en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

吴志平,E-mail:gzwzp@foxmail.com

中图分类号:R737.11

文献标识码:A

文章编号:1007-4368(2022)10-1376-11

DOI:10.7655/NYDXBNS20221005

参考文献 1
HUMPHREY P A,MOCH H,CUBILLA A L,et al.The 2016 WHO classification of tumours of the urinary sys⁃ tem and male genital organs⁃part B:prostate and bladder tumours[J].Eur Urol,2016,70(1):106-119
参考文献 2
CHEN F J,ZHANG Y Q,ŞENBABAOĞLU Y,et al.Mul⁃ tilevel genomics ⁃ based taxonomy of renal cell carcinoma [J].Cell Rep,2016,14(10):2476-2489
参考文献 3
CHEN W,ZHENG R,BAADE P D,et al.Cancer statis⁃ tics in China,2015[J].CA Cancer J Clin,2016,66(2):115-132
参考文献 4
DE SOUSA MARTA C,MONIKA G,DOBROCHNA D,et al.Deciphering miRNAs’ action through miRNA editing [J].Int J Mol Sci,2019,20(24):6249
参考文献 5
SALIMINEJAD K,KHORRAM KHORSHID H R,SOL ⁃ EYMANI FARD S,et al.An overview of microRNAs:biol⁃ ogy,functions,therapeutics,and analysis methods[J].J Cell Physiol,2019,234(5):5451-5465
参考文献 6
CHEN L,HEIKKINEN L,WANG C L,et al.Trends in the development of miRNA bioinformatics tools[J].Brief Bioinform,2019,20(5):1836-1852
参考文献 7
CAO J,LIU J,XU R,et al.microRNA⁃21 stimulates epi⁃ thelial ⁃ to ⁃ mesenchymal transition and tumorigenesis in clear cell renal cells[J].Mol Med Rep,2016,13(1):75-82
参考文献 8
张飞,史成宇,杨世坤,等.miR⁃1301对肝细胞肝癌增殖的影响及机制研究[J].南京医科大学学报(自然科学版),2020,40(3):355-359
参考文献 9
CAO Y J,XU R F,XU X L,et al.Downregulation of ln⁃ cRNA CASC2 by microRNA ⁃ 21 increases the prolifera⁃ tion and migration of renal cell carcinoma cells[J].Mol Med Rep,2016,14(1):1019-1025
参考文献 10
邓威,孟颖,王晨星,等.miR⁃182在口腔鳞癌血清外泌体中的表达及其临床意义[J].南京医科大学学报(自然科学版),2021,41(4):509-515
参考文献 11
TSAI M M,WANG C S,TSAI C Y,et al.Potential diag⁃ nostic,prognostic and therapeutic targets of microRNAs in human gastric cancer[J].Int J Mol Sci,2016,17(6):945
参考文献 12
LARRABEITI ⁃ ETXEBARRIA A,LOPEZ ⁃ SANTILLAN M,SANTOS ⁃ ZORROZUA B,et al.Systematic review of the potential of microRNAs in diffuse large B cell lympho⁃ ma[J].Cancers,2019,11(2):144-144
参考文献 13
LU S,ZHOU C,ZOU B W,et al.miR⁃4295 facilitates cell proliferation and metastasis in head and neck squamous cell carcinoma by targeting NPTX1[J].Genes Immun,2020,21(1):4-12
参考文献 14
LIAO H,LIANG Y,KANG L,et al.miR⁃454⁃3p inhibits non⁃small cell lung cancer cell proliferation and metasta⁃ sis by targeting TGFB2[J].Oncol Rep,2021,45(5):67
参考文献 15
GUO J Y,LUO C,YANG Y Q,et al.miR⁃491⁃5p,as a tu⁃ mor suppressor,prevents migration and invasion of breast cancer by targeting ZNF⁃703 to regulate AKT/mTOR path⁃ way[J].Cancer Manag Res,2021,13:403-413
参考文献 16
DING L F,JIANG M X,WANG R Y,et al.The emerging role of small non⁃coding RNA in renal cell carcinoma[J].Transl Oncol,2021,14(1):100974
参考文献 17
QI Y J,WANG L,WANG K Z,et al.New mechanistic in⁃ sights of clear cell renal cell carcinoma from integrated miRNA and mRNA expression profiling studies[J].Biomed Pharmacother,2019,111:821-834
参考文献 18
QIN S J,SHI X J,WANG C B,et al.Transcription factor and miRNA interplays can manifest the survival of ccRCC patients[J].Cancers,2019,11(11):1668
参考文献 19
XIE M Z,LV Y F,LIU Z H,et al.Identification and vali⁃ dation of a four ⁃miRNA(miRNA ⁃21⁃5p,miRNA ⁃9⁃5p,miR⁃149⁃5p,and miRNA⁃30b⁃5p)prognosis signature in clear cell renal cell carcinoma[J].Cancer Manag Res,2018,10:5759-5766
参考文献 20
LISA K,EDUARD R,DIETHER L,et al.microRNAs pos⁃ sibly involved in the development of bone metastasis in clear⁃cell renal cell carcinoma[J].Cancers,2021,13(7):1554
参考文献 21
HES O,COMPÉRAT E M,RIOUX⁃LECLERCQ N.Clear cell papillary renal cell carcinoma,renal angiomyoadeno⁃ matous tumor,and renal cell carcinoma with leiomyoma⁃ tous stroma relationship of 3 types of renal tumors:a re⁃ view[J].Ann Diagn Pathol,2016,21:59-64
参考文献 22
MAKHOV P,JOSHI S,GHATALIA P,et al.Resistance to systemic therapies in clear cell renal cell carcinoma:mechanisms and management strategies[J].Mol Cancer Ther,2018,17(7):1355-1364
参考文献 23
LJUNGBERG B,ALBIGES L,ABU ⁃GHANEM Y,et al.European association of urology guidelines on renal cell carcinoma:the 2019 update[J].Eur Urol,2019,75(5):799-810
参考文献 24
于伟华.miR⁃21⁃5p靶向CHL1促进结肠腺癌发生发展及作用机制的研究[D].济南:山东大学,2019
参考文献 25
柯井卫,沈宏春,刘星,等.骨髓间充质干细胞源外泌体miR⁃21⁃5p通过下调PHLPP2促进前列腺癌PC⁃3细胞的增殖、迁移和侵袭[J].中国肿瘤生物治疗杂志,2020,27(5):534-540
参考文献 26
HAN S S,WANG L,SUN L K,et al.microRNA⁃1251⁃5p promotes tumor growth and metastasis of hepatocellular carcinoma by targeting AKAP12[J].Biomed Pharmacoth⁃ er,2020,122:109754
参考文献 27
YAO D Y,XIA S Y,JIN C J,et al.Feedback activation of GATA1/miR ⁃ 885 ⁃ 5p/PLIN3 pathway decreases sunitinib sensitivity in clear cell renal cell carcinoma[J].Cell Cy⁃ cle Georget Tex,2020,19(17):2195-2206
参考文献 28
房昕,孙汝,胡玉鑫,等.miR⁃182⁃5p/HIF2α通路在无机砷恶性转化人肾小管上皮细胞中的作用[C]//2018环境与健康学术会议⁃精准环境健康:跨学科合作的挑战论文汇编.沈阳:中国毒理学会,2018
参考文献 29
许轶涵,李晨,郭钊培,等.血清IgG N⁃聚糖在肿瘤辅助诊断中的研究现状[J].国际检验医学杂志,2021,42(7):877-880
参考文献 30
ZHANG D,LI X O,LIU X F,et al.Disease⁃specific IgG fc glycosylation ratios as personalized biomarkers to dif⁃ ferentiate non ⁃ small cell lung cancer from benign lung diseases[J].Proteom Clin Appl,2020,14(1):e1900016
参考文献 31
ZOU Y,HU J X,JIE J Z,et al.Comprehensive analysis of human IgG Fc N ⁃ glycopeptides and construction of a screening model for colorectal cancer[J].J Proteom,2020,213:103616
参考文献 32
MATSUMOTO T,HATAKEYAMA S,YONEYAMA T,et al.Serum N ⁃glycan profiling is a potential biomarker for castration ⁃ resistant prostate cancer[J].Sci Rep,2019,9(1):16761
参考文献 33
LI C L,GUO L J,CHEN F,et al.Golgi alpha ⁃mannosi⁃ dase II as a novel biomarker predicts prognosis in clear cell renal cell carcinoma[J].Oncol Res Treat,2020,43(6):264-275
参考文献 34
鲁广建,狄文玉,张群妹,等.microRNA⁃184 调控 Ras/MAPK/ERK途径与老年肾细胞癌肿瘤细胞增殖、迁移及凋亡的关系[J].中国老年学杂志,2021,41(3):625-629
参考文献 35
WANG S,HAO X M,HE S,et al.Suppressive effects of RASAL2 on renal cell carcinoma via SOX2/ERK/p38 MAPK pathway[J].Exp Ther Med,2020,20(6):151
参考文献 36
WYPYCH D,POMORSKI P.Calcium signaling in glioma cells ⁃ the role of nucleotide receptors[J].Adv Exp Med Biol,2013,986:61-79
参考文献 37
KANWAR N,CARMINE⁃SIMMEN K,NAIR R,et al.Am⁃ plification of a calcium channel subunit CACNG4 increas⁃ es breast cancer metastasis[J].EBioMedicine,2020,52:102646
参考文献 38
SALDÍAS M P,MAUREIRA D,ORELLANA ⁃ SER⁃ RADELL O,et al.TRP channels interactome as a novel therapeutic target in breast cancer[J].Front Oncol,2021,11:621614
参考文献 39
LEE H,KIM J W,KIM D K,et al.Calcium channels as novel therapeutic targets for ovarian cancer stem cells[J].Int J Mol Sci,2020,21(7):2327
参考文献 40
PEI Z,LEE K C,KHAN A,et al.Pathway analysis of glu⁃ tamate⁃mediated,calcium⁃related signaling in glioma pro⁃ gression[J].Biochem Pharmacol,2020,176:113814
参考文献 41
REN T,TANG Y J,WANG M F,et al.Triptolide induces apoptosis through the calcium/calmodulin⁃dependent pro⁃ tein kinase kinaseβ/AMP⁃activated protein kinase signal⁃ ing pathway in non⁃small cell lung cancer cells[J].Oncol Rep,2020,44(5):2288-2296
参考文献 42
LIU Y,HAN N,ZHOU S,et al.The DACH/EYA/SIX gene network and its role in tumor initiation and progres⁃ sion[J].Int J Cancer,2016,138(5):1067-1075
参考文献 43
MARC S,IORI S,MORGANE G,et al.MyoD reprogram⁃ ming requires Six1 and Six4 homeoproteins:genomewide Cis ⁃ regulatory module analysis[J].Nucleic Acids Res,2016,44(18):8621-8640
参考文献 44
NA X Y,SHANG X S,ZHAO Y,et al.miR ⁃203a func⁃ tions as a tumor suppressor in bladder cancer by targeting SIX4[J].Neoplasma,2019,66(2):211-221
参考文献 45
HE Q,LIN Z Y,WANG Z H,et al.SIX4 promotes hepato⁃ cellular carcinoma metastasis through upregulating YAP1 and c⁃MET[J].Oncogene,2020,39(50):7279-7295
参考文献 46
FUJIMOTO Y,TANAKA S S,YAMAGUCHI Y L,et al.Homeoproteins Six1 and Six4 regulate male sex determi⁃ nation and mouse gonadal development[J].Dev Cell,2013,26(4):416-430
参考文献 47
WANG J Z,LIU M L,ZHAO L H,et al.Disabling of nephrogenesis in porcine embryos via CRISPR/Cas9⁃me⁃ diated SIX1 and SIX4 gene targeting[J].Xenotransplanta⁃ tion,2019,26(3):e12484
目录contents

