·基础医学·

低强度脉冲超声抑制血管平滑肌和成纤维细胞的钙化

李珺晗,邱 铭,陆 艳,孙 伟,孔祥清*

南京医科大学第一附属医院心血管内科,江苏 南京 210029

[摘 要] 目的:探究低强度脉冲超声(low intensity pulsed ultrasound, LIPUS)对高钙磷诱导的大鼠血管平滑肌细胞(rat vascular smooth muscle cell, rVSMC)及大鼠血管成纤维细胞(rat vascular adventitial fibroblasts, rVAF)钙化是否有抑制作用。方法:提取rVSMCs及rVAF,通过钙浓度测定、碱性磷酸酶(alkaline phosphatase, ALP)活性测定、茜素红染色等方法检测不同声强的低强度脉冲超声对钙化的作用;Western blot, real-time PCR探究低强度脉冲超声对细胞成骨分化的作用。结果:LIPUS处理显著抑制了高钙磷培养基诱导rVSMCs及rVAF的钙沉积及ALP活性的升高,同时在14 mW/cm² 声强 LIPUS处理后,rVSMCs及rVAF的成骨分化标志物的表达显著降低。结论:LIPUS抑制高磷钙诱导的rVSMCs及rVAF成骨分化标志物的表达,因此LIPUS 对高钙磷引起的rVSMC和rVAF钙化具有保护作用。

[关键词] 低强度脉冲超声;钙化;血管平滑肌细胞;血管成纤维细胞 [中图分类号] R329.25 [文献标志码] A doi;10.7655/NYDXBNS20210504

[文章编号] 1007-4368(2021)05-657-06

Low intensity pulsed ultrasound inhibits calcification of vascular smooth muscle cells and vascular adventitial fibroblasts.

LI Junhan, QIU Ming, LU Yan, SUN Wei, KONG Xiangqing^{*}

Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China

[Abstract] Objective: This study aims to investigate if low intensity pulsed ultrasound (LIPUS) has the inhibition effect of on calcification of rat vascular smooth muscle cells (rVSMC) and rat vascular adventitial fibroblasts (rVAF) induced by hypercalcemia and hyperphosphatemia. Methods: RVSMCs and rVAF were extracted, calcium quantification, alkaline phosphatase (ALP) activation and Alizarin red staining to detect the different intensity of LIPUS on calcification; Western blot and real-time PCR were performd to explore the effect of LIPUS on expression of osteogenic markers. Results: LIPUS treatment significantly inhibited the calcium quantification, ALP activation of rVSMCs and rVAF induced by hypercalcemia and hyperphosphatemia. Meanwhile, the expression of osteogenic markers of rVSMCs and rVAF decreased after 14 mW/cm² LIPUS treatment. Conclusion: LIPUS treatment could inhibit the expression of osteogenic markers in both rVSMCs and rVAF induced by hypercalcemia and hyperphosphatemia. Therefore, LIPUS has protection effect on rVSMCs and rVAF calcification caused by hypercalcemia and hyperphosphatemia.

[Key words] low intensity pulsed ultrasound; calcification; vascular smooth muscle cell; vascular adventitial fibroblast

[J Nanjing Med Univ, 2021, 41(05):657-662]

血管钙化是高血压、慢性肾病、血管损伤、糖尿 病血管病变和衰老等过程中广泛存在的一种病理

*通信作者(Corresponding author), E-mail: kongxq@njmu.edu.cn

性血管重构,是导致心脑血管疾病高病死率的重要因素之一。众多研究表明血管钙化是一个与骨形成相似的主动性、可调控的异位成骨样分化和钙磷沉积过程。在血管组织中,间质细胞包括血管平滑肌细胞和成纤维细胞是发生钙化的主要细胞,它们在各种致病因素的作用下发生成骨样分化和钙磷

[[]基金项目] 江苏省高校自然科学基金面上项目(18KJB 320005)

