下腔静脉直径及其变化率在低血容量患者液体复苏中的价值

倪春华，陶涛，蔡福良，杨燕

（江苏大学附属第一人民医院 ICU，江苏 昆山 215300）

【摘要】 目的：研究下腔静脉直径及其变化率在低血容量患者液体复苏中的价值。方法：90例低血容量患者，随机分为3组，每组30例。A组：中心静脉压（CVP）以传统“2~5”容量负荷试验为复苏标准；B组：脉搏指数连续性排量监测组（PICCO）采用PICCO指导下，根据全心舒张末期容量指数（GEDVI）进行液体复苏；C组：超声波超声检测下腔静脉直径的呼吸变化率作为液体复苏标准。分别记录复苏前，复苏后3、4、6 h各时间点的平均动脉压、动脉乳酸值、尿量及复苏中合并症的情况，比较3种复苏方法的有效性及安全性。结果：在到达临床复苏标准时间上，C组在治疗后3 h达标，B组在治疗4 h内达标，A组在治疗后6 h达标。C组平均比B组提前1 h，比A组提前3 h达到临床标准，有显著性差异（P<0.05）。在组间MAP，尿量，动脉乳酸清除率的比较中：C组与B、A组在治疗后3 h值相比较，无显著性差异（P>0.05）；在治疗后4 h及6 h值相比较，有显著性差异（P<0.05）；C组在液体复苏后成功救治率中为100%，无差异显著性（P>0.05）；C组并发症的发生：A组4例因跨脉过快诱发急性肺水肿，1例补液较大出现急性肾功能衰竭，1例发生率为35.3%；B组2例因下肺穿刺后出现气胸，4例因股动脉穿刺不顺，置管时间较长，补液较慢发生，A组并发症发生率较高，为20.0%；C组无1例并发症发生。3组并发症发生率相比较，差异有显著性（P<0.05）。结论：下腔静脉超声检测、CVP及PICCO监测在对低血容量患者的液体复苏上具有优势，但超声检测在液体复苏过程中较CVP及PICCO监测标准快速，并发症发生率低，具有更好的有效性和安全性。

【关键词】 低血容量；下腔静脉；超声；液体复苏

【中图分类号】 R441.9
【文献标志码】 B
【文章编号】 1007-4368（2017）12-1641-03

doi:10.7655/NYDXBNS20171228

重症监护病房（ICU）中低血容量患者常常见到，据SOAPII研究31统计，ICU休克患者中低血容量休克约占16%，早期识别低血容量并开展有效液体复苏来纠正血流动力学对低血容量至关重要22，然而血容量不足或者过多都会加重器官功能损害，因此优化液体管理是血液动力学治疗的基石34，超声已经越来越多地用于评估休克患者，包括下腔静脉直径（IVC）的测量57。本研究以下腔静脉超声检查为标准与传统中心静脉压（CVP）指导的容量负荷试验及脉搏指数连续性排量监测（PICCO）指导下，根据全心舒张末期容量指数（GEDVI）进行液体复苏相比较，探讨超声在低血容量性休克患者液体复苏中的有效性及安全性。

1 对象和方法

1.1 对象

选取2016年5月—2017年5月本院ICU收治的低血容量患者共90例，其中男50例，年龄19~67岁，平均46.3岁；女40例，年龄18~62岁，平均52.3岁。符合下列3项标准的2项及以上可纳入：①临床指征：皮肤弹性降低、肢端温度下降、毛细血管充盈时间延长2 s以上，心率过速>100次/min，每小时尿量下降；②血性液体丢失：术后引流管液不常增多，出现频繁呕吐和（或）腹泻、活动性出血；③器官及实验室检查：乳酸>2 mmol/L，收缩压<90 mmHg或既往高血压患者的收缩压下降>40 mmHg（1 mmHg=0.133 kPa），脉压差在20 mmHg。排除标准：①患者不适宜超声检查，比如存在过分肥胖，过度腹腔积气等影响超声操作或解剖结构异常；②存在对CVP和下腔静脉的直径（IVC）准确性影响大的三尖瓣疾病及严重的左心功能不全及门脉高压的患者；③存在严重凝血功能异常或进行溶栓治疗中，存在放置中心静脉置管或动脉导管的相对禁忌证。

1.2 方法

按照上述入选及排除标准纳入实验对象，进行数据测量、治疗及统计。采用随机数字表法分为CVP组、PICCO组和超声组，每组各30例。治疗前3组患者的年龄、性别、MAP、动脉乳酸、APACHEⅡ评分等指标比较差异无统计学意义。