    摘要

    目的:通过微小RNA(microRNA,miRNA)预后模型筛选肾癌高危人群并进行早期干预治疗,以提高患者的生存率。 方法:基于癌症基因图谱(The Cancer Genome Atlas,TCGA)数据库,通过风险生存曲线、受试者工作特征(receiver operating characteristic,ROC)曲线及生存状态图对模型进行评价并对风险评分进行独立预后分析,筛选肾透明细胞癌预后相关的miRNA, 建立预后风险模型。结果:①从TCGA数据库初步筛选3613个差异性表达的mRNA和49个差异表达的miRNA。②通过单、 多因素Cox回归分析筛选出3个与预后相关的miRNA构建风险预后模型,并且Train组、Test组和所有样品的高低风险组存在明显生存差异;3 组样本 1、3、5 年生存分析的 ROC 曲线下面积均接近或大于 0.70,风险评分可以作为独立预后因子。③在 GO富集分析中,主要富集在肾单位的发育、突触后密度及离子跨膜转运蛋白活性等;而在KEGG富集分析中,主要参与其他类型的O-聚糖生物合成、N-聚糖生物合成等通路。结论:基于TCGA数据库构建的3个miRNA风险预后模型可作为肾透明细胞癌的预后生物学标志物。

    Abstract

    Objective:Screening individuals at high risk of renal cancer by miRNA prognostic model and performing early intervention treatment to improve patient survival. Methods:The models were evaluated by risk survival curve,receiver operating characteristic(ROC)curve and survival status plots based on the Cancer Genome Atlas(TCGA)database,and an independent prognostic analysis was performed to screen prognosis related miRNAs in clear cell renal cell carcinoma. Results:① Preliminary screening of 3613 differentially expressed mRNAs and 49 differentially expressed miRNAs. ②Three miRNAs related to prognosis were screened by univariate and multivariate Cox regression analysis to construct a risk prognostic model,and there were obvious survival differences in the high and low risk groups of the Train group,the Test group,and all samples. The areas under the ROC curve of the 1, 3 and 5-year survival analysis of the 3 groups were all close to or greater than 0.70,and the risk score can be used as an independent prognostic factor. ③In GO analysis,it is mainly concentrated in the development of nephron epithelium and nephron,postsynaptic density,metal ion transmembrane transporter activity,etc. In KEGG enrichment analysis,it is mainly involved in other types of O-glycan biosynthesis and N -glycan biosynthesis. Conclusion:Three miRNA risk prognostic models based on TCGA database can be used as prognostic biomarkers of renal clear cell carcinoma.