含量增加,构成了血管钙化尤其是血管中膜、外膜钙化的主要细胞学基础^[1]。由于钙化的机制复杂,目前实际诊疗中尚没有有效的治疗药物。近年来研究表明,低强度脉冲超声(low intensity pulsed ultrasound, LIPUS)对机体的细胞和组织具有非灭活性生物学效应。例如LIPUS可以促进血管内皮细胞的成血管功能^[2],促进骨折愈合等^[3]。但LIPUS能否改善血管钙化尚没有研究报道。本研究拟通过研究LIPUS对细胞生物学功能的调节,探索其抑制血管钙化的效果。

1 材料和方法

1.1 材料

大鼠平滑肌细胞、大鼠成纤维细胞来源于南 京市江宁区青龙山动物繁殖场,配制钙化培养 基: DMEM (含 HEPES)高糖培养基,含 1% 胎牛血 清(FBS)、1%青/链霉素、2 mmol/L 磷酸盐(Pi)、 1.5 mmol/L钙盐(Ca)。使用的一抗:GAPDH抗体(# 5174)、RUNX2 抗体(#12556)(Cell Signaling Technology 公司,美国), OPN 抗体(#BS1264)(Bioworld Technology公司,美国),HRP标记的羊抗鼠二抗、羊 抗兔二抗(Cell Signaling Technology 公司,美国)。 显影液(SuperSignal[™] West Femto Maximum Sensitivity Substrate, Thermo公司, 美国), ChemiDoc XRS 成 像系(Bio-Rad 公司,美国)。南京医科大学动物保 护及使用委员会批准了所有动物协议。所有涉及 动物的程序均按照美国国立卫生研究院出版的《实 验动物护理和使用指南》(no.85-23;1996年修订)进 行,研究方案获得了南京医科大学实验动物管理委 员会的批准(IACUC-1906038)。

1.2 方法

1.2.1 实验分组

茜素红染色、钙浓度测定和碱性磷酸酶(alkaline phosphatase, ALP)活性测定分为6组,包括空白对照 组(Ctrl)、高钙磷处理组(HCa+Pi)、92 mW/cm²声强 LIPUS处理组(92 mW/cm² LIPUS)、14 mW/cm² 声强 LIPUS+高钙磷处理组(14 mW/cm² LIPUS+HCa+Pi)、 44 mW/cm² 声强 LIPUS +高钙磷处理组(44 mW/cm² LIPUS+HCa+Pi)、92 mW/cm²声强 LIPUS+高钙磷处 理组(92 mW/cm² LIPUS+HCa+Pi)。Western blot、 real-time PCR 实验分为4组,包括空白对照组 (Ctrl)、高钙磷处理组(HCa+Pi)、14 mW/cm²声强 LIPUS处理组(14 mW/cm² LIPUS)、14 mW/cm²声强 LIPUS+高钙磷处理组(14 mW/cm² LIPUS+HCa+Pi)。 1.2.2 大鼠平滑肌细胞(rat vascular smooth muscle cell, rVSMC)和成纤维细胞(rat vascular adventitial fibroblast, rVAF)的提取

rVAF的提取:将3只健康雄性清洁级SD大鼠 (180~200g)麻醉后,在无菌条件下取出大鼠的胸主 动脉,放入预冷无菌PBS中暂存。配置1200U/mL胶 原酶消化液,抗生素梯度清洗血管后,转入放有胶 原酶消化液的皿中,摇床消化30min(37℃、转速 45r/min)。用显微器械在体式显微镜下分离主动 脉外膜,将外膜转入加了胶原酶的消化液中,放入 摇床消化1h(37℃、转速120r/min),离心弃上清,加 入含10%FBS的DMEM新鲜完全培养基,用100μm 滤网过滤后转入25 cm²培养瓶中于37℃、5% CO₂ 培养箱中培养,48h观察贴壁后换培养基。细胞 进行传代培养,选取第3代至第5代的细胞进行后 续实验。

rVSMC的提取:抗生素梯度清洗撕去外膜的血 管,将血管转入含有20% FBS的DMEM新鲜完全培 养基中,于37℃、5% CO₂培养箱中过夜。18 h后将 沿血管纵轴剪开,钝物刮除内膜,将血管剪碎后, 转入胶原酶消化液中,放入摇床消化2 h(37℃、转 速 50 r/min),弃上清,加有20% FBS的DMEM新鲜 完全培养基,用100 μm滤网过滤后转入25 cm² 培养 瓶中37℃,5% CO₂培养箱中培养。48 h观察贴壁后 换培养基。细胞进行传代培养,选取第3代至第5代 的细胞进行后续实验。

