Establishment and identification of S100A16 gene knockout mouse model

Tong Pei, Xi Ling, Yang Jie, Liu Yun

(Department of Gerontology, the First Affiliated Hospital NJMU, Nanjing 210029, China)

[Abstract] Objective: To establish the S100A16 gene knockout mouse model, which can be used for the study on its biologic function. Methods: To establish the S100A16 gene knockout mouse model via Cre/loxP system. PCR was used to identify the genotype of the offspring, the expression level of S100A16 mRNA was detected by qRT-PCR, and expression of S100A16 protein was detected by Western blot. Results: S100A16 gene knockout mouse model has been successfully established. Heterozygous mice were successfully bred and reproduced. So far, gene knockout homozygous mice were not found. Conclusion: The S100A16 mouse could be a useful model for the researches on its function, especially in obesity and insulin resistance.

[Key words] S100A16; gene knockout; animal model

S100A16 是钙结合蛋白 (S100 calcium binding protein A16) 属于 S100 家族成员, 正常情况下广泛表达于脂肪、肌肉、心脏、心肌、肺脏等多种组织。S100A16 蛋白与家族其他成员相比结构具有一定的特异性, 其 N 端缺少谷氨酸残基而丧失了一个 Ca²⁺ 结合功能, 只有 C 端可以结合一个 Ca²⁺[1-2]。国内外研究发现 S100A16 与多种肿瘤 (如乳腺癌、肺癌和前列腺癌等) 相关, 因而被认为是一种潜在的肿瘤生物学标志物[3-5]。同时, S100A16 在糖脂代谢中也发挥着重要的生理作用, 我们的前期研究表明 S100A16 促进前体脂肪细胞分化为成熟脂肪细胞[6-8]; 此外, 也有研究表明, S100A16 可能参与炎症反应[9-10]。因此 S100A16 在人体各个系统组织中发挥了广泛而重要的生物学作用, 为了进一步研究 S100A16 的生物学功能, 本课题组构建了 S100A16 基因条件性敲除小鼠 (conditional knockout, CKO) 模型, 通过与可特异性表达 Cre 基因重组酶 (E II a-Cre) 转基因工具小鼠的杂交进一步得到了 S100A16 基因全身敲除小鼠 (CE 小鼠), 为研究 S100A16 的生物学功能提供了良好的动物模型。

1 材料和方法

1.1 材料

C57BL/6J 与 E II a-Cre 小鼠购自南京大学模式动物研究所。

所用各种限制性内切酶、T4 DNA 连接酶、DNA
聚合酶、Taq 酶及其 PCR 相关试剂、SYBR Premix(TaKaRa 公司，日本)；TRIZol(15596-026，上海 Invitrogen 公司)；蛋白酶 K(上海生工生物工程技术有限公司)；DNA Marker DL2000，RIPA 蛋白裂解液、PMSF 蛋白酶抑制剂、5× SDS 电泳上样缓冲液、HRP 标记羊抗兔 IgG 抗体(碧云天公司)；BCA 蛋白浓度测定试剂盒、蛋白染色 marker(Thermo 公司，美国)；
β-actin 抗体(60008，Proteintech 公司)；S100A16 抗体(10419，Abcam 公司，美国)；PVDF 膜(Millipore 公司，美国)。引物由上海 Invitrogen 公司合成(表1)。

Table 1 S100A16 基因敲除小鼠鉴定引物序列

<table>
<thead>
<tr>
<th>引物名称</th>
<th>引物序列(5′→3′)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CKO-dF1</td>
<td>ACTACTTTGGCCGCTGATCAAGG</td>
</tr>
<tr>
<td>CKO-dR1</td>
<td>TCAACCTTCGACAGACATG</td>
</tr>
<tr>
<td>CKO-dF2</td>
<td>AAGCGAGGAGAGGAGAGG</td>
</tr>
<tr>
<td>CKO-dR2</td>
<td>CTAAGGCAGAAGATCACG</td>
</tr>
<tr>
<td>Cre-R</td>
<td>GCTGCTCCTGCTGATG</td>
</tr>
<tr>
<td>S100a16-F</td>
<td>ACCACGTCGTACGGGACA</td>
</tr>
<tr>
<td>S100a16-R</td>
<td>GCTGCTTACCTGCAAGCAG</td>
</tr>
<tr>
<td>GAPDH-F</td>
<td>TCTGCTCCTGCTGATG</td>
</tr>
<tr>
<td>GAPDH-R</td>
<td>GCTGCTTACCTGCAAGCAG</td>
</tr>
</tbody>
</table>