  • 肾癌又称肾细胞癌(renal cell carcinoma,RCC),是起源于肾实质泌尿小管上皮系统的恶性肿瘤,也是最常见的肾实质恶性肿瘤,约占成人恶性肿瘤的2%~3%。肾细胞癌包括透明细胞癌(clear cell renal cell carcinoma,ccRCC)、乳头状肾细胞癌、嫌色细胞癌、集合管癌和未分化类肾细胞癌等亚型[1],其中ccRCC为最常见类型[2]。RCC的高发病年龄为50~60岁;男女比例约为2∶1。根据统计,2015年我国预期新发患者数约为6.68万人[3],死亡人数约为2.34万人;2018年全球新增患者40余万人,死亡人数约17.51万人。目前证据表明其发病机制尚无定论,可能与遗传、吸烟、肥胖、高血压及抗高血压药物使用等有关,其典型表现为“肾癌三联症”,但目前在临床中却很少见,常因血尿、疼痛和肿块行影像学检查时发现,所以这类患者易错过最佳治疗时期,预后往往较差。局限性或者局限进展期肾癌主要是以手术切除为主,而晚期患者因肾癌对传统的放化疗不敏感,这类患者常采用分子靶向治疗延长寿命,但部分患者后期出现耐药现象。所以迫切需要对ccRCC的发生和发展进行深入研究,早期对这类人群进行个体化治疗,改善预后。

  • 微小RNA(microRNA,miRNA)是由19~25个核苷酸组成的内源性单链小分子RNA,是体内最多的RNA,因其不具有开放阅读框,故不编码蛋白质,但具有调节蛋白质编码和非编码基因表达的功能[4-7],主要通过目标靶基因mRNA的3′端非翻译区来调节蛋白质编码和非编码基因的表达。越来越多的研究表明,miRNA在肿瘤微环境的血管生成及远处转移中起着重要的作用[8-12]。miRNA⁃4295可以促进头颈鳞状细胞癌恶性细胞的增殖[13];miR4543p通过靶向TGFB2抑制非小细胞肺癌的增殖和转移[14]; Guo等[15] 在乳腺癌研究中发现,miR⁃491⁃5p作为一种抑癌因子,通过ZNF⁃703调节AKT/mTOR通路显著抑制乳腺癌的侵蚀和转移;并且miRNA在ccRCC发生、发展、转移也都得到证实[16-20],这些研究表明miRNA可能会为ccRCC的预后和治疗提供新思路。因此通过TCGA数据库构建miRNA风险预后模型筛选高危人群,可早期进行干预治疗,提高患者的生存率。

  • 1 资料和方法

  • 1.1 资料

  • 登录TCGA数据库官网(https://portal.gdc.can⁃ cer.gov/),设置过滤条件,①疾病类型:肾透明细胞癌;②数据来源:TCGA;③数据类型:基因表达数据 (HTSeq⁃Counts)、miRNA数据(区分3p与5p)、临床数据。使用Perl软件(v5.30.0)对mRNA和miRNA数据进行整理及临床数据合并。

  • 1.2 方法

  • 1.2.1 构建miRNA预后模型

  • 利用R软件对mRNA和miRNA进行差异分析 [过滤标准:以2为底数对数变化倍数的绝对值 (|log2FC|)>2,校准 P 值(FDR)≤ 0.05],将差异表达的miRNA与整理后的生存数据进行合并。排除标准:①生存时间未知;②生存时间为0d;③生存时间< 30d;④生存状态为未知;⑤生存状态为空值。然后将样本随机等分为实验组(Train组)251例和验证组(Test组)248例,对Train组样本进行单、多因素Cox回归分析后建立与ccRCC预后相关miRNA模型。

  • 1.2.2 预后风险模型的评估

  • 分别对高、低表达组和高、低风险组进行生存差异分析,通过生存曲线、ROC曲线及生存状态图评估风险模型的准确性,并在Test组和所有样本进行验证。将预后风险模型风险评分与临床因素合并,进行独立预后分析。

  • 1.2.3 miRNA和mRNA综合分析

  • 通过miRDB、miRTarBase及TargetScan软件对模型中的miRNA进行靶基因的预测,利用Cytoscape软件构建调控网络并进行GO和KEGG富集分析其功能及参与的通路,对调控网络内的mRNA进行生存分析,最后构建蛋白互作网络(PPI)。

  • 2 结果

  • 2.1 差异表达的mRNA和miRNA

  • 初步筛选出3 613个差异表达mRNA(2 603个表达上调的mRNA,1 010个表达下调的mRNA)和49个差异表达的miRNA(28个表达上调的miRNA,21个表达下调的miRNA),并绘制差异表达的mRNA和miRNA的火山图和热图(上调和下调最显著的前20个基因,mRNA见图1A、B;miRNA见图1C、D)。

  • 2.2 预后模型的构建

  • 初步对Train组进行单因素Cox回归分析得到4个生存相关的miRNA,然后将初筛变量进一步纳入多因素Cox回归分析筛选出3个与预后更密切的miR⁃ NA:miR⁃21⁃5p、miR⁃885⁃5p、miR⁃1251⁃5p,根据多因素回归分析结果构建风险预后模型。风险评分=EXP⁃ miRNAa×Coeffcient1+miRNAb×Coeffcient2+······+miR⁃ NAn×Coeffcientn。EXPmiRNAa表示对应miRNA的表达量,Coeffcient1表示对应miRNA的回归系数(表1)。

  • 图1 差异表达的mRNA和miRNA火山图和热图

  • Fig.1 Volcano map and heat map of differentially expressed mRNA and miRNA

  • 表1 Cox多变量回归分析差异表达的miRNA对ccRCC患者生存率的影响

  • Table1 Coxmultivariateregression analysis of theeffects ofdifferentiallyexpressedmiRNAs on survivalinpatientswith ccRCC

  • 2.3 预后风险模型的评估

  • 根据miRNA的表达量将患者分为高表达组和低表达组,生存差异分析显示miR⁃21⁃5p低表达有利于患者生存,miR⁃1251⁃5p和miR⁃885⁃5p高表达有利于患者生存,但miR⁃885⁃5p患者10年后的生存期无明显差异,总体上两组存在明显的生存差异 (P< 0.001,图2A~C)。然后根据Cox模型公式所计算的风险值将Train组、Test组和所有样本分为高风险组和低风险组,进行生存差异分析并绘制生存曲线,结果显示在Train组、Test组和所有样本中低风险组患者的生存时间明显优于高风险组,两组差异具有统计学意义(P< 0.001,图2D~F)。

