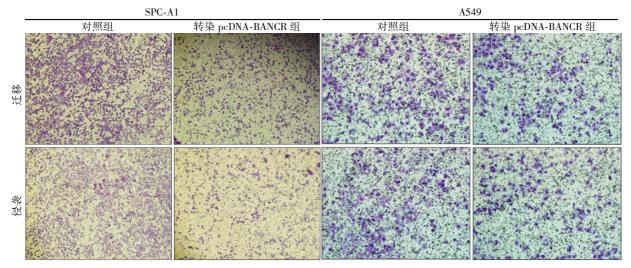
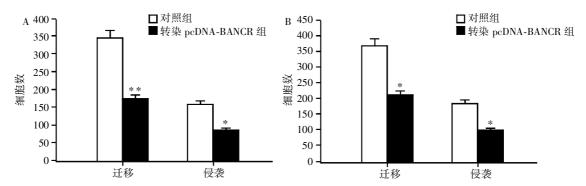
图 3 上调 BANCR 的表达对 SPC-A1 和 A549 细胞增殖的影响

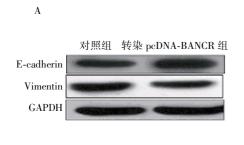
Figure 3 The effect of up-regulated BANCR on proliferation of SPC-A1 cells and A549 cells

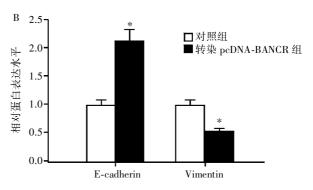
Transwell 实验结果显示,与其对应的对照组相比,转染 pcDNA-BANCR 的细胞迁移能力受到明显抑制(图 4)。两株 NSCLC 细胞系的迁移及侵袭细胞计数结果见图 5。

2.4 BANCR 表达对 NSCLC 细胞 EMT 的影响

对过表达 BANCR 的 A549 细胞行 Western blot 实验,以检测 EMT 启动标志物 E-cadherin 和 Vimentin 的表达。结果显示,BANCR 过表达 A549 细胞与阴性对照组细胞相比,E-cadherin 的表达水平明显增高,Vimentin 的表达水平显著降低(图 6)。


图 4 BANCR 对 SPC-A1 和 A549 细胞迁移和侵袭的影响


Figure 4 The effects of BANCR on invasion of SPC-A1 cells and A549 cells

A:SPC-A1 细胞,与对照组比较,*P < 0.05,**P < 0.01(n=3);B:A549 细胞,与对照组比较,*P < 0.05,**P < 0.01(n=3)。 图 5 NSCLC 细胞系的迁移及侵袭细胞计数

Figure 5 Number of migration and invasion cells of NSCLC cell lines

A:Western blot 结果;B:重复检测样本的量化数据和统计学处理结果,*P<0.05(n=3)。
图 6 BANCR 对 A549 细胞 E-cadherin、Vimentin 表达水平的影响
Figure 6 The effects of BANCER on E-cadherin and Vimentin expression level of A549

3 讨论

NSCLC 是一种多因素共同参与的恶性肿瘤, 其发病过程涉及基因及表观遗传学的改变。既往对 NSCLC 的研究主要集中在基因层面,如单核苷酸 多态性、基因突变、DNA 甲基化改变等。近年的一 些研究提示,多种 lncRNA 在 NSCLC 发生发展中具 有重要作用。Schmidt等[13]证实 IncRNA MALAT1 可以作为 NSCLC 转移的预测标志物。作为第一个 被发现的癌症相关 lncRNA, H19 能促进肺癌细胞 增殖,实验性下调 H19 基因表达可降低肺癌细胞 的集落形成能力和独立贴壁能力[14]。 Yang 等[15]发 现 lncRNA LET 在肺鳞癌中的表达显著低于正常肺 组织,低表达水平的 LET 通过稳定核因子 90 蛋白而 参与缺氧介导的肿瘤转移。Liu 等[16]提示 IncRNA HOTAIR 能够促进 NSCLC 转移, 是预后不良的生 物学指标。此外,在 NSCLC 发生发展中起作用的 lncRNA 还包括:LncRNA p21 (可促进肺癌细胞凋 亡)、lncRNA UCA1 (诱导肺癌发生药物抵抗)、 lncRNA CCAT2(促进肺癌细胞的侵袭)和 lncRNA BC200(促进肺癌的发展)等[17-20]。

本研究通过检测 IncRNA BANCR 在 NSCLC 组织和细胞系中的表达水平,以及过表达 BANCR 对 NSCLC 细胞增殖和侵袭能力的影响,以证实 BANCR 与 NSCLC 发生发展的关系。实验结果提示 NSCLC 组织中 BANCR mRNA 的表达水平低于癌 旁组织,而过表达 BANCR 能够抑制 NSCLC 细胞的增殖过程。Transwell 实验进一步提示,过表达 BANCR 不仅能够抑制 NSCLC 细胞增殖,还能抑制 肿瘤细胞的侵袭过程。

EMT 是恶性肿瘤细胞获得侵袭能力的重要生物学过程,在 NSCLC、乳腺癌、前列腺癌和肾癌等多

种肿瘤的发展中具有至关重要的作用,而 E-cadherin 表达下降、Vimentin 和 N-cadherin 表达升高是 EMT 表达间质表型的主要特征^[21-23]。目前,BANCR 在 NSCLC 增殖和侵袭的分子机制仍不清楚。本研究 通过实验证实 BANCR 能够上调 E-cadherin 表达并下调 Vimentin 的表达,影响 EMT。