1.2.3 体外诱导rVCMC和rVAF钙化模型的构建

用生理盐水溶解钙、磷后加入DMEM培养基中,使磷的终浓度达到2 mmol/L,钙的终浓度达到1.5 mmol/L,使用高钙磷钙化培养基处理rVSMC和rVAF72 h。

1.2.4 体外细胞模型中低强度脉冲超声处理

低强度脉冲超声刺激是利用一组超声设备进行的,包括信号发生器(安捷伦科技有限公司,美国)、宽带功率放大器(罗切斯特电子创新有限公司,美国)和平面换能器(重庆海福)。平面换能器频率为1 MHz,通过改变电压和刺激周期来施加不同的 LI-PUS强度处理(以声强 mW/cm² 表示)。选择 14、44、92 mW/cm² 3种不同的声强,将传感器(直径6 cm)置于水缸中,将细胞培养皿的底部放入传感器中,注入脱气水。细胞悬液暴露于 LIPUS 刺激 5 min (LIPUS组),而对照不进行 LIPUS 刺激。在超声波处理过程中,培养皿中细胞培养基的温度不超过 37 ℃。

1.2.5 细胞钙浓度测定

吸去培养基后,用PBS将12孔板中培养的细胞 清洗3次,每孔加入500 µL 0.6 mol/L盐酸对细胞进 行脱钙处理,放入4℃摇床,24 h后收集并进行检 测。使用试剂盒:QuantiChrom[™] Calcium Assay Kit (DICA 500,QuantiChrom 公司,美国)。取5 µL样品 加入96孔板,加入200 µL工作液,室温振荡3 min 后使用 Synergy[™] 2 microplate reader (BioTek 公司, 美国)读取 612 nm 处吸光度。将12孔板中液体吸 净,预冷PBS冲洗3次后加入0.1% SDS或0.1 mol/L NaOH裂解细胞,收集后离心(4℃、13 000 g)20 min 并吸取上清,使用 BCA 法测蛋白浓度(BCA Protein Assay kit, Thermo Scientific Pierce 公司,美国)。钙 浓度值计算:标准化钙浓度(µg/mg protein)=绝对钙 浓度自浓度。

1.2.6 ALP活性测定

吸去培养基后,用PBS将12孔板中培养的细胞清洗3次;每孔加入250 μL 0.05%的曲拉通X-100裂解细胞,3次冻融后收集孔中液体,离心 (4℃、15000 r/min)15 min后吸上清液作为样品。 使用ALP试剂盒(WAKO公司,日本)。做标准曲 线,将100 μL底物和20 μL样品加入96孔板,振荡 1 min后37℃孵育15 min;添加80 μL反应终止液, 充分振荡1 min后,用Synerg[™]2 micro plate reader (BioTek公司,美国)测量405 nm处的吸光度值。同 法测定空白对照和标准品。BCA法检测样品的总 蛋白浓度,根据公式C×a/(t×M)计算ALP活性。C: 由标准曲线得到的吸光度值(实验值与空白值的差 值);t:反应时间(min);M:样品的总蛋白浓度;a:样 品的稀释倍数。

1.2.7 茜素红染色

吸取12孔板中培养基,PBS漂洗3次;4%甲醛 溶液固定10min后用PBS漂洗3次;95%乙醇固定 20~30min,去离子水洗涤3遍;2%茜素红S染色 1min,显微镜下观察橘红色结节的情况;去离子水洗 涤数次至无非特异性染色,使用扫描仪扫描图像。