  • 绘制1、3、5年生存分析的ROC曲线结果显示, Train组的ROC曲线下面积分别为0.698、0.712、 0.654;Test组的ROC曲线下面积分别为0.690、 0.590、0.645;所有样本的ROC曲线下面积分别为0.695、0.646、0.649(图3A~C)。患者的生存状态图显示从左到右随着患者风险的增大,患者的生存时间逐步下降,死亡人数逐渐增多,患者的生存率逐步下降(图3D~F)。说明该模型预测ccRCC患者生存期具有一定的准确性。

  • 根据排除标准共排除11例临床数据后(分级未知的8例和分期未知的3例)进行单因素和多因素独立预后分析,结果显示在单因素独立预后分析中年龄、分级、分期、风险评分可以作为独立预后因子,在多因素独立预后分析中年龄、分期、风险评分可以作为独立预后因子。而风险评分在单因素和多因素的独立预后分析中P均< 0.001,说明该模型可以独立于其他临床因素,作为ccRCC患者的独立预后因子(图4A、B)。

  • 2.4 miRNA和mRNA综合分析

  • 2.4.1 miRNA靶基因的预测及调控网络的构建

  • 首先在miRDB、miRTarBase、TargetScan中共同取交集进行靶基因预测,结果显示hsa⁃miR⁃21⁃5p有150个靶基因;hsa⁃miR⁃885⁃5p有10个靶基因;而miR⁃1251⁃5p有5个靶基因。绘制miRNA靶基因的韦恩图(图5A~C)。构建miRNA调控网络并对结果进行可视化(图6)。

  • 2.4.2 靶基因的GO功能注释和KEGG富集分析

  • GO富集分析主要分为生物过程(biological process,BP)、细胞组分(cellular component,CC)、分子功能(molecular function,MF)3大类,其中靶基因在BP上主要富集在肾单位上皮和肾单位的发育、肾小管和肾脏上皮的发育(图7A),在CC方面主要富集在突触后密度、不对称突触、突触后专业化、谷氨酸能突触、神经元到神经元突触等(图7B),而在MF中主要富集金属离子跨膜转运蛋白活性、受体配体活性、肝素结合、糖胺聚糖结合、硫化合物结合等 (图7C)。通过KEGG富集分析发现网络内的基因主要参与其他类型的O⁃聚糖生物合成、N⁃聚糖生物合成、Ras信号通路及钙信号等通路(图7D),上述结果表明,差异基因在ccRCC的发生和转移中具有潜在的调控作用。

  • 图2 模型内miRNA和风险分组的生存曲线

  • Fig.2 Survival curves for within⁃model miRNAs and risk groups

  • 图3 风险分组的ROC曲线和生存状态图

  • Fig.3 ROC curve and survival state diagram for risk grouping

  • 图4 独立预后分析

  • Fig.4 Independent prognostic analysis

  • 图5 模型内靶基因预测的韦恩图

  • Fig.5 Venn diagram of target gene prediction within the model

  • 图6 miRNA与靶基因的调控网络

  • Fig.6 The regulatory network between miRNA and target genes

  • 图7 靶基因的富集分析

  • Fig.7 Enrichment analysis of target genes

  • 2.4.3 mRNA生存分析

  • 对调控网络内的mRNA进行生存分析,结果显示CLIC5、COBLL1、FGF1、NIPAL1、MARCH4、SEMA6D、 WNT9B、FCGR1A、FCGR1B、KHDRBS2、SIX4基因的表达与患者的整体生存期有密切关系,其中CLIC5、COBLL1、FGF1、NIPAL1、MARCH4、SEMA6D、 WNT9B等基因的高表达有利于患者的生存,可能是保护因子;而FCGR1A、FCGR1B、KHDRBS2、 SIX4基因表达越高,患者的预后越差,可能是危险因素(图8)。

  • 图8 关键mRNA的预后分析

  • Fig.8 Prognostic analysis of key mRNAs

  • 2.4.4 蛋白互作网络的构建

  • 为了探寻网络内的mRNA之间是否具有相互作用的关系,通过在线软件(string PPI)对52个蛋白,按中等可信度(互作分数0.400)进行蛋白互作网络的构建,得PPI网络,进一步从该网络中筛选核心网络,通过邻接节点数目筛选出EYA4、NTRK2、 SIX4、DACH1关键基因(图9A、B)。

  • 图9 PPI网络和核心网络

  • Fig.9 PPI network and core network

  • 3 讨论

  • ccRCC是最常见肾实质恶性肿瘤,由于人类寿命延长及医学技术的发展,肾癌的发病率较以往增高[21]。患者早期常无明显不适或者症状多变,常以无症状肾癌发病,早期诊断困难,发现时往往处于晚期,已经失去手术机会,因为对放化疗不敏感,后期常因药物抵抗及缺乏预测指标,所以预后较差[22-23]。因此需要探索寻找高特异性和敏感性的预后标志物,早期对这类患者行个体化治疗,以提高生存率。

