en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

董艳彬,E-mail:dybbin@163.com

中图分类号:R563.9

文献标识码:A

文章编号:1007-4368(2022)11-1523-08

DOI:10.7655/NYDXBNS20221104

参考文献 1
PEPPARD P E,YOUNG T,BARNET J H,et al.Increased prevalence of sleep ⁃ disordered breathing in adults[J].Am J Epidemiol,2013,177(9):1006-1014
参考文献 2
GOTTLIEB D J.Sleep apnea and cardiovascular disease [J].Curr Diabetes Rep,2021,21(12):64
参考文献 3
LATTIMORE J D L,CELERMAJER D S,WILCOX I.Obstructive sleep apnea and cardiovascular disease[J].J Am Coll Cardiol,2003,41(9):1429-1437
参考文献 4
MAZZOTTI D R,KEENAN B T,LIM D C,et al.Symptom subtypes of obstructive sleep apnea predict incidence of cardiovascular outcomes[J].Am J Respir Crit Care Med,2019,200(4):493-506
参考文献 5
URBINA⁃VARELA R,CASTILLO N,VIDELA L A,et al.Impact of mitophagy and mitochondrial unfolded protein response as new adaptive mechanisms underlying old pa⁃ thologies:sarcopenia and non⁃alcoholic fatty liver disease [J].Int J Mol Sci,2020,21(20):7704
参考文献 6
REN Y H,LI Y,YAN J,et al.Adiponectin modulates oxi⁃ dative stress⁃induced mitophagy and protects C2C12 myo⁃ blasts against apoptosis[J].Sci Rep,2017,7(1):3209
参考文献 7
OTVOS L.Potential adiponectin receptor response modifier therapeutics[J].Front Endocrinol,2019,10:539
参考文献 8
AL MUTAIRI S,MOJIMINIYI O A,AL ALAWI A,et al.Study of leptin and adiponectin as disease markers in sub⁃ jects with obstructive sleep apnea[J].Dis Markers,2014,2014:706314
参考文献 9
DING W X,ZHANG X F,HUANG H P,et al.Adiponec⁃ tin protects rat myocardium against chronic intermittent hypoxia ⁃induced injury via inhibition of endoplasmic re⁃ ticulum stress[J].PLoS One,2014,9(4):e94545
参考文献 10
ZHANG Q,ZHANG X L,DING N,et al.Globular adipo⁃ nectin alleviates chronic intermittent hypoxia ⁃ induced H9C2 cardiomyocytes apoptosis via ER ⁃ phagy induction [J].Cell Cycle Georget Tex,2020,19(22):3140-3153
参考文献 11
TIETJENS J R,CLAMAN D,KEZIRIAN E J,et al.Obstructive sleep apnea in cardiovascular disease:a re⁃ view of the literature and proposed multidisciplinary clini⁃ cal management strategy[J].J Am Heart Assoc,2019,8(1):e010440
参考文献 12
ZHANG X,RUI L,LV B,et al.Adiponectin relieves hu⁃ man adult cardiac myocytes injury induced by intermit⁃ tent hypoxia[J].Med Sci Monit,2019,25:786-793
参考文献 13
IORIO R,CELENZA G,PETRICCA S.Mitophagy:molec⁃ ular mechanisms,new concepts on parkin activation and the emerging role of AMPK/ULK1 axis[J].Cells,2022,11(1):30
参考文献 14
刁佳宇,赵宏谋,宁玉洁,等.迷迭香酸激活Parkin介导的线粒体自噬并抑制高糖诱导的心肌细胞肥大[J].南方医科大学学报,2020,40(11):1628-1633
参考文献 15
GAO B,YU W,LV P,et al.Parkin overexpression alle⁃ viates cardiac aging through facilitating K63⁃ polyubiqui⁃ tination of TBK1 to facilitate mitophagy[J].Biochim Bio⁃ phys Acta Mol Basis Dis,2021,1867(1):165997
参考文献 16
ABUDUREYIMU M,YU W,CAO R Y,et al.Berberine promotes cardiac function by upregulating PINK1/Parkin⁃ mediated mitophagy in heart failure[J].Front Physiol,2020,11:565751
参考文献 17
LUO C X,ZHANG Y H,GUO H,et al.Ferulic acid atten⁃ uates hypoxia/reoxygenation injury by suppressing mi⁃ tophagy through the PINK1/parkin signaling pathway in H9c2 cells[J].Front Pharmacol,2020,11:103
参考文献 18
KIM E H,PARK P H.Globular adiponectin protects rat hepatocytes against acetaminophen ⁃ induced cell death via modulation of the inflammasome activation and ER stress:critical role of autophagy induction[J].Biochem Pharmacol,2018,154:278-292
参考文献 19
ZHU Q Q,LI H B,XIE X,et al.Adiponectin facilitates postconditioning cardioprotection through both AMPK⁃de⁃ pendent nuclear and AMPK ⁃ independent mitochondrial STAT3 activation[J].Oxidative Med Cell Longev,2020,2020:4253457
参考文献 20
WANG W J,DING W X,HUANG H P,et al.The role of mitophagy in the mechanism of genioglossal dysfunction caused by chronic intermittent hypoxia and the protective effect of adiponectin[J].Sleep Breath,2021,25(2):931-940
参考文献 21
BANG S,WON K H,MOON H R,et al.Novel regulation of melanogenesis by adiponectin via the AMPK/CRTC pathway[J].Pigment Cell Melanoma Res,2017,30(6):553-557
参考文献 22
KIM Y,CHO J Y,OH S W,et al.Globular adiponectin acts as a melanogenic signal in human epidermal melano⁃ cytes[J].Br J Dermatol,2018,179(3):689-701
参考文献 23
BURKUS J,NAVARRETE SANTOS A,SCHINDLER M,et al.Adiponectin stimulates glucose uptake in mouse blastocysts and embryonic carcinoma cells[J].Reprod Camb Engl,2020,159(3):227-239
目录contents