1.2.8 实时荧光定量PCR

使用 RNeasy RNA isolation kit(Qiagen 公司,美国)提取 rVAF、rVSMC 的总 RNA,使用 Prime-Script[™] RT re-agent Kit(TaKaRa 公司,日本)进行 cDNA 合成。引物 RUNX2:正向引物 5'-TCTCA-GATCGTTGAACCTTGCTA-3',反向引物 5'-TGGT-TACTGTCATGGCGGGTA-3';OPN:正向引物 5'-GA-CACGAAGGTAAAGGTGAC-3',反向引物 5'-CTG-

GTGCTCGTCCTCTACTAC-3';通过实时荧光定量 PCR(Prism 7900, ABI公司,美国)系统进行检测。 所有荧光定量PCR反应均重复3次,用GAPDH将目 标基因进行标准化。按照对照组将Cr值进行标准 化,计算各组Cr值的变化。

1.2.9 Western blot

将各组细胞用PBS漂洗2次,根据Cytoplasmic Extraction Reagents(Thermo公司,美国)试剂盒提取 细胞蛋白,并在-70℃下保存至直使用。蛋白产物 经10%~15%的SDS聚丙烯酰胺凝胶分离后转移到 PVDF膜(Roche公司,瑞士)上,5%BSA溶液封闭后 孵育一抗,后孵育相对应的HRP偶联二抗(1:5000 稀释)。使用一抗:GAPDH抗体(#5174)、RUNX2抗 体(#12556)、OPN抗体(#BS1264)^[4],使用二抗:HRP标 记的羊抗鼠二抗、羊抗兔二抗。使用显影液反应1 min后,在ChemiDoc XRS成像系统下曝光。Image Lab™软件用于条带灰度分析。

1.3 统计学方法

使用 GraphPad Prism 5.0 软件进行统计学分析, 计量数据表示为均值±标准误($\bar{x} \pm s_{\bar{x}}$)。两组比较选 择t检验,4组数据选择单因素方差分析和 Bonferroni 多重比较。P < 0.05为差异有统计学意义。

2 结 果

2.1 LIPUS对rVSMC钙化的影响

分别应用 14、44、92 mW/cm² 3个声强 LIPUS 辐照 rVSMC 1次(5 min)后,给予高钙磷培养基培养 72 h,结果显示,茜素红染色显示 14~92 mW/cm² 的 LIPUS 预处理组细胞钙沉积显著低于对照组,以 14 mW/cm² 最为显著(图 1A)。14~92 mW/cm² 的 LI-PUS处理组与高钙磷处理组比较,细胞内钙含量明 显降低(*P* < 0.001,图 1B)。ALP活性结果表明高钙 磷处理显著增加了 rVSMC 的 ALP活性,而 LIPUS处 理组与高钙磷处理组相比,降低了细胞内 ALP活性 (*P* < 0.001,图 1C)。

2.2 LIPUS对rVAF钙化的影响

分别应用 14、44、92 mW/cm² 3个声强 LIPUS 辐 照 rVAF 1次(5 min)后,给予高钙磷培养基培养 72 h,茜素红染色显示 14、44 mW/cm²的 LIPUS 预处理 组细胞钙沉积显著低于对照组,92 mW/cm²有下降 趋势,但差异无统计学意义(图 2A)。14~92 mW/cm² 的 LIPUS 处理组与高钙磷处理组比较,细胞内钙含 量明显降低(*P* < 0.01,图 2B)。ALP活性结果表明 高钙磷处理显著增加了 rVAF 的 ALP活性,而 LIPUS

A:茜素红染色结果;B:细胞内钙含量的测定;C:细胞内ALP活性的测定。两组比较, P<0.001(n=12)。 图1 不同声强低强度脉冲超声在大鼠rVSMC的抗钙化作用

Figure 1 The protective effect of low intensity pulsed ultrasound with different intensity on calcification in rVSMV

