en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

吴昊,E-mail:whdactor@njmu.edu.cn

中图分类号:R73

文献标识码:A

文章编号:1007-4368(2022)12-1690-07

DOI:10.7655/NYDXBNS20221208

参考文献 1
PAVLOVA N N,THOMPSON C B.The emerging hall⁃ marks of cancer metabolism[J].Cell Metab,2016,23(1):27-47
参考文献 2
WANG Y,XIA Y,LU Z.Metabolic features of cancer cells [J].Cancer Commun,2018,38(1):65
参考文献 3
YE M,ZHANG J,WEI M,et al.Emerging role of long non⁃ coding RNA⁃encoded micropeptides in cancer[J].Cancer Cell Int,2020,20:506
参考文献 4
CHAN J,TAY Y.Noncoding RNA:RNA regulatory net⁃ works in cancer[J].Int J Mol Sci,2018,19(5):1310
参考文献 5
潘春峰,刘锦源.长链非编码RNA TPTEP1在肺腺癌中的表达及作用研究[J].南京医科大学学报(自然科学版),2022,42(5):673-678
参考文献 6
马佩,方圆,查全斌,等.长链非编码 RNA LINC01197调节胃癌进展的机制研究[J].南京医科大学学报(自然科学版),2021,41(7):992-998
参考文献 7
CHOI S W,KIM H W,NAM J W.The small peptide world in long noncoding RNAs[J].Brief Bioinform,2019,20(5):1853-1864
参考文献 8
LI P,SONG R,YIN F,et al.circMRPS35 promotes malig⁃ nant progression and cisplatin resistance in hepatocellu⁃ lar carcinoma[J].Mol Ther,2022,30(1):431-447
参考文献 9
NIU L,LOU F,SUN Y,et al.A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflamma⁃ tion via modulating antigen presentation[J].Sci Adv,2020,6(21):z2059
参考文献 10
GUO B,WU S,ZHU X,et al.Micropeptide CIP2A⁃BP en⁃ coded by LINC00665 inhibits triple ⁃ negative breast can⁃ cer progression[J].EMBO J,2020,39(1):e102190
参考文献 11
CHEN J,BRUNNER A,COGAN J Z,et al.Pervasive func⁃ tional translation of noncanonical human open reading frames[J].Sci,2020,367(6482):1140⁃1146
参考文献 12
WU P,MO Y,PENG M,et al.Emerging role of tumor⁃re⁃ lated functional peptides encoded by lncRNA and cir⁃ cRNA[J].Mol Cancer,2020,19(1):22
参考文献 13
LI X L,PONGOR L,TANG W,et al.A small protein en⁃ coded by a putative lncRNA regulates apoptosis and tu⁃ morigenicity in human colorectal cancer cells[J].eLife,2020,9 e53734:
参考文献 14
WANG Y,WU C,DU Y,et al.Expanding uncapped trans⁃ lation and emerging function of circular RNA in carcino⁃ mas and noncarcinomas[J].Mol Cancer,2022,21(1):13
参考文献 15
MARTÍNEZ ⁃REYES I,CHANDEL N S.Cancer metabo⁃ lism:looking forward[J].Nat Rev.Cancer,2021,21(10):669-680
参考文献 16
SUN L,SUO C,LI S,et al.Metabolic reprogramming for cancer cells and their microenvironment:Beyond the War⁃ burg Effect[J].Biochim Biophys Acta Rev Cancer,2018,1870(1):51-66
参考文献 17
龚俊杰,刘秀秀,王平,等.代谢组学在胶质母细胞瘤相关研究中的应用[J].南京医科大学学报(自然科学版),2021,41(2):296-305
参考文献 18
PASCALE R M,CALVISI D F,SIMILE M M,et al.The warburg effect 97 years after its discovery[J].Cancers,2020,12(10):2819
参考文献 19
GE T,YANG J,ZHOU S,et al.The role of the pentose phosphate pathway in diabetes and cancer[J].Front En⁃ docrinol,2020,11:365
参考文献 20
LI A M,YE J.Reprogramming of serine,glycine and one⁃ carbon metabolism in cancer[J].Biochim Biophys Acta Mol Basis Dis,2020,1866(10):165841