    摘要

    目的:探讨Parkin介导的线粒体自噬在球形脂联素(globular adiponectin,gAPN)减轻间歇低氧(intermittent hypoxia, IH)所致H9C2心肌细胞损伤中的作用及相关机制。方法:建立H9C2细胞IH模型来模拟阻塞性睡眠呼吸暂停低通气综合征。采用流式细胞术检测细胞凋亡。采用JC-1试剂盒检测线粒体膜电位(mitochondrial membrane potential,MMP)。采用免疫印迹法检测Parkin、Bax、Bcl-2蛋白表达。采用Parkin siRNA抑制Parkin基因表达。采用LC3与线粒体红色荧光探针进行荧光共定位检测线粒体自噬。结果:IH暴露后,H9C2细胞凋亡率、Bax及Parkin蛋白表达水平、线粒体自噬明显升高,MMP下降,Bcl-2 蛋白表达水平下降;给予gAPN保护后,IH+gAPN组细胞凋亡率、Bax蛋白表达水平较IH组下降,MMP较IH组升高,Bcl-2及 Parkin蛋白表达水平、线粒体自噬也较IH组升高。抑制Parkin基因表达后,线粒体自噬明显下降,线粒体损伤、心肌细胞凋亡率明显增加。结论:gAPN通过上调Parkin介导的线粒体自噬减轻IH所致H9C2心肌细胞损伤。

    Abstract

    Objective:This study aims to evaluate the effect of Parkin mediated mitophagy on globular adiponectin(gAPN) ameliorated H9C2 cardiomyocytes injury induced by intermittent hypoxia(IH)and the potential mechanisms. Methods:The cell IH model was established. H9C2 cell apoptosis was detected by flow cytometry. The mitophagy was detected by fluorescence colocalization of LC3 and mitochondrial red marker. The protein expression levels of Bax,Bcl - 2 and Parkin were detected by Western blot. The mitochondrial membrane potential(MMP) was detected by JC - 1 kit. Results:After IH exposure,the apoptosis of H9C2 cardiomyocytes,protein expression levels of Bax and Parkin,mitophagy were increased,MMP and Bcl - 2 protein expression were decreased. After gAPN treatment,the apoptosis of H9C2 cardiomyocytes,Bax protein expression level were decreased,the MMP, protein expression levels of Bcl - 2 and Parkin,and mitophagy were increased. Inhibiting Parkin gene expression decreased the mitophagy,and increased the mitochondrial injury and H9C2 cell apoptosis. Conclusion:gAPN ameliorated the IH induced H9C2 cardiomyocytes injury through upregulating Parkin mediated mitophagy.

  • 阻塞性睡眠呼吸暂停低通气综合征(obstruc⁃ tive sleep apnea hypopnea syndrome,OSAHS)是由于睡眠期间反复出现上气道的完全或部分坍陷,引起间歇低氧(intermittent hypoxia,IH)、交感神经兴奋、睡眠片段化、胸腔负压增加等病理生理特征的睡眠呼吸疾患。OSAHS的发病率近年来逐渐升高,据统计,20世纪末期OSAHS发病率在男性中高达34%,女性中高达 17%[1]。OSAHS 与许多心血管疾病相关,如高血压、心律失常、冠心病、心衰等[2]。OSAHS 不仅增加心血管疾病的发生率,还增加其死亡率[3]。 Mazzotti 等[4] 报道约 26.3%的 OSAHS 患者患有心血管疾病,约17.6%的OSAHS患者会发生严重心血管事件。IH是OSAHS致病的主要病理特征。但目前 OSAHS致心血管疾病的具体机制仍未研究清楚。