图2 不同声强低强度脉冲超声在大鼠rVAF的抗钙化作用

Figure 2 The protective effect of low intensity pulsed ultrasound with different intensity on calcification in rVAF

处理组与高钙磷处理组相比,降低了细胞内ALP活性(*P*<0.001,图2C)。

2.3 LIPUS抑制血管平滑肌细胞、血管成纤维细胞的成骨分化

Western blot和real-time PCR结果显示,高磷钙 培养基显著增加了rVSMC和rVAF成骨分化指标 RUNX2和OPN的表达。14 mW/cm² LIPUS处理抑 制了高磷钙处理组的 RUNX2和 OPN 蛋白高表达, 表明其发挥了抗钙化的保护作用(图3)。

3 讨 论

临床上促进血管钙化发生发展的因素主要有高血压、糖尿病、肾功能不全和吸烟等,其中尤其以 慢性肾病引起的钙磷代谢紊乱所致的血管钙化后 果最为严重,主要好发于中青年人群,是导致此类 患者死亡的重要原因之一。慢性肾病相关的血管 钙化主要表现为弥漫性血管中膜钙化,导致血管弹 性丧失,从而引起顽固性血压升高和致死性出血等 严重并发症^[5],动脉钙化程度也被认为是影响慢性 肾病患者预后的最佳血管指标之一^[6]。血管钙化最 终表现为钙磷结晶在动脉管壁上的沉积,组织内钙 磷水平的失衡是血管钙化形成的核心环节,血清和 局部组织内异常升高的钙磷水平促进血管间质细 胞发生成骨分化、细胞凋亡等,导致羟基磷灰石结 晶的形成和发展^[7]。而迄今为止,由于对血管钙化 的机制尚不完全清楚,临床上缺乏有效的防治血管 钙化的方法。因此,关注血管钙化,尤其是加强对 血管钙化病理机制和干预方法的研究对于提高对 人体内血管稳态的深入理解,降低心脑血管严重并 发症和病死率具有重要意义。

超声波应用于临床诊断已有50年的历史,诊断 性超声由于其声波频率高、功率低,短时间内对人 体组织不会产生明显影响。与诊断超声相比,治疗 性超声在临床的应用也有近30年的历史,其中体外 冲击波超声最先应用于泌尿系结石的治疗^[8],近10年 高强度聚焦超声也被用于肿瘤组织的消融^[9],这两 种方式的治疗原理都是通过高功率的超声能量作 用与局部组织,产生损毁式效应,达到碎石和肿瘤 组织灭活的效应。LIPUS 是一种特殊类型的超声, 它具有热效应小、强度低等特点,同时能把声能传

A:Western blot 检测大鼠rVSMC处理后成骨分化水平及统计分析结果;B:Western blot 检测大鼠rVAF处理后成骨分化水平及统计分析 结果;C:大鼠rVSMC处理后 OPN、RUNX2 的 mRNA 表达水平;D:大鼠rVAF 处理后 OPN、RUNX2 的 mRNA 表达水平。两组比较,*P < 0.05, **P < 0.01, **P < 0.001(*n*=6)。

图3 低强度脉冲超声对成骨分化的抑制作用

Figure 3 The inhibition of low intensity pulsed ultrasound on osteogenic differentiation

输到靶组织,能够为治疗应用提供非侵入性物理刺激^[10]。已有研究表明,LIPUS对多种细胞具有生物学效应,包括增加细胞膜渗透性^[11],调节细胞凋亡^[12-13]、增殖^[14]、分化^[15]和迁移^[16]。那么在高钙磷诱导的rVSMC和rVAF的钙化中,LIPUS是否也可以发挥抑制血管钙化的作用,减少血管钙盐沉积?从本研究结果可以看出,LIPUS显著降低了高钙磷诱导的rVSMC和rVAF内的钙含量,抑制了ALP活性的增高,同时其钙沉积也显著下降。Western blot实验和real-time PCR结果都显示LIPUS组中,RUNX2和OPN的表达显著降低。