综上所述,本研究证实 IncRNA BANCR 在 NSCLC 组织及细胞系中出现了明显的表达下调, 过表达 BANCR 能显著抑制 NSCLC 细胞的增殖和 侵袭能力,而 BANCR 的调节作用则有可能是通过 EMT 实现的, 提示 BANCR 在 NSCLC 的形成和进 展中起到了负性调控作用。大量研究证实 IncRNA 往往与肿瘤发生过程中的表观遗传学改变相关联, 因此目前亟需解决的问题之一便是 BANCR 能否 通过某些表观遗传学机制参与 NSCLC 的增殖和侵 袭过程。当前的研究热点主要是围绕 BANCR 可能 的其他表达调控机制,即 BANCR 还能通过哪些其 他作用途径调节肿瘤细胞的增殖和侵袭; 其次, BANCR 具体是通过哪一层面影响了 EMT; 另外, 在肿瘤的发生发展过程中,BANCR 受到哪些信号 分子的调控也是未来的研究方向之一。这能够为将 来临床上 NSCLC 的早期诊断和后期治疗提供一个 有效的分子标志物和药物治疗靶点。

[参考文献]

- [1] Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014 [J].
 CA Cancer J Clin, 2014, 64(1):9-29
- 2] De Angelis R, Sant M, Coleman MP, et al. Cancer survival in Europe 1999-2007 by country and age: results of EUROCARE-5-a population-based study [J]. Lancet Oncol, 2014, 15(1):23-34
- [3] Acloque H, Adams MS, Fishwick K, et al. Epithelialmesenchymal transitions: the importance of changing cell

- state in development and disease[J]. J Clin Invest, 2009,119(6):1438
- [4] Gao D, Vahdat LT, Wong S, et al. Microenvironmental regulation of epithelial-mesenchymal transitions in cancer [J]. Cancer Res, 2012, 72(19):4883-4889
- [5] Perl AK, Wilgenbus P, Dahl U, et al. A causal role for E-cadherin in the transition from adenoma to carcinoma [J]. Nature, 1998, 392(6672); 190-193
- [6] Lee JM, Dedhar S, Kalluri R, et al. The epithelial-mesenchymal transition; new insights in signaling, development, and disease [J]. J Cell Biol, 2006, 172 (7): 973-981
- [7] Loewer S, Cabili MN, Guttman M, et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells [J]. Nat Genet, 2010,42(12):1113-1117
- [8] Khalil AM, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression [J]. Proc Natl Acad Sci USA, 2009, 106 (28):11667– 11672
- [9] Spizzo R, Almeida MI, Colombatti A, et al. Long noncoding RNAs and cancer: a new frontier of translational research&quest[J]. Oncogene, 2012, 31(43):4577–4587
- [10] Flockhart RJ, Webster DE, Qu K, et al. BRAFV600E remodels the melanocyte transcriptome and induces BAN-CR to regulate melanoma cell migration[J]. Genome Res, 2012, 22(6):1006-1014
- [11] Rupertus K, Sinistra J, Scheuer C, et al. Interaction of the chemokines I-TAC (CXCL11) and SDF-1 (CXCL12) in the regulation of tumor angio genesis of colorectal cancer [J]. Clin Exp Metastasis, 2014, 31 (4): 447-459
- [12] Xia T,O'Hara A, Araujo I, et al. EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3[J]. Cancer Res, 2008, 68(5):1436-1442
- [13] Schmidt LH, Spieker T, Koschmieder S, et al. The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth [J]. J Thorac Oncol, 2011, 6(12):1984–1992

- [14] Barsyte-Lovejoy D, Lau SK, Boutros PC, et al. The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis [J]. Cancer Res, 2006, 66(10):5330-5337
- [15] Yang F, Huo X, Yuan S, et al. Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis [J]. Mol Cell, 2013,49(6):1083-1096
- [16] Liu X,Liu Z,Sun M,et al. The long non-coding RNA HOTAIR indicates a poor prognosis and promotes metastasis in non-small cell lung cancer[J]. BMC Cancer, 2013, 13(1):464
- [17] Huarte M, Guttman M, Feldser D, et al. A large intergenic non-coding RNA induced by p53 mediates global gene repression in the p53 response [J]. Cell, 2010, 142 (3):409-419
- [18] Wang F, Li X, Xie X, et al. UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion [J]. FEBS Lett, 2008, 582(13):1919-1927
- [19] Qiu M, Xu Y, Yang X, et al. CCAT2 is a lung adenocarcinoma-specific long non-coding RNA and promotes invasion of non-small cell lung cancer [J]. Tumor Biol, 2014,35(6):1-6
- [20] Chen W, Böcker W, Brosius J, et al. Expression of neural BC200 RNA in human tumours [J]. J Pathol, 1997, 183 (3):345-351
- [21] Bai F, Chan HL, Scott A, et al. BRCA1 suppresses epithelial-to-mesenchymal transition and stem cell dedifferentiation during mammary and tumor development [J]. Cancer Res, 2014, 74(21):6161-6172
- [22] Pu H, Horbinski C, Hensley PJ, et al. PARP-1 regulates epithelial-mesenchymal transition (EMT) in prostate tumorigenesis [J]. Carcinogenesis, 2014, 35 (11):2592-2601
- [23] He H, Magi-Galluzzi C. Epithelial-to-mesenchymal transition in renal neoplasms [J]. Adv Anat Pathol, 2014, 21 (3):174-180

[收稿日期] 2014-08-27