  • 线粒体自噬是选择性自噬的一种,对维持细胞稳态具有重要作用。线粒体自噬是一把双刃剑,一方面可通过降解损伤的线粒体维持线粒体稳定,促进细胞存活;另一方面过度的线粒体自噬也可导致细胞死亡[5-6]。但目前为止,线粒体自噬在IH所致心肌损伤中起到保护或是损伤作用并不清楚。

  • 脂联素是由脂肪组织分泌的细胞因子,具有抗炎、减轻胰岛素抵抗、抗动脉粥样硬化等机体保护作用。脂联素在血浆中含量丰富,其活性形式主要有 2 种:全长脂联素和球形脂联素(globular adipo⁃ nectin,gAPN)[7]。研究显示OSAHS患者血浆脂联素水平较健康对照人群下降,且下降程度与OSAHS严重程度呈正比[8]。前期动物研究发现补充gAPN可减轻 IH 所致心肌损伤[9]。因此推测脂联素水平的下降参与了OSAHS所致心血管系统损伤,然而脂联素心肌保护机制并未完全阐明。

  • 本研究通过建立 OSAHS 细胞模型,旨在探索 gAPN减轻IH所致心肌损伤的机制及线粒体自噬在其中的作用,为将来开发治疗OSAHS新药奠定理论基础。

  • 1 材料和方法

  • 1.1 材料

  • gAPN(Biovision 公司,美国);帕金蛋白抗体 (Parkin)、B淋巴细胞瘤/白血病⁃2(B⁃cell lymphoma/ leukemia⁃2,Bcl⁃2)蛋白抗体(Abcam公司,美国);Bcl⁃2 相关X蛋白质(BCL2⁃associated X protein,Bax)、β肌动蛋白(β⁃actin)抗体(Cell Signaling Technology 公司,美国);细胞培养板(Zellkontakt 公司,德国);小干扰RNA(siRNA)(上海吉玛制药技术有限公司); 绿色荧光蛋白⁃微管相关蛋白轻链 3(green fluores⁃ cent protein⁃microtubule⁃associated protein light chain 3,GFP⁃LC3)腺病毒(上海汉恒生物科技有限公司); 线粒体红色荧光探针、Lipofectamin2000(Thermofisher 公司,美国);线粒体膜电位检测(JC⁃1)试剂盒(上海碧云天生物技术有限公司);蛋白提取试剂盒(江苏凯基生物技术有限公司)。

  • 1.2 方法

  • 1.2.1 实验细胞培养及分组

  • 大鼠心肌细胞H9C2(中国医学科学院细胞库) 采用含 10%胎牛血清的高糖达尔伯克改良伊格尔培养基,培养于37℃、5%CO2恒温箱中。实验分组: ①对照组、gAPN组、IH组、IH+gAPN组;②对照siR⁃ NA 组、Parkin siRNA 组、IH +对照 siRNA 组、IH + gAPN + 对照 siRNA 组、IH + Parkin siRNA 组、IH + gAPN+Parkin siRNA组。

  • 1.2.2 细胞IH模型建立

  • 参照已发表文献建立细胞IH模型[10]。IH模型采用三气培养箱,通过调节N2、O2的浓度实现。将细胞接种于含透气膜的 6 孔板上。使用含 1 μg/mL gAPN的培养基培养H9C2细胞,将细胞置于37℃、 5%CO2恒温箱中孵育24 h。接着将细胞置于三气培养箱进行IH暴露,IH循环:95%N2/5%CO2混合气体培养 10 min,21% O2/5% CO2/74% N2混合气体培养 10 min,共循环 48 h。对照组细胞置于 21% O2/5% CO2/74% N2混合气体中培养48 h。收集细胞进行后续实验。

  • 1.2.3 细胞凋亡检测

  • 使用流式细胞仪检测H9C2心肌细胞凋亡。培养细胞,分别进行实验干预后,消化、离心收集 H9C2心肌细胞。预冷PBS洗涤2遍,使用500 μL缓冲液重悬细胞。接着加入 5 μL 膜黏连蛋白⁃5(An⁃ nexin V)和 5 μL 碘化丙啶(propidiumiodide,PI), 37℃避光孵育 15 min。使用流式细胞仪检测细胞凋亡。

  • 1.2.4 线粒体自噬检测

  • 采用线粒体红色荧光探针与 GFP⁃LC3 腺病毒荧光共定位的方法进行线粒体自噬的检测。采用 GFP⁃LC3 腺病毒转染 H9C2 细胞。转染后,进行实验干预。接着,采用线粒体红色荧光探针避光孵育 30 min。使用激光共聚焦显微镜检测线粒体自噬。红色荧光、绿色荧光及黄色荧光分别代表线粒体、 LC3、线粒体自噬小体。