1.2 方法

1.2.1 CKO 小鼠的获得

首先，根据小鼠 S100A16 基因组序列设计基因敲除方案，将 2 个 loxp(Cre 酶特异性位点)位点分别插入外显子 2 和 3 两侧，构建载体采用电穿孔法将其打电穿膜转 C57BL/6J 小鼠胚胎干细胞(ES 细胞)，经 G418 筛选得到阳性克隆的 ES 细胞，并将此 ES 细胞植入假孕的 C57BL/6J 小鼠子宫内，得到成 loxp 位点的杂合子 S100A16 基因 CKO 小鼠 (图 1.2)。所有小鼠均饲养在南京大学模式动物研究所的屏障系统(SPF)小鼠饲养室。其次，通过杂合子小鼠回交，得到 CKO 纯合子。进行 1% 琼脂糖凝胶电泳鉴定小鼠基因型，判断标准为；野生型(WT)型，DNA 经 PCR 扩增于 124 bp 处出现单一条带；纯合子，CKO 于 246 bp 和 364 bp 处同时出现 2 条带。

1.2.2 CE 小鼠的获得

E II a-Cre 小鼠是能识别 loxp 位点并表达 Cre 重组酶的工具鼠。CKO 小鼠进一步与 E II a-Cre 小鼠杂交，生产子代小鼠，于 2 周龄时剪脚趾编号并鉴

Figure 1 A schematic diagram of gene knockout

+/+

FL / +

+/+; 野生型(未标记 loxp); FL/+; CKO 杂合子(即 1 条等位基因上插入 loxp 位点); FL/FL; CKO 纯合子(即 2 条等位基因上都插入 loxp 位点)。

Figure 2 A schematic diagram of conditional knockout

1.2.3 PCR 鉴定小鼠的基因型

DNA 的提取：剪取小鼠脚趾，通过酚氯仿抽提法提取基因组 DNA，ddH2O 溶解，4℃保存。普通 PCR 及琼脂糖凝胶电泳鉴定其基因型。PCR 3 引物为：CKO, GKO, Cre, 反应体系(20 μL)：Premix Taq 10 μL，上游及下游引物各 0.8 μL，模板 DNA 2 μL，加 ddH2O 补足体积。反应条件：95℃预变性 5 min；95℃变性 30 s，55℃退火 30 s，72℃延伸 45 s，35 个循环；72℃延伸 7 min，最后 4℃保存备用。PCR 反应终产物 10 μL 进行 1% 琼脂糖凝胶电泳鉴定小鼠基因型，判断标准为：野生型(WT)型：CKO(246 bp), GKO(−), Cre(−). KO(−/−)型；GKO(−), GKO(388 bp), Cre(321 bp). CE 杂合子(+/−)：CKO(246 bp), GKO(388 bp), Cre(321 bp)。

1.2.4 qRT-PCR 检测 S100A16 基因的转录水平 mRNA 的表达

随机选取的 8 周龄 S100A16 PCR 鉴定阳性小鼠及同窝异性对照 C57BL/6J 小鼠，通过颈椎脱白法处死后，取其肝脏、心、肺、肌肉、脂肪组织，做好标记，立即置于液氮冷冻。每种基因型随机取 2 只(雌、雄各 1 只)采用 TRIzol 法提取总 RNA，后逆转录合成 cDNA。逆转录体系(10 μL)：5× Prime Script™ Buffer 2 μL, Prime Script™ RT Enzyme Mix I 0.5 μL,
Oligo dT Primer (50 μmol/L) 0.5 μL, Random 6 mers (100 μmol/L) 0.5 μL, Total RNA 1 000 ng. RNase Free H2O 补足体积。逆转录反应条件：37℃, 15 min; 85℃, 5 s; cDNA 放于 4℃保存。qRT-PCR 反应体系 (20 μL): SYBR GREEN 10 μL, 上、下游引物各 1 μL, 模板 cDNA 2 μL, ddH2O 6 μL。反应条件：95℃预变性 10 min; 95℃变性 15 s, 55℃退火 30 s, 72℃延伸 1 min, 40 个循环。反应结束后得到 Ct 值。以内参 GAPDH 标化后计算 2^{-ΔΔCT} 定量结果。