  • 本文通过生物信息学方法共筛选出3 613个差异表达的mRNA(2 603个表达上调的mRNA,1 010个表达下调的mRNA)和49个差异表达的miRNA(28个表达上调的miRNA,21个表达下调的miRNA),然后将差异表达的miRNA进行单、多因素Cox回归分析,筛选出3个与ccRCC预后更密切的miRNA: miR⁃21⁃5p、miR⁃885⁃5p、miR⁃1251⁃5p,将样品随机按照1∶1比例分为Train组和Test组,根据Train组样品的多因素回归分析结果构建预后模型,分别对高低表达组和高低风险组进行生存分析,结果显示miR⁃21⁃5p低表达有利于患者生存、miR⁃1251⁃5p和miR ⁃885⁃5p高表达有利于患者生存;在Train组、 Test组和所有样品中低风险组患者的生存时间明显优于高风险组,两组间差异有统计学意义(P< 0.001)。在验证模型的准确性方面,绘制多年份ROC曲线,虽然在Test组中3年ROC曲线的AUC值稍低,但在1、5年以及其他年份的AUC值均具有可信度,并且在Train组和所有样品的预测能力方面都具有一定的准确性,同样绘制生存状态图显示从左到右随着患者风险的增大,患者的生存时间逐步下降,死亡人数逐渐增多,患者的生存率逐步下降,上述结果表明该模型预测患者的生存具有一定的准确性。通过单、多因素独立预后分析显示,miRNA预后模型所计算的风险评分可以独立于其他临床因素,作为ccRCC患者的独立预后因子,通过对miRNA相关文献的查阅发现,miR⁃21⁃5p通过抑制神经黏附分子L1,而促进结肠癌细胞的增殖和侵袭[24]。在前列腺癌中,柯井卫等[25] 研究发现,miR⁃21⁃5p下调靶基因同源血小板富亮氨酸复重蛋白磷酸酶2可以增强癌细胞的侵蚀能力;miR⁃1251⁃5p在体外和体外均可以促进肝细胞癌的生长和转移[26];在ccRCC的靶向治疗研究中发现,舒尼替尼治疗后miR⁃885⁃5p明显降低,并且与ccRCC的进展有着密切的关系, miR⁃885⁃5p可能会成为潜在的生物学标志物[27]。进一步构建miRNA的调控网络,并对其靶基因进行GO功能注释和KEGG富集分析,结果表明,这些靶基因在生物过程主要富集在肾单位上皮和肾单位的发育、肾小管和肾脏上皮的发育等;在细胞组分主要富集在突触后密度、不对称突触、突触后专业化等,在分子功能中主要富集金属离子跨膜转运蛋白活性、受体配体活性、肝素结合等;而在富集分析中发现主要参与其他类型的O⁃聚糖生物合成、N⁃聚糖生物合成等通路。在ccRCC中,多数肿瘤因子或者致癌物质都作用于肾小管上皮细胞,如慢性砷中毒通过抑制miR⁃182⁃5p诱导低氧诱导因子2α过表达,促进肾小管上皮细胞的癌变[28]。KEGG结果表明网络内的基因主要参与N⁃聚糖生物合成、其他类型的O⁃聚糖生物合成、Ras信号通路及钙信号通路等,N⁃聚糖生物合成是于20世纪60~70年代被阐明的,目前已有大量的研究发现N⁃聚糖生物合成与肿瘤的诊断有着密切的关联[29],如肺癌[30]、结直肠癌[31]、前列腺癌[32]。也有研究表明其可以预测肾透明细胞癌预后[33]。Ras基因作为原癌基因,常以点突变的形式变成致癌基因,是最常见的突变基因家族。Ras基因可以与GTP结合,通过MAPK、STAT、 PI3K等效应分子的相互作用,调节细胞生长、分化及凋亡。Ras⁃MAPK信号通路与肿瘤的发生和癌细胞的增殖关系密切,如miR⁃184可能通过调整Ras/MAPK/ERK途径抑制RCC的细胞增殖和迁徙的能力[34];Ras蛋白激活剂像2可将GTP转化为GDP,从而使Ras失活降低RCC细胞的活力、迁徙和侵袭[35]。钙离子作为细胞内信号转导的第二信使,具有转导速度快和钙结合蛋白多样性的特点,是调节各种细胞生理活动和功能的关键信号之一[36]。在乳腺癌中,乳腺包块钙化通常是具有恶性的征兆,这一点在临床上已经得到证实。并且有关文献已报道,钙通道亚基CACNNG4的扩增,可以促进乳腺癌细胞的存活和转移[37],破坏TRP通道相互作用,可以作为治疗乳腺癌的潜在治疗靶点[38],同样钙信号转导在卵巢癌[39]、神经胶质瘤[40] 以及非小细胞肺癌[41] 均有报道。对调控网络内的mRNA进一步进行生存分析发现,CLIC5、COBLL1、FGF1、NIPAL1、 MARCH4、SEMA6D、WNT9B基因的高表达有利于患者生存,可能是保护因子;而FCGR1A、FCGR1B、 KHDRBS2、SIX4基因表达越高,患者的预后就越差,可能是危险因素,通过蛋白互作网络的邻接节点数目筛选出EYA4、NTRK2、SIX4、DACH1关键基因。通过与mRNA进行生存分析结果对比,只有SIX4和ccRCC的预后相关。SIX4是SIX家族的6个成员之一[42],现有研究表明SIX4是一种转录调控因子,通过结合靶基因上的DNA序列,既可以作为转录抑制因子,也可以作为转录激活因子,参与细胞的分化、迁移和细胞的存活过程[43]。通过对文献查询发现,在膀胱癌中SIX4的表达与miR⁃203a呈负相关,miR⁃203a通过靶向SIX4在膀胱癌中发挥着抑癌作用[44],SIX4通过上调YAP1和c⁃MET促进肝细胞癌转移[45],而在肾脏中主要参与肾脏的发育及男性性腺分化[46-47],但是在肾脏肿瘤中少有报道,其在ccRCC中的作用有待研究。在此项研究中,首先基于3个miRNA构建的风险预后模型进行高低风险组生存差异分析,低风险组患者预后明显优于高风险组(P< 0.001),并且在Test组和所有样品中也得出类似结果。其次风险预后模型的风险评分是ccRCC患者生存期的独立预后因子,最后在评估模型预测能力的准确性方面也得到验证,这证明该模型相比单个miRNA可以作为ccRCC的独立且通用的预测因子,并且可能为ccRCC患者的靶向治疗提供潜在方向。当然本次的研究存在一些局限性,这项研究是基于TCGA数据库进行回顾性研究,分析结果可能存在偏差;本次研究缺乏预后相关miRNA的临床实验验证结果,下一步将收集临床样本对有关基因进行qPCR及功能的实验验证并对患者进行随访。

  • 综上所述,该模型预测ccRCC患者的预后有一定的准确性,通过对靶基因的预测及生存分析为患者的个体化治疗提供重要的参考依据,并为后续的临床工作、实验开展提供研究方向和理论基础。

  • 参考文献

    • [1] HUMPHREY P A,MOCH H,CUBILLA A L,et al.The 2016 WHO classification of tumours of the urinary sys⁃ tem and male genital organs⁃part B:prostate and bladder tumours[J].Eur Urol,2016,70(1):106-119

    • [2] CHEN F J,ZHANG Y Q,ŞENBABAOĞLU Y,et al.Mul⁃ tilevel genomics ⁃ based taxonomy of renal cell carcinoma [J].Cell Rep,2016,14(10):2476-2489

    • [3] CHEN W,ZHENG R,BAADE P D,et al.Cancer statis⁃ tics in China,2015[J].CA Cancer J Clin,2016,66(2):115-132

    • [4] DE SOUSA MARTA C,MONIKA G,DOBROCHNA D,et al.Deciphering miRNAs’ action through miRNA editing [J].Int J Mol Sci,2019,20(24):6249

    • [5] SALIMINEJAD K,KHORRAM KHORSHID H R,SOL ⁃ EYMANI FARD S,et al.An overview of microRNAs:biol⁃ ogy,functions,therapeutics,and analysis methods[J].J Cell Physiol,2019,234(5):5451-5465

    • [6] CHEN L,HEIKKINEN L,WANG C L,et al.Trends in the development of miRNA bioinformatics tools[J].Brief Bioinform,2019,20(5):1836-1852

    • [7] CAO J,LIU J,XU R,et al.microRNA⁃21 stimulates epi⁃ thelial ⁃ to ⁃ mesenchymal transition and tumorigenesis in clear cell renal cells[J].Mol Med Rep,2016,13(1):75-82

    • [8] 张飞,史成宇,杨世坤,等.miR⁃1301对肝细胞肝癌增殖的影响及机制研究[J].南京医科大学学报(自然科学版),2020,40(3):355-359

    • [9] CAO Y J,XU R F,XU X L,et al.Downregulation of ln⁃ cRNA CASC2 by microRNA ⁃ 21 increases the prolifera⁃ tion and migration of renal cell carcinoma cells[J].Mol Med Rep,2016,14(1):1019-1025