CVP组监测均采用右锁骨下静脉置管（中性静脉导管；7 Fr 双腔 20 cm），有创压力传感器采用型
号 PT_01(深圳迈瑞公司)。检查前让患者去枕平卧位，以右侧腋中线第 5 肋间水平较 零测出 CVP。
PICCO 组经股动脉置入 PICCO 导管 (4 F, PV2014L16N), 将 导 管 连 接 到 PICCO 仪 (PU-LSION)，颈内或锁骨下深静脉导管 CVP 端接 PICCO 温度传感器，计算机根据热稀释曲线进行分析，得出基本参数。超声组 B 型超声诊断仪 (Sonosite M-Turbo)，微凸探头，频率 2.0~5.0 MHz; 检查前让患者去枕平卧位，以右侧腋中线第 5 肋间水平较零测出 CVP，同时将 B 超探头置剑突下偏右侧;超声束平面平行于患者躯干的长轴，探头偏向左，显示; 肝左叶、下腔静脉长轴断面、左肝静脉、下腔静脉在右房的入口。取得此标准图像后，以左肝静脉汇入点心端端的 2 cm 测出下腔静脉矢状面最大直径 IVCD(M-型模式)。为减少误差，测量均由 ICU 超声组医生负责。

CVP 组根据 CVP 进行液体复苏，使 CVP 达 2~5 cmH2O，根据 MAP 调整血管活性药物的使用，CVP 组以容量负荷试验为标准进行复苏。PICCO 组在 PICCO 指导下进行目标液体管理，深静脉导管 CVP 端接 PICCO 温度传感器，采用脉搏曲线分析及动脉热稀释法持续监测心排量，同时按压力换能器监测有创动脉压; 自 assembled 深静脉导管的温度传感器端快速 (5 s 内) 注入温度低于 8 ℃生理盐水 10~15 mL, 计算机根据热稀释曲线进行分析，得出一些基本参数; 根据 GEDVI 来液体复苏，使 GEDVI 达到 680~800 mL/m2;根据 SVRI 监测结果应用血管活性药物，同时监测肺动脉楔压指数 (EVLWI) 指导液体选择和利尿剂应用。超声组以下腔静脉超声检查为标准进行复苏，首先测出患者下腔静脉的直径 (IVCD) 及其呼吸变化率 (ΔIVCD)，ΔIVCD = (液体复苏后下腔静脉最大直径与最下直径的差值)/(下腔静脉最大直径与最下直径的平均值)×100% [6]，当 1.3 cm < IVCD < 2.2 cm 时，表示患者血容量正常; 当 IVCD < 1.3 cm 时表示容量不足予以液体复苏，补液类型: 晶体液采用生理盐水, 胶体液采用 6%羟乙基淀粉。晶体液: 胶体液 = 3:1。CVP 组以 CVP 改变幅度 >5 cmH2O 为复苏终点; PICCO 组以 GEDVI >800 mL/m2 为复苏终点; 超声组以 ΔIVCD >53% 为复苏终点。完成复苏后与临床复苏标准 [MAP >80 mmHg，每小时尿量 >0.5 mL/kg·h 且动脉乳酸值 <2 mmol/L] 作比较。分别记录 3 组复苏后 3、4、6 h 的 MAP, 尿量和动脉乳酸值及 3 组治疗后救治成功率及并发症情况。按公式计算 LCR=(入院时动脉血乳酸-检测时动脉血乳酸)/入院时动脉血乳酸×100%。

1.3 统计学方法

应用 SPSS17 统计软件进行统计学处理，计量资料以均数±标准差 (x±s) 表示。组间比较采用单因素方差分析，进一步的两两比较采用 Bonferroni 检验，P ≤ 0.05 为差异有统计学意义。

2 结 果

2.1 治疗后 3 组不同时间 MAP、尿量及乳酸清除率比较

治疗后超声组患者 4.6 h 的 MAP、尿量及乳酸清除率明显高于其他 2 组，差异具有统计学意义 (P <0.05, 表 1)。

<table>
<thead>
<tr>
<th>组别</th>
<th>MAP(mnmHg)</th>
<th>尿量 [mL/(kg·h)]</th>
<th>乳酸清除率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 h</td>
<td>4 h</td>
<td>6 h</td>
</tr>
<tr>
<td>CVP 组</td>
<td>61±5</td>
<td>70±8</td>
<td>81±10</td>
</tr>
<tr>
<td>PICCO 组</td>
<td>65±7</td>
<td>83±10</td>
<td>90±10</td>
</tr>
<tr>
<td>超声组</td>
<td>85±7</td>
<td>95±10</td>
<td>100±11</td>
</tr>
<tr>
<td>P 值</td>
<td>>0.05</td>
<td><0.05</td>
<td><0.05</td>
</tr>
</tbody>
</table>