综上所述,LIPUS可以显著抑制高钙磷诱导的 rVSMC和rVAF的钙化,通过抑制RUNX2的表达,缓 解了rVSMC和rVAF的成骨分化过程,减少了细胞 钙沉积。这一发现也将为临床开辟治疗血管钙化 提供新思路。

[参考文献]

- QUAGLINO D, BORALDI F, LOFARO F D. The biology of vascular calcification [J]. Int Rev Cell Mol Biol, 2020, 354:261-353
- [2] DE LUCAS B, PEREZ L M, BERNAL A, et al. Ultrasound therapy: experiences and perspectives for regenerative medicine[J]. Genes(Basel), 2020, 11(9):1086
- [3] CHEUNG W H, CHOW S K, SUN M H, et al. Low-intensity pulsed ultrasound accelerated callus formation, angiogenesis and callus remodeling in osteoporotic fracture healing[J]. Ultrasound Med Biol, 2011, 37:231-238
- [4] 胡 帅,周景昕,戴亚伟,等. GLP-1抑制小鼠主动脉瓣 膜钙化的实验研究[J]. 南京医科大学学报(自然科学 版),2020,40(7):950-955
- [5] VOELKL J, CEJKA D, ALESUTAN I. An overview of the mechanisms in vascular calcification during chronic kidney disease[J]. Curr Opin Nephrol Hypertens, 2019, 28: 289–296
- [6] CHEN S C, HUANG J C, SU H M, et al. Prognostic cardiovascular markers in chronic kidney disease [J]. Kidney Blood Press Res, 2018, 43:1388-1407
- [7] TYSON J, BUNDY K, ROACH C, et al. Mechanisms of

the osteogenic switch of smooth muscle cells in vascular calcification: WNT signaling, BMPs, mechanotransduction, and EndMT [J]. Bioengineering (Basel), 2020, 7 (3):88

- [8] BASULTO-MARTINEZ M, KLEIN I, GUTIERREZ-ACEV-ES J. The role of extracorporeal shock wave lithotripsy in the future of stone management [J]. Curr Opin Urol, 2019,29:96-102
- [9] MARINOVA M, WILHELM-BUCHSTAB T, STRUNK H. Advanced pancreatic cancer: high-intensity focused ultrasound(HIFU) and other local ablative therapies[J]. Rofo, 2019, 191:216-227
- [10] JIANG X, SAVCHENKO O, LI Y, et al. A review of lowintensity pulsed ultrasound for therapeutic applications
 [J]. IEEE Trans Biomed Eng, 2019, 66:2704-2718
- [11] GUO G, MA Y, GUO Y, et al. Enhanced porosity and permeability of three - dimensional alginate scaffolds via acoustic microstreaming induced by low-intensity pulsed ultrasound[J]. Ultrason Sonochem, 2017, 37:279-285
- [12] ZHANG B, ZHOU H S, CHENG Q, et al. Low-frequency ultrasound induces apoptosis of rat aortic smooth muscle cells(A7r5) via the intrinsic apoptotic pathway[J]. Genet Mol Res, 2014, 13: 3143-3153
- [13] FENG Y, TIAN Z M, WAN M X, et al. Low intensity ultrasound-induced apoptosis in human gastric carcinoma cells
 [J]. World J Gastroenterol, 2008, 14:4873–4879
- [14] BOHARI S P, GROVER L M, HUKINS D W. Pulsed lowintensity ultrasound increases proliferation and extracelluar matrix production by human dermal fibroblasts in threedimensional culture[J]. J Tissue Eng, 2015, 6:2041731415 615777
- [15] GAO Q, WALMSLEY A D, COOPER P R, et al. Ultrasound stimulation of different dental stem cell populations: role of mitogen-activated protein kinase signaling [J]. J Endod, 2016, 42:425-431
- [16] JANG K W, DING L, SEOL D, et al. Low-intensity pulsed ultrasound promotes chondrogenic progenitor cell migration via focal adhesion kinase pathway [J]. Ultrasound Med Biol, 2014, 40: 1177-1186

[收稿日期] 2021-01-13