    • [10] 邓威,孟颖,王晨星,等.miR⁃182在口腔鳞癌血清外泌体中的表达及其临床意义[J].南京医科大学学报(自然科学版),2021,41(4):509-515

    • [11] TSAI M M,WANG C S,TSAI C Y,et al.Potential diag⁃ nostic,prognostic and therapeutic targets of microRNAs in human gastric cancer[J].Int J Mol Sci,2016,17(6):945

    • [12] LARRABEITI ⁃ ETXEBARRIA A,LOPEZ ⁃ SANTILLAN M,SANTOS ⁃ ZORROZUA B,et al.Systematic review of the potential of microRNAs in diffuse large B cell lympho⁃ ma[J].Cancers,2019,11(2):144-144

    • [13] LU S,ZHOU C,ZOU B W,et al.miR⁃4295 facilitates cell proliferation and metastasis in head and neck squamous cell carcinoma by targeting NPTX1[J].Genes Immun,2020,21(1):4-12

    • [14] LIAO H,LIANG Y,KANG L,et al.miR⁃454⁃3p inhibits non⁃small cell lung cancer cell proliferation and metasta⁃ sis by targeting TGFB2[J].Oncol Rep,2021,45(5):67

    • [15] GUO J Y,LUO C,YANG Y Q,et al.miR⁃491⁃5p,as a tu⁃ mor suppressor,prevents migration and invasion of breast cancer by targeting ZNF⁃703 to regulate AKT/mTOR path⁃ way[J].Cancer Manag Res,2021,13:403-413

    • [16] DING L F,JIANG M X,WANG R Y,et al.The emerging role of small non⁃coding RNA in renal cell carcinoma[J].Transl Oncol,2021,14(1):100974

    • [17] QI Y J,WANG L,WANG K Z,et al.New mechanistic in⁃ sights of clear cell renal cell carcinoma from integrated miRNA and mRNA expression profiling studies[J].Biomed Pharmacother,2019,111:821-834

    • [18] QIN S J,SHI X J,WANG C B,et al.Transcription factor and miRNA interplays can manifest the survival of ccRCC patients[J].Cancers,2019,11(11):1668

    • [19] XIE M Z,LV Y F,LIU Z H,et al.Identification and vali⁃ dation of a four ⁃miRNA(miRNA ⁃21⁃5p,miRNA ⁃9⁃5p,miR⁃149⁃5p,and miRNA⁃30b⁃5p)prognosis signature in clear cell renal cell carcinoma[J].Cancer Manag Res,2018,10:5759-5766

    • [20] LISA K,EDUARD R,DIETHER L,et al.microRNAs pos⁃ sibly involved in the development of bone metastasis in clear⁃cell renal cell carcinoma[J].Cancers,2021,13(7):1554

    • [21] HES O,COMPÉRAT E M,RIOUX⁃LECLERCQ N.Clear cell papillary renal cell carcinoma,renal angiomyoadeno⁃ matous tumor,and renal cell carcinoma with leiomyoma⁃ tous stroma relationship of 3 types of renal tumors:a re⁃ view[J].Ann Diagn Pathol,2016,21:59-64

    • [22] MAKHOV P,JOSHI S,GHATALIA P,et al.Resistance to systemic therapies in clear cell renal cell carcinoma:mechanisms and management strategies[J].Mol Cancer Ther,2018,17(7):1355-1364

    • [23] LJUNGBERG B,ALBIGES L,ABU ⁃GHANEM Y,et al.European association of urology guidelines on renal cell carcinoma:the 2019 update[J].Eur Urol,2019,75(5):799-810

    • [24] 于伟华.miR⁃21⁃5p靶向CHL1促进结肠腺癌发生发展及作用机制的研究[D].济南:山东大学,2019

    • [25] 柯井卫,沈宏春,刘星,等.骨髓间充质干细胞源外泌体miR⁃21⁃5p通过下调PHLPP2促进前列腺癌PC⁃3细胞的增殖、迁移和侵袭[J].中国肿瘤生物治疗杂志,2020,27(5):534-540

    • [26] HAN S S,WANG L,SUN L K,et al.microRNA⁃1251⁃5p promotes tumor growth and metastasis of hepatocellular carcinoma by targeting AKAP12[J].Biomed Pharmacoth⁃ er,2020,122:109754

    • [27] YAO D Y,XIA S Y,JIN C J,et al.Feedback activation of GATA1/miR ⁃ 885 ⁃ 5p/PLIN3 pathway decreases sunitinib sensitivity in clear cell renal cell carcinoma[J].Cell Cy⁃ cle Georget Tex,2020,19(17):2195-2206

    • [28] 房昕,孙汝,胡玉鑫,等.miR⁃182⁃5p/HIF2α通路在无机砷恶性转化人肾小管上皮细胞中的作用[C]//2018环境与健康学术会议⁃精准环境健康:跨学科合作的挑战论文汇编.沈阳:中国毒理学会,2018

    • [29] 许轶涵,李晨,郭钊培,等.血清IgG N⁃聚糖在肿瘤辅助诊断中的研究现状[J].国际检验医学杂志,2021,42(7):877-880

    • [30] ZHANG D,LI X O,LIU X F,et al.Disease⁃specific IgG fc glycosylation ratios as personalized biomarkers to dif⁃ ferentiate non ⁃ small cell lung cancer from benign lung diseases[J].Proteom Clin Appl,2020,14(1):e1900016

    • [31] ZOU Y,HU J X,JIE J Z,et al.Comprehensive analysis of human IgG Fc N ⁃ glycopeptides and construction of a screening model for colorectal cancer[J].J Proteom,2020,213:103616

    • [32] MATSUMOTO T,HATAKEYAMA S,YONEYAMA T,et al.Serum N ⁃glycan profiling is a potential biomarker for castration ⁃ resistant prostate cancer[J].Sci Rep,2019,9(1):16761

    • [33] LI C L,GUO L J,CHEN F,et al.Golgi alpha ⁃mannosi⁃ dase II as a novel biomarker predicts prognosis in clear cell renal cell carcinoma[J].Oncol Res Treat,2020,43(6):264-275

    • [34] 鲁广建,狄文玉,张群妹,等.microRNA⁃184 调控 Ras/MAPK/ERK途径与老年肾细胞癌肿瘤细胞增殖、迁移及凋亡的关系[J].中国老年学杂志,2021,41(3):625-629

    • [35] WANG S,HAO X M,HE S,et al.Suppressive effects of RASAL2 on renal cell carcinoma via SOX2/ERK/p38 MAPK pathway[J].Exp Ther Med,2020,20(6):151

    • [36] WYPYCH D,POMORSKI P.Calcium signaling in glioma cells ⁃ the role of nucleotide receptors[J].Adv Exp Med Biol,2013,986:61-79

    • [37] KANWAR N,CARMINE⁃SIMMEN K,NAIR R,et al.Am⁃ plification of a calcium channel subunit CACNG4 increas⁃ es breast cancer metastasis[J].EBioMedicine,2020,52:102646