1.2.5 Western blot 检测阳性小鼠蛋白水平的表达

采用 Western blot 法，提取经鉴定的 CE 小鼠及 WT 小鼠多种组织蛋白，BCA 法测定总蛋白浓度。后以 4:1 比例与 Buffer 混合，95℃变性 10 min，常规行 15%SDS-PAGE 凝胶电泳后转膜(95 V, 70 min)，用 5%脱脂奶粉的 TBST 室温摇振封闭 2 h。分别加入一抗 S100A16、β-actin，4℃过夜。TBST 洗涤，10 min x 3 次，孵育相应的二抗，室温摇振封闭 2 h, TBST 洗涤，10 min x 3 次。ECL 化学发光法曝光显色。

1.3 统计学方法

采用 SPSS22.0 软件进行数据分析，输入 GraphPad Prism 5 软件进行作图。组间比较采用独立样本 t 检验，P≤0.05 为差异有统计学意义。

2 结 果

2.1 CKO 小鼠基因型的鉴定

选取部分鉴定结果见图 3。

![Figure 3](image1.png)

图 3 CKO 小鼠基因型鉴定

Figure 3 Identification of genotype of CKO mouse, genotype

2.2 CE 小鼠基因型的鉴定

目前获得子代 127 只，其中 CE 杂合子小鼠雌雄比例无差异(26:27)，能正常繁殖。目前未检测到 KO 纯合子小鼠。选取部分小鼠 2 周龄时剪脚趾，提取基因组 DNA，鉴定结果见图 4。

![Figure 4](image2.png)

图 4 CE 小鼠基因型鉴定

Figure 4 Identification of CE mouse, genotype
3 讨论

基因敲除技术是上世纪80年代左右发展起来的，是针对某个序列未知但功能未知的基因，利用
基因同源重组技术以及胚胎干细胞技术，令其功能
全部或部分丧失的一种分子生物学与遗传工程技术。
可进一步对生物体造成影响，进而推测出该基
因的生物学功能。基因敲除为科学研究者们在活体
以及整体水平的研究提供了有力手段。本实验以
S100A16为靶基因，通过显微注射技术成功构建了
S100A16全身敲除小鼠。上述结果可以看出，基
因敲除小鼠S100A16在多个组织的表达量明显低
于对照组，可以应用于S100A16的生物学功能研
究。目前为止，没有纯合子的出生，提示小鼠体内
S100A16表达的完全缺失可能影响了小鼠的生殖功
能和胚胎发育，目前机制尚不清楚，有待后期验证。

S100A16属钙调蛋白S100家族的新成员，在多种组
织中均有表达1。目前国内外对S100A16基因功能的
研究报道很少，主要是发现与肿瘤、代谢有关3-11、12。
本课题组研究发现它是一个新的脂肪细胞分化促
进因子，并参与了糖脂代谢12，但在肥胖及胰岛素抵抗中
的作用及机制仍然不清楚，本研究成功构建的
S100A16敲除小鼠为后期的功能研究提供了良好
的实验模型基础。

图5 不同基因型小鼠多种组织S100A16 mRNA和蛋白表达情况

Figure 5 The relative expression of S100A16 mRNA and protein in multiple tissues of different mice

[参考文献]

[8] Identification of S100A16 as a novel adipogenesis promoting factor in 3T3-L1 cells [J]. Endocrinology, 2011, 152(3):903-911

(上接第 531 页)

理与临床, 2012, 28(2): 18-20

(收稿日期) 2016-12-13