  • 1.2.5 线粒体膜电位(mitochondrial membrane potential,MMP)检测

  • 使用JC⁃1试剂盒进行MMP检测。培养细胞,进行实验干预后,消化、离心收集H9C2细胞。0.5 mL 培养液重悬细胞,加入0.5 mL JC⁃1染色工作液37℃ 孵育20 min,600 g离心4 min。采用JC⁃1缓冲液洗涤 2次后,重悬细胞,荧光分光光度计检测MMP。

  • 1.2.6 蛋白表达检测

  • 按照蛋白提取试剂盒说明书提取 H9C2 心肌细胞蛋白,使用蛋白定量试剂盒检测蛋白浓度。取 30 μg蛋白进行电泳,后将蛋白电转移至聚偏氟乙烯膜上。采用封闭液室温封闭蛋白膜1 h后置于一抗中4℃孵育过夜,置于二抗中37℃孵育1 h。使用化学发光液检测Bax、Bcl⁃2、Parkin、β⁃actin蛋白表达水平。

  • 1.2.7 Parkin siRNA转染

  • Parkin siRNA用于抑制Parkin基因表达。按照 Lipofectamin2000 说明书,使用 Parkin siRNA、对照 siRNA 转染 H9C2 心肌细胞。转染后,进行后续实验。Parkin siRNA 序列为 5′ ⁃ CCAACUCCCUGAU⁃ UAAAGATT ⁃ 3′ 和 5′ ⁃ UCUUUAAUCAGGGAGUUG⁃GTT ⁃3′;对照 siRNA 序列为 5′ ⁃UUCUCCGAACGU⁃ GUCACGUTT ⁃ 3′和 5′ ⁃ACGUGACACGUUCGGAGA⁃ ATT⁃3′。

  • 1.3 统计学方法

  • 采用 Graphpad 7.0 统计软件进行分析,符合正态分布的计量资料采用均数±标准差(x-±s)表示。符合正态分布、方差齐性,多组间比较采用单因素方差分析,事后检验采用图基检验。P <0.05 为差异有统计学意义。

  • 2 结果

  • 2.1 gAPN减轻IH所致H9C2细胞凋亡

  • 与对照组(5.07 ± 0.25)% 和 gAPN 组(4.60 ± 0.76)% 相比,IH 组 H9C2 细胞凋亡率[(27.90 ± 1.90)%]明显升高;与 IH 组相比,IH+gAPN 组细胞凋亡率[(17.77±1.85)%]下降(图1);差异有统计学意义(P <0.05,n =3)。对照组和 gAPN 组上述指标差异无统计学意义(P >0.05,n =3)。

  • 图1 各组H9C2细胞凋亡

  • Figure1 H9C2 cell apoptosis in each group

  • 2.2 gAPN减轻IH所致H9C2细胞线粒体损伤

  • 与对照组和 gAPN 组相比,IH 组 MMP 及 Bcl⁃2 蛋白表达水平均下降;与 IH 组相比,IH+gAPN 组 MMP及Bcl⁃2蛋白表达水平升高(图2);差异均具有统计学意义(P <0.05,n =3)。与对照组和 gAPN 组相比,IH 组 Bax 蛋白表达水平升高;与 IH 组相比, IH+gAPN组Bax蛋白表达水平下降(图2),差异有统计学意义(P <0.05,n =3)。对照组和 gAPN 组上述指标差异无统计学意义(P >0.05,n =3)。

  • 2.3 gAPN上调Parkin介导的线粒体自噬

  • 与对照组和gAPN 组相比,IH组线粒体自噬小体、Parkin 蛋白表达水平升高(图3);与IH组相比, IH+gAPN组线粒体自噬小体、Parkin蛋白表达水平明显升高;差异均具有统计学意义(P <0.05,n =3)。对照组和gAPN组上述指标差异无统计学意义(P >0.05,n =3)。

  • 2.4 Parkin siRNA 转染抑制 Parkin 表达后,线粒体自噬被下调

  • 与对照siRNA组相比,Parkin siRNA组Parkin蛋白表达水平明显下降(图4)。与对照 siRNA 组及 Parkin siRNA组相比,IH+对照siRNA组线粒体自噬小体、Parkin蛋白表达水平升高;与IH+对照siRNA 组相比,IH+gAPN+对照siRNA组线粒体自噬小体、 Parkin 蛋白表达水平升高;与 IH+对照 siRNA 组相比,IH+Parkin siRNA 组线粒体自噬小体、Parkin 蛋白表达水平明显下降;与 IH+gAPN+对照 siRNA 组相比,IH+gAPN+Parkin siRNA 组线粒体自噬小体、 Parkin 蛋白表达水平明显下降;差异均具有统计学意义(P <0.05,n =3)。对照 siRNA 组和 Parkin siRNA 组线粒体自噬小体差异无统计学意义(P >0.05,n =3)。