    • [38] SALDÍAS M P,MAUREIRA D,ORELLANA ⁃ SER⁃ RADELL O,et al.TRP channels interactome as a novel therapeutic target in breast cancer[J].Front Oncol,2021,11:621614

    • [39] LEE H,KIM J W,KIM D K,et al.Calcium channels as novel therapeutic targets for ovarian cancer stem cells[J].Int J Mol Sci,2020,21(7):2327

    • [40] PEI Z,LEE K C,KHAN A,et al.Pathway analysis of glu⁃ tamate⁃mediated,calcium⁃related signaling in glioma pro⁃ gression[J].Biochem Pharmacol,2020,176:113814

    • [41] REN T,TANG Y J,WANG M F,et al.Triptolide induces apoptosis through the calcium/calmodulin⁃dependent pro⁃ tein kinase kinaseβ/AMP⁃activated protein kinase signal⁃ ing pathway in non⁃small cell lung cancer cells[J].Oncol Rep,2020,44(5):2288-2296

    • [42] LIU Y,HAN N,ZHOU S,et al.The DACH/EYA/SIX gene network and its role in tumor initiation and progres⁃ sion[J].Int J Cancer,2016,138(5):1067-1075

    • [43] MARC S,IORI S,MORGANE G,et al.MyoD reprogram⁃ ming requires Six1 and Six4 homeoproteins:genomewide Cis ⁃ regulatory module analysis[J].Nucleic Acids Res,2016,44(18):8621-8640

    • [44] NA X Y,SHANG X S,ZHAO Y,et al.miR ⁃203a func⁃ tions as a tumor suppressor in bladder cancer by targeting SIX4[J].Neoplasma,2019,66(2):211-221

    • [45] HE Q,LIN Z Y,WANG Z H,et al.SIX4 promotes hepato⁃ cellular carcinoma metastasis through upregulating YAP1 and c⁃MET[J].Oncogene,2020,39(50):7279-7295

    • [46] FUJIMOTO Y,TANAKA S S,YAMAGUCHI Y L,et al.Homeoproteins Six1 and Six4 regulate male sex determi⁃ nation and mouse gonadal development[J].Dev Cell,2013,26(4):416-430

    • [47] WANG J Z,LIU M L,ZHAO L H,et al.Disabling of nephrogenesis in porcine embryos via CRISPR/Cas9⁃me⁃ diated SIX1 and SIX4 gene targeting[J].Xenotransplanta⁃ tion,2019,26(3):e12484

  • 参考文献

    • [1] HUMPHREY P A,MOCH H,CUBILLA A L,et al.The 2016 WHO classification of tumours of the urinary sys⁃ tem and male genital organs⁃part B:prostate and bladder tumours[J].Eur Urol,2016,70(1):106-119

    • [2] CHEN F J,ZHANG Y Q,ŞENBABAOĞLU Y,et al.Mul⁃ tilevel genomics ⁃ based taxonomy of renal cell carcinoma [J].Cell Rep,2016,14(10):2476-2489

    • [3] CHEN W,ZHENG R,BAADE P D,et al.Cancer statis⁃ tics in China,2015[J].CA Cancer J Clin,2016,66(2):115-132

    • [4] DE SOUSA MARTA C,MONIKA G,DOBROCHNA D,et al.Deciphering miRNAs’ action through miRNA editing [J].Int J Mol Sci,2019,20(24):6249

    • [5] SALIMINEJAD K,KHORRAM KHORSHID H R,SOL ⁃ EYMANI FARD S,et al.An overview of microRNAs:biol⁃ ogy,functions,therapeutics,and analysis methods[J].J Cell Physiol,2019,234(5):5451-5465

    • [6] CHEN L,HEIKKINEN L,WANG C L,et al.Trends in the development of miRNA bioinformatics tools[J].Brief Bioinform,2019,20(5):1836-1852

    • [7] CAO J,LIU J,XU R,et al.microRNA⁃21 stimulates epi⁃ thelial ⁃ to ⁃ mesenchymal transition and tumorigenesis in clear cell renal cells[J].Mol Med Rep,2016,13(1):75-82

    • [8] 张飞,史成宇,杨世坤,等.miR⁃1301对肝细胞肝癌增殖的影响及机制研究[J].南京医科大学学报(自然科学版),2020,40(3):355-359

    • [9] CAO Y J,XU R F,XU X L,et al.Downregulation of ln⁃ cRNA CASC2 by microRNA ⁃ 21 increases the prolifera⁃ tion and migration of renal cell carcinoma cells[J].Mol Med Rep,2016,14(1):1019-1025

    • [10] 邓威,孟颖,王晨星,等.miR⁃182在口腔鳞癌血清外泌体中的表达及其临床意义[J].南京医科大学学报(自然科学版),2021,41(4):509-515

    • [11] TSAI M M,WANG C S,TSAI C Y,et al.Potential diag⁃ nostic,prognostic and therapeutic targets of microRNAs in human gastric cancer[J].Int J Mol Sci,2016,17(6):945

    • [12] LARRABEITI ⁃ ETXEBARRIA A,LOPEZ ⁃ SANTILLAN M,SANTOS ⁃ ZORROZUA B,et al.Systematic review of the potential of microRNAs in diffuse large B cell lympho⁃ ma[J].Cancers,2019,11(2):144-144

    • [13] LU S,ZHOU C,ZOU B W,et al.miR⁃4295 facilitates cell proliferation and metastasis in head and neck squamous cell carcinoma by targeting NPTX1[J].Genes Immun,2020,21(1):4-12

    • [14] LIAO H,LIANG Y,KANG L,et al.miR⁃454⁃3p inhibits non⁃small cell lung cancer cell proliferation and metasta⁃ sis by targeting TGFB2[J].Oncol Rep,2021,45(5):67

    • [15] GUO J Y,LUO C,YANG Y Q,et al.miR⁃491⁃5p,as a tu⁃ mor suppressor,prevents migration and invasion of breast cancer by targeting ZNF⁃703 to regulate AKT/mTOR path⁃ way[J].Cancer Manag Res,2021,13:403-413

    • [16] DING L F,JIANG M X,WANG R Y,et al.The emerging role of small non⁃coding RNA in renal cell carcinoma[J].Transl Oncol,2021,14(1):100974

    • [17] QI Y J,WANG L,WANG K Z,et al.New mechanistic in⁃ sights of clear cell renal cell carcinoma from integrated miRNA and mRNA expression profiling studies[J].Biomed Pharmacother,2019,111:821-834

    • [18] QIN S J,SHI X J,WANG C B,et al.Transcription factor and miRNA interplays can manifest the survival of ccRCC patients[J].Cancers,2019,11(11):1668

    • [19] XIE M Z,LV Y F,LIU Z H,et al.Identification and vali⁃ dation of a four ⁃miRNA(miRNA ⁃21⁃5p,miRNA ⁃9⁃5p,miR⁃149⁃5p,and miRNA⁃30b⁃5p)prognosis signature in clear cell renal cell carcinoma[J].Cancer Manag Res,2018,10:5759-5766