2.2 治疗后 3 组患者成功救治及并发症情况汇总

3 组在液体复苏后成功救治率均为 100%，无显著性差异 (P >0.05)，在并发症发生率上: A 组 4 例因补液过快发生急性肺水肿，6 例补液较慢出现急性肾损伤 (AKI)，并发症发生率为 33.3%; B 组 2 例锁骨下穿刺后出现气胸，4 例因补液补液时间较长，补液量较大发生 AKI；并发症发生率为 20.0%; 超声组未 1 例并发症发生，3 组并发症发生率比较，差异无显著性 (P >0.05)。

在组间 MAP、尿量、动脉乳酸值的比较中，C 组与 AG 组在治疗后 3 h 值相比较，差异无显著性 (P >0.05)。在治疗后 4 h 及 6 h 值相比较，差异有显著性 (P <0.05); 在到达临床复苏标准 [每小时尿量 >0.5 mL/(kg·h), MAP >80 mmHg 且动脉乳酸值 <2 mmol/L]
时间上：超声组在治疗后3 h达标，B组在治疗4 h达标。A组在治疗6 h达标，C组平均比B组提前1 h，B
A组合前3 h达到临床标准，差异具有显著性(P<0.05)；
3 组液体复苏在低血容量性休克患者的最终临床结
果上均有，但超声组受肠腔腹压影响较小且
并发症发生率低，超声组达到临床复苏标准所需
的时间较短，在液体复苏中更具优势，有效性及安全
性更好。

3 讨论

床旁超声近年来在急诊、ICU得到了广泛应用，
床旁超声除了可以有效指导患者液体复苏，了解危
重患者的循环状况，还可以对患者进行心脏检查，大
致评估患者心脏功能和肺状态；B超作为监测工
具的最大优势在于其便捷和无创性，所监测的下腔
静脉直径可能用来评价血容量丢失和临床治疗的反
应。依靠对胶静脉管径和胸房，心室大小的直观成像
能对容量进行较准确的评估，比依赖动脉系统的监
测手段更能反应患者当前的血容量比动脉压、心率
等，这就为临床上超声代替 CVP 及 PICCO 进行液
体复苏提供了理论依据。

本研究中，存在机械通气患者，其模式均为辅助
通气模式，其影响患者组织灌注的最主要因素是血
容量；鉴于下腔静脉直径随呼吸变化较大的特性，下
腔静脉的内径均取其最大值。结果显示 C 组在达到
复苏目标的时间平均较 B 组提前了1 h，较 A 组提
前3 h，且未见1例并发症，而 A 组出现的并发症多，
其机制可能是下腔静脉的超声检查较 CVP 受呼
吸、胸腔压力及体内等影响较小的原因。在本研
究中通过
dIVCD 所指导的液体复苏非常成功，相比
其他 2 组具有更高的有效性和安全性。是否就此可
以用 B 超来指导所有休克患者的液体复苏呢？还
需要大量病例研究加以证实。因设备条件的限制，对
患者没有进行肺动脉漂浮导管，混合静脉血饱和
度等监测，总面积或哪几项监测与超声检查的相
关性最好还需要进一步探索。

床旁超声因其快速、简单、无创及可重复操作等
优势，逐渐受到临床医师的重视。特别是在休克
患者无法进行有创监测时更具优势，以下腔静脉直
径呼吸变化率为指标来指导的低血容量液体复苏，
在容量判断的时效性上强于 CVP 及 PICCO 监测，
且安全性高，在指导临床液体复苏方面具有广阔
的前景。

【参考文献】

dopamine and norepinephrine in the treatment of shock

[2] 曹广科,赵玉良,李之海, 等. 下腔静脉直径变化评估连
续液体治疗前后容量状态[J]. 吉林医学,2014,35
(26):5852–5853

[3] 高 敏,王宇迪,田李星,等. 成人肺动脉高的最新进

patients: Where do we stand[J]. Emerg Trauma Shock,
2012,5(1):70–71

shock: a noninvasive method for evaluating intravascular
volume in critically ill patients[J]. Ultrasound Med,
2012,31:1885–1890

[7] 尤万红,陈 强,金晓东,等. 床旁超声监测颈动脉脉流
速变异用于评估外科 ICU 患者容量状态的研究[J]. 四
川大学学报(医学版),2013,44(4):624–628

[8] 王会娟,贾 彤,李树清,等. 超声测量下腔静脉呼吸变
化指数评估机械通气脓毒症休克患者容量反应性[J].
山西医科大学学报,2016,47(6):551–555

1419

[10] 王运勇,刘海峰,于凯江. 被动抬腿试验联合无创心排
血量监测系统预测容量反应性的临床研究[J]. 中华危
重病急救医学,2011,23(3):146–149

克患者液体反应性的临床研究[J]. 中国危重病急救医

[12] 洪 玉,张 邱,何小平,等. 急诊床旁应用超声 FAST
方案快速评估多发伤的初步研究[J]. 中华急诊医学杂
志,2010,19(10):1066–1069

【收稿日期】 2017-05-17