  • 图2 各组H9C2细胞线粒体损伤

  • Figure2 Mitochondrial injury of H9C2 cells in each group

  • 2.5 Parkin siRNA 转染抑制 Parkin 表达增加 H9C2 细胞凋亡

  • 如图5 所示,与对照 siRNA 组(5.23±0.61)%及 Parkin siRNA 组(5.03±0.15)%相比,IH+对照siRNA 组细胞凋亡率[(27.47±0.91)%]升高;与 IH+对照 siRNA组相比,IH+gAPN+对照siRNA组细胞凋亡率 [(17.00±1.67)%]下降;与IH+对照siRNA组(27.47± 0.91)% 相比,IH + Parkin siRNA 组细胞凋亡率 [(39.83±2.15)%]升高;与IH+gAPN+对照siRNA组相比,IH + gAPN + Parkin siRNA 组细胞凋亡率 [(28.63±1.70)%]升高;差异均具有统计学意义 (P <0.05,n =3)。对照 siRNA 组和 Parkin siRNA 组上述指标差异无统计学意义(P >0.05,n =3)。

  • 2.6 Parkin siRNA转染抑制Parkin表达,增加H9C2 细胞线粒体损伤

  • 如图6所示,与对照siRNA组及Parkin siRNA组相比,IH+对照siRNA组MMP及Bcl⁃2蛋白表达水平下降,Bax蛋白表达水平升高;与IH+对照siRNA组相比,IH+gAPN+对照siRNA组MMP及Bcl⁃2蛋白表达水平升高,Bax 蛋白表达水平下降;与 IH+对照 siRNA 组相比,IH+Parkin siRNA 组MMP 及Bcl⁃2蛋白表达水平下降,Bax 蛋白表达水平升高;与 IH+ gAPN+对照 siRNA 组相比,IH+gAPN+Parkin siRNA 组MMP及Bcl⁃2蛋白表达水平下降,Bax蛋白表达水平升高;差异均具有统计学意义(P <0.05,n =3)。对照siRNA组和Parkin siRNA组上述指标差异无统计学意义(P >0.05,n =3)。

  • 图3 各组H9C2细胞线粒体自噬及Parkin蛋白表达

  • Figure3 Mitophagy and Parkin protein expression of H9C2 cells in each group

  • 图4 抑制Parkin表达后各组H9C2细胞线粒体自噬及Parkin蛋白表达

  • Figure4 Mitophagy and Parkin protein expression of H9C2 cells in each group after inhibiting Parkin gene expression

  • 图5 抑制Parkin表达后各组H9C2细胞凋亡率

  • Figure5 H9C2 cell apoptosis in each group after inhibiting Parkin gene expression

  • 3 讨论

  • 本研究发现IH可导致H9C2心肌细胞线粒体损伤及细胞凋亡,而gAPN可减轻IH所致线粒体损伤及细胞凋亡。同时,Parkin介导的线粒体自噬可被 IH激活,而抑制Parkin介导的线粒体自噬显著增加线粒体损伤及细胞凋亡。gAPN可通过进一步上调 Parkin 介导的线粒体自噬,减轻 IH 所致 H9C2 心肌损伤。

  • 近年来心血管疾病的死亡率占总死亡率的31 %,较前明显升高,而 OSAHS 是心血管疾病常见的被忽视的危险因素。持续未治疗的OSAHS会导致心肌损伤、心功能障碍,甚至心衰[11]。研究发现 IH可导致心肌损伤[12]。本研究也证实IH导致H9C2 心肌细胞凋亡。

  • 图6 抑制Parkin表达后各组H9C2细胞线粒体损伤

  • Figure6 Mitochondrial injury of H9C2 cells in each group after inhibiting Parkin gene expression

  • 线粒体是细胞内重要的细胞器,通过氧化磷酸化产生能量。当细胞受到外界刺激,可损伤线粒体结构及功能。为了维持细胞存活,线粒体相关多个信号通路被激活,包括线粒体自噬、线粒体融合与分裂及线粒体相关凋亡通路[13]。本研究发现IH可导致线粒体损伤(MMP下降、Bcl⁃2蛋白表达水平下降及Bax蛋白表达水平升高)。