    • [20] LISA K,EDUARD R,DIETHER L,et al.microRNAs pos⁃ sibly involved in the development of bone metastasis in clear⁃cell renal cell carcinoma[J].Cancers,2021,13(7):1554

    • [21] HES O,COMPÉRAT E M,RIOUX⁃LECLERCQ N.Clear cell papillary renal cell carcinoma,renal angiomyoadeno⁃ matous tumor,and renal cell carcinoma with leiomyoma⁃ tous stroma relationship of 3 types of renal tumors:a re⁃ view[J].Ann Diagn Pathol,2016,21:59-64

    • [22] MAKHOV P,JOSHI S,GHATALIA P,et al.Resistance to systemic therapies in clear cell renal cell carcinoma:mechanisms and management strategies[J].Mol Cancer Ther,2018,17(7):1355-1364

    • [23] LJUNGBERG B,ALBIGES L,ABU ⁃GHANEM Y,et al.European association of urology guidelines on renal cell carcinoma:the 2019 update[J].Eur Urol,2019,75(5):799-810

    • [24] 于伟华.miR⁃21⁃5p靶向CHL1促进结肠腺癌发生发展及作用机制的研究[D].济南:山东大学,2019

    • [25] 柯井卫,沈宏春,刘星,等.骨髓间充质干细胞源外泌体miR⁃21⁃5p通过下调PHLPP2促进前列腺癌PC⁃3细胞的增殖、迁移和侵袭[J].中国肿瘤生物治疗杂志,2020,27(5):534-540

    • [26] HAN S S,WANG L,SUN L K,et al.microRNA⁃1251⁃5p promotes tumor growth and metastasis of hepatocellular carcinoma by targeting AKAP12[J].Biomed Pharmacoth⁃ er,2020,122:109754

    • [27] YAO D Y,XIA S Y,JIN C J,et al.Feedback activation of GATA1/miR ⁃ 885 ⁃ 5p/PLIN3 pathway decreases sunitinib sensitivity in clear cell renal cell carcinoma[J].Cell Cy⁃ cle Georget Tex,2020,19(17):2195-2206

    • [28] 房昕,孙汝,胡玉鑫,等.miR⁃182⁃5p/HIF2α通路在无机砷恶性转化人肾小管上皮细胞中的作用[C]//2018环境与健康学术会议⁃精准环境健康:跨学科合作的挑战论文汇编.沈阳:中国毒理学会,2018

    • [29] 许轶涵,李晨,郭钊培,等.血清IgG N⁃聚糖在肿瘤辅助诊断中的研究现状[J].国际检验医学杂志,2021,42(7):877-880

    • [30] ZHANG D,LI X O,LIU X F,et al.Disease⁃specific IgG fc glycosylation ratios as personalized biomarkers to dif⁃ ferentiate non ⁃ small cell lung cancer from benign lung diseases[J].Proteom Clin Appl,2020,14(1):e1900016

    • [31] ZOU Y,HU J X,JIE J Z,et al.Comprehensive analysis of human IgG Fc N ⁃ glycopeptides and construction of a screening model for colorectal cancer[J].J Proteom,2020,213:103616

    • [32] MATSUMOTO T,HATAKEYAMA S,YONEYAMA T,et al.Serum N ⁃glycan profiling is a potential biomarker for castration ⁃ resistant prostate cancer[J].Sci Rep,2019,9(1):16761

    • [33] LI C L,GUO L J,CHEN F,et al.Golgi alpha ⁃mannosi⁃ dase II as a novel biomarker predicts prognosis in clear cell renal cell carcinoma[J].Oncol Res Treat,2020,43(6):264-275

    • [34] 鲁广建,狄文玉,张群妹,等.microRNA⁃184 调控 Ras/MAPK/ERK途径与老年肾细胞癌肿瘤细胞增殖、迁移及凋亡的关系[J].中国老年学杂志,2021,41(3):625-629

    • [35] WANG S,HAO X M,HE S,et al.Suppressive effects of RASAL2 on renal cell carcinoma via SOX2/ERK/p38 MAPK pathway[J].Exp Ther Med,2020,20(6):151

    • [36] WYPYCH D,POMORSKI P.Calcium signaling in glioma cells ⁃ the role of nucleotide receptors[J].Adv Exp Med Biol,2013,986:61-79

    • [37] KANWAR N,CARMINE⁃SIMMEN K,NAIR R,et al.Am⁃ plification of a calcium channel subunit CACNG4 increas⁃ es breast cancer metastasis[J].EBioMedicine,2020,52:102646

    • [38] SALDÍAS M P,MAUREIRA D,ORELLANA ⁃ SER⁃ RADELL O,et al.TRP channels interactome as a novel therapeutic target in breast cancer[J].Front Oncol,2021,11:621614

    • [39] LEE H,KIM J W,KIM D K,et al.Calcium channels as novel therapeutic targets for ovarian cancer stem cells[J].Int J Mol Sci,2020,21(7):2327

    • [40] PEI Z,LEE K C,KHAN A,et al.Pathway analysis of glu⁃ tamate⁃mediated,calcium⁃related signaling in glioma pro⁃ gression[J].Biochem Pharmacol,2020,176:113814

    • [41] REN T,TANG Y J,WANG M F,et al.Triptolide induces apoptosis through the calcium/calmodulin⁃dependent pro⁃ tein kinase kinaseβ/AMP⁃activated protein kinase signal⁃ ing pathway in non⁃small cell lung cancer cells[J].Oncol Rep,2020,44(5):2288-2296

    • [42] LIU Y,HAN N,ZHOU S,et al.The DACH/EYA/SIX gene network and its role in tumor initiation and progres⁃ sion[J].Int J Cancer,2016,138(5):1067-1075

    • [43] MARC S,IORI S,MORGANE G,et al.MyoD reprogram⁃ ming requires Six1 and Six4 homeoproteins:genomewide Cis ⁃ regulatory module analysis[J].Nucleic Acids Res,2016,44(18):8621-8640

    • [44] NA X Y,SHANG X S,ZHAO Y,et al.miR ⁃203a func⁃ tions as a tumor suppressor in bladder cancer by targeting SIX4[J].Neoplasma,2019,66(2):211-221

    • [45] HE Q,LIN Z Y,WANG Z H,et al.SIX4 promotes hepato⁃ cellular carcinoma metastasis through upregulating YAP1 and c⁃MET[J].Oncogene,2020,39(50):7279-7295

    • [46] FUJIMOTO Y,TANAKA S S,YAMAGUCHI Y L,et al.Homeoproteins Six1 and Six4 regulate male sex determi⁃ nation and mouse gonadal development[J].Dev Cell,2013,26(4):416-430

    • [47] WANG J Z,LIU M L,ZHAO L H,et al.Disabling of nephrogenesis in porcine embryos via CRISPR/Cas9⁃me⁃ diated SIX1 and SIX4 gene targeting[J].Xenotransplanta⁃ tion,2019,26(3):e12484