  • 线粒体自噬通过降解损伤的线粒体及过多的线粒体,对维持细胞稳态起到至关重要的作用[13]。 Parkin通路是线粒体自噬重要的调控因子,当线粒体受到损伤时,Parkin被招募至损伤的线粒体上,进而激活线粒体自噬,降解损伤线粒体,维持细胞稳态[13]。刁佳宇等[14] 发现Parkin介导的线粒体自噬可减轻高糖处理的 H9C2 心肌氧化应激损伤、细胞凋亡及细胞肥大等。Gao等[15] 发现Parkin介导的线粒体自噬可减轻年龄所致的心肌细胞凋亡及细胞衰老。Abudureyimu 等[16] 发现小檗碱可通过上调 Par⁃ kin介导的线粒体自噬减轻主动脉弓缩窄术诱导的心肌细胞凋亡及心功能不全。上述研究均提示 Parkin介导的线粒体自噬起保护作用。如前所述,过度的线粒体自噬会导致细胞凋亡,有损伤作用。Luo 等[17] 发现抑制 Parkin 介导的线粒体自噬可减轻缺血再灌注所致 H9C2 心肌细胞凋亡。Ren 等[6]发现抑制线粒体自噬可减轻过氧化氢所致 C2C12 细胞凋亡。而线粒体自噬在 IH 处理的 H9C2 心肌细胞中的作用暂不清楚。本研究发现 IH可激活Parkin 介导的线粒体自噬,而抑制Parkin 介导的线粒体自噬显著增加 IH 所致心肌细胞凋亡,提示 Parkin 介导的线粒体自噬在 IH 所致心肌损伤中起到保护作用。

  • gAPN 是具有多种保护作用的细胞因子。Kim等[18] 发现gAPN可通过上调自噬减轻对乙酰氨基酚所致肝损伤。Zhu等[19] 发现gAPN可减轻心肌缺血再灌注损伤,提示 gAPN 具有心肌保护作用。前期研究发现gAPN可上调线粒体自噬减轻IH所致大鼠颏舌肌损伤[20]。与前期研究一致,本研究发现 gAPN可减轻IH所致H9C2心肌细胞线粒体损伤及细胞凋亡。同时发现与IH相比,gAPN可进一步上调 Parkin介导的线粒体自噬。然而,当Parkin siRNA抑制Parkin表达后,gAPN诱导的线粒体自噬被抑制,线粒体损伤及细胞凋亡明显增加,提示 gAPN 通过上调Parkin介导的内质网自噬减轻IH所致H9C2心肌细胞损伤。然而,Ren 等[6] 发现全长脂联素通过抑制Pink1/Parkin介导的线粒体自噬减轻过氧化氢所致C2C12细胞损伤,这与本研究不同。多项研究发现全长脂联素和 gAPN 具有不同甚至相反的作用。Bang 等[21] 发现全长脂联素具有抗黑色素形成作用,而 Kim 等[22] 发现 gAPN 具有促进黑色素形成作用。Burkus等[23] 发现全长脂联素而非gAPN可促进小鼠囊胚细胞葡萄糖摄取。因此推测不同形态的脂联素及不同的实验条件可能是本研究与 Ren 等[6] 研究不同的主要原因。本研究提示上调Parkin 介导的线粒体自噬是gAPN减轻IH所致H9C2心肌细胞损伤的机制。

  • 综上所述,本研究发现Parkin介导的线粒体自噬在 IH 诱导的 H9C2 心肌损伤中起保护作用。 gAPN通过上调Parkin介导的线粒体自噬减轻IH所致H9C2心肌细胞线粒体损伤及细胞凋亡。本研究有一定的局限性,IH细胞模型不能完全模拟OSAHS 在体模型。因此未来将进行体内实验,进一步研究线粒体自噬的作用及相关机制,探索gAPN减轻IH 所致心肌损伤的机制,为gAPN治疗OSAHS提供一定的理论基础。

  • 参考文献

    • [1] PEPPARD P E,YOUNG T,BARNET J H,et al.Increased prevalence of sleep ⁃ disordered breathing in adults[J].Am J Epidemiol,2013,177(9):1006-1014

    • [2] GOTTLIEB D J.Sleep apnea and cardiovascular disease [J].Curr Diabetes Rep,2021,21(12):64

    • [3] LATTIMORE J D L,CELERMAJER D S,WILCOX I.Obstructive sleep apnea and cardiovascular disease[J].J Am Coll Cardiol,2003,41(9):1429-1437

    • [4] MAZZOTTI D R,KEENAN B T,LIM D C,et al.Symptom subtypes of obstructive sleep apnea predict incidence of cardiovascular outcomes[J].Am J Respir Crit Care Med,2019,200(4):493-506

    • [5] URBINA⁃VARELA R,CASTILLO N,VIDELA L A,et al.Impact of mitophagy and mitochondrial unfolded protein response as new adaptive mechanisms underlying old pa⁃ thologies:sarcopenia and non⁃alcoholic fatty liver disease [J].Int J Mol Sci,2020,21(20):7704

    • [6] REN Y H,LI Y,YAN J,et al.Adiponectin modulates oxi⁃ dative stress⁃induced mitophagy and protects C2C12 myo⁃ blasts against apoptosis[J].Sci Rep,2017,7(1):3209

    • [7] OTVOS L.Potential adiponectin receptor response modifier therapeutics[J].Front Endocrinol,2019,10:539

    • [8] AL MUTAIRI S,MOJIMINIYI O A,AL ALAWI A,et al.Study of leptin and adiponectin as disease markers in sub⁃ jects with obstructive sleep apnea[J].Dis Markers,2014,2014:706314

    • [9] DING W X,ZHANG X F,HUANG H P,et al.Adiponec⁃ tin protects rat myocardium against chronic intermittent hypoxia ⁃induced injury via inhibition of endoplasmic re⁃ ticulum stress[J].PLoS One,2014,9(4):e94545

    • [10] ZHANG Q,ZHANG X L,DING N,et al.Globular adipo⁃ nectin alleviates chronic intermittent hypoxia ⁃ induced H9C2 cardiomyocytes apoptosis via ER ⁃ phagy induction [J].Cell Cycle Georget Tex,2020,19(22):3140-3153

    • [11] TIETJENS J R,CLAMAN D,KEZIRIAN E J,et al.Obstructive sleep apnea in cardiovascular disease:a re⁃ view of the literature and proposed multidisciplinary clini⁃ cal management strategy[J].J Am Heart Assoc,2019,8(1):e010440

    • [12] ZHANG X,RUI L,LV B,et al.Adiponectin relieves hu⁃ man adult cardiac myocytes injury induced by intermit⁃ tent hypoxia[J].Med Sci Monit,2019,25:786-793

    • [13] IORIO R,CELENZA G,PETRICCA S.Mitophagy:molec⁃ ular mechanisms,new concepts on parkin activation and the emerging role of AMPK/ULK1 axis[J].Cells,2022,11(1):30

    • [14] 刁佳宇,赵宏谋,宁玉洁,等.迷迭香酸激活Parkin介导的线粒体自噬并抑制高糖诱导的心肌细胞肥大[J].南方医科大学学报,2020,40(11):1628-1633

    • [15] GAO B,YU W,LV P,et al.Parkin overexpression alle⁃ viates cardiac aging through facilitating K63⁃ polyubiqui⁃ tination of TBK1 to facilitate mitophagy[J].Biochim Bio⁃ phys Acta Mol Basis Dis,2021,1867(1):165997

    • [16] ABUDUREYIMU M,YU W,CAO R Y,et al.Berberine promotes cardiac function by upregulating PINK1/Parkin⁃ mediated mitophagy in heart failure[J].Front Physiol,2020,11:565751

    • [17] LUO C X,ZHANG Y H,GUO H,et al.Ferulic acid atten⁃ uates hypoxia/reoxygenation injury by suppressing mi⁃ tophagy through the PINK1/parkin signaling pathway in H9c2 cells[J].Front Pharmacol,2020,11:103

    • [18] KIM E H,PARK P H.Globular adiponectin protects rat hepatocytes against acetaminophen ⁃ induced cell death via modulation of the inflammasome activation and ER stress:critical role of autophagy induction[J].Biochem Pharmacol,2018,154:278-292

    • [19] ZHU Q Q,LI H B,XIE X,et al.Adiponectin facilitates postconditioning cardioprotection through both AMPK⁃de⁃ pendent nuclear and AMPK ⁃ independent mitochondrial STAT3 activation[J].Oxidative Med Cell Longev,2020,2020:4253457

    • [20] WANG W J,DING W X,HUANG H P,et al.The role of mitophagy in the mechanism of genioglossal dysfunction caused by chronic intermittent hypoxia and the protective effect of adiponectin[J].Sleep Breath,2021,25(2):931-940

    • [21] BANG S,WON K H,MOON H R,et al.Novel regulation of melanogenesis by adiponectin via the AMPK/CRTC pathway[J].Pigment Cell Melanoma Res,2017,30(6):553-557

    • [22] KIM Y,CHO J Y,OH S W,et al.Globular adiponectin acts as a melanogenic signal in human epidermal melano⁃ cytes[J].Br J Dermatol,2018,179(3):689-701

    • [23] BURKUS J,NAVARRETE SANTOS A,SCHINDLER M,et al.Adiponectin stimulates glucose uptake in mouse blastocysts and embryonic carcinoma cells[J].Reprod Camb Engl,2020,159(3):227-239

  • 参考文献

    • [1] PEPPARD P E,YOUNG T,BARNET J H,et al.Increased prevalence of sleep ⁃ disordered breathing in adults[J].Am J Epidemiol,2013,177(9):1006-1014

    • [2] GOTTLIEB D J.Sleep apnea and cardiovascular disease [J].Curr Diabetes Rep,2021,21(12):64

    • [3] LATTIMORE J D L,CELERMAJER D S,WILCOX I.Obstructive sleep apnea and cardiovascular disease[J].J Am Coll Cardiol,2003,41(9):1429-1437

    • [4] MAZZOTTI D R,KEENAN B T,LIM D C,et al.Symptom subtypes of obstructive sleep apnea predict incidence of cardiovascular outcomes[J].Am J Respir Crit Care Med,2019,200(4):493-506

    • [5] URBINA⁃VARELA R,CASTILLO N,VIDELA L A,et al.Impact of mitophagy and mitochondrial unfolded protein response as new adaptive mechanisms underlying old pa⁃ thologies:sarcopenia and non⁃alcoholic fatty liver disease [J].Int J Mol Sci,2020,21(20):7704

    • [6] REN Y H,LI Y,YAN J,et al.Adiponectin modulates oxi⁃ dative stress⁃induced mitophagy and protects C2C12 myo⁃ blasts against apoptosis[J].Sci Rep,2017,7(1):3209

    • [7] OTVOS L.Potential adiponectin receptor response modifier therapeutics[J].Front Endocrinol,2019,10:539

    • [8] AL MUTAIRI S,MOJIMINIYI O A,AL ALAWI A,et al.Study of leptin and adiponectin as disease markers in sub⁃ jects with obstructive sleep apnea[J].Dis Markers,2014,2014:706314

    • [9] DING W X,ZHANG X F,HUANG H P,et al.Adiponec⁃ tin protects rat myocardium against chronic intermittent hypoxia ⁃induced injury via inhibition of endoplasmic re⁃ ticulum stress[J].PLoS One,2014,9(4):e94545

    • [10] ZHANG Q,ZHANG X L,DING N,et al.Globular adipo⁃ nectin alleviates chronic intermittent hypoxia ⁃ induced H9C2 cardiomyocytes apoptosis via ER ⁃ phagy induction [J].Cell Cycle Georget Tex,2020,19(22):3140-3153

    • [11] TIETJENS J R,CLAMAN D,KEZIRIAN E J,et al.Obstructive sleep apnea in cardiovascular disease:a re⁃ view of the literature and proposed multidisciplinary clini⁃ cal management strategy[J].J Am Heart Assoc,2019,8(1):e010440

    • [12] ZHANG X,RUI L,LV B,et al.Adiponectin relieves hu⁃ man adult cardiac myocytes injury induced by intermit⁃ tent hypoxia[J].Med Sci Monit,2019,25:786-793

    • [13] IORIO R,CELENZA G,PETRICCA S.Mitophagy:molec⁃ ular mechanisms,new concepts on parkin activation and the emerging role of AMPK/ULK1 axis[J].Cells,2022,11(1):30

    • [14] 刁佳宇,赵宏谋,宁玉洁,等.迷迭香酸激活Parkin介导的线粒体自噬并抑制高糖诱导的心肌细胞肥大[J].南方医科大学学报,2020,40(11):1628-1633

    • [15] GAO B,YU W,LV P,et al.Parkin overexpression alle⁃ viates cardiac aging through facilitating K63⁃ polyubiqui⁃ tination of TBK1 to facilitate mitophagy[J].Biochim Bio⁃ phys Acta Mol Basis Dis,2021,1867(1):165997

    • [16] ABUDUREYIMU M,YU W,CAO R Y,et al.Berberine promotes cardiac function by upregulating PINK1/Parkin⁃ mediated mitophagy in heart failure[J].Front Physiol,2020,11:565751

    • [17] LUO C X,ZHANG Y H,GUO H,et al.Ferulic acid atten⁃ uates hypoxia/reoxygenation injury by suppressing mi⁃ tophagy through the PINK1/parkin signaling pathway in H9c2 cells[J].Front Pharmacol,2020,11:103

    • [18] KIM E H,PARK P H.Globular adiponectin protects rat hepatocytes against acetaminophen ⁃ induced cell death via modulation of the inflammasome activation and ER stress:critical role of autophagy induction[J].Biochem Pharmacol,2018,154:278-292

    • [19] ZHU Q Q,LI H B,XIE X,et al.Adiponectin facilitates postconditioning cardioprotection through both AMPK⁃de⁃ pendent nuclear and AMPK ⁃ independent mitochondrial STAT3 activation[J].Oxidative Med Cell Longev,2020,2020:4253457

    • [20] WANG W J,DING W X,HUANG H P,et al.The role of mitophagy in the mechanism of genioglossal dysfunction caused by chronic intermittent hypoxia and the protective effect of adiponectin[J].Sleep Breath,2021,25(2):931-940

    • [21] BANG S,WON K H,MOON H R,et al.Novel regulation of melanogenesis by adiponectin via the AMPK/CRTC pathway[J].Pigment Cell Melanoma Res,2017,30(6):553-557

    • [22] KIM Y,CHO J Y,OH S W,et al.Globular adiponectin acts as a melanogenic signal in human epidermal melano⁃ cytes[J].Br J Dermatol,2018,179(3):689-701

    • [23] BURKUS J,NAVARRETE SANTOS A,SCHINDLER M,et al.Adiponectin stimulates glucose uptake in mouse blastocysts and embryonic carcinoma cells[J].Reprod Camb Engl,2020,159(3):227-239