参考文献 21
DEY P,KIMMELMAN A C,DEPINHO R A.Metabolic codependencies in the tumor microenvironment[J].Can⁃ cer Discov,2021,11(5):1067⁃1081
参考文献 22
LU S,WANG Y.Nonmetabolic functions of metabolic en⁃ zymes in cancer development[J].Cancer Commun,2018,38(1):63
参考文献 23
ZAHRA K,DEY T,ASHISH,et al.Pyruvate kinase M2 and cancer:the role of PKM2 in promoting tumorigenesis [J].Front Oncol,2020,10:159
参考文献 24
PUCKETT D L,ALQURAISHI M,CHOWANADISAI W,et al.The role of PKM2 in metabolic reprogramming:in⁃sights into the regulatory roles of non ⁃ coding RNAs[J].Int J Mol Sci,2021,22(3):1171
参考文献 25
ZHU S,GUO Y,ZHANG X,et al.Pyruvate kinase M2(PKM2)in cancer and cancer therapeutics[J].Cancer Lett,2021,503:240⁃248
参考文献 26
HUANG J,CHEN M,CHEN D,et al.A peptide encoded by a putative lncRNA HOXB⁃AS3 suppresses colon can⁃ cer growth[J].Molecular Cell,2017,68(1):171⁃184
参考文献 27
CHEN L,YUAN R,WEN C,et al.E3 ubiquitin ligase UBR5 promotes pancreatic cancer growth and aerobic gly⁃ colysis by downregulating FBP1 via destabilization of C/EBPα[J].Oncogene,2021,40(2):262-276
参考文献 28
HIRATA H,SUGIMACHI K,KOMATSU H,et al.De⁃ creased expression of fructose⁃1,6⁃bisphosphatase associ⁃ ates with glucose metabolism and tumor progression in he⁃ patocellular carcinoma[J].Cancer Res,2016,76(11):3265-3276
参考文献 29
DONG C,YUAN T,WU Y,et al.Loss of FBP1 by snail⁃ mediated repression provides metabolic advantages in basal ⁃like breast cancer[J].Cancer Cell,2013,23(3):316-331
参考文献 30
LIU G,LI Q,ZHANG P,et al.Restoration of FBP1 sup⁃ pressed Snail ⁃ induced epithelial to mesenchymal transi⁃ tion in hepatocellular carcinoma[J].Cell Death Dis,2018,9(11):1132
参考文献 31
PAN Z,CAI J,LIN J,et al.A novel protein encoded by circFNDC3B inhibits tumor progression and EMT through regulating Snail in colon cancer[J].Mol Cancer,2020,19(1):71
参考文献 32
BIAN X,LIU R,MENG Y,et al.Lipid metabolism and cancer[J].J Exp Med,2021,218(1):e20201606
参考文献 33
IMAMURA T,KOMATSU S,ICHIKAWA D,et al.Over⁃ expression of ZRF1 is related to tumor malignant poten⁃ tial and a poor outcome of gastric carcinoma[J].Carcino⁃ genesis,2018,39(2):263-271
参考文献 34
LI H,YANG F,HU A,et al.Therapeutic targeting of circ⁃ CUX1/EWSR1/MAZ axis inhibits glycolysis and neuro⁃ blastoma progression[J].EMBO Mol Med,2019,11(12):e10835
参考文献 35
YANG F,HU A,GUO Y,et al.p113 isoform encoded by CUX1 circular RNA drives tumor progression via facilitat⁃ ing ZRF1/BRD4 transactivation[J].Mol Cancer,2021,20(1):123
参考文献 36
SÁNCHEZ ⁃ARAGÓ M,FORMENTINI L,CUEZVA J M.Mitochondria ⁃ mediated energy adaption in cancer:The H+⁃ATP synthase⁃geared switch of metabolism in human tumors[J].Antioxid Redox Signal,2013,19(3):285-298
参考文献 37
ASHTON T M,MCKENNA W G,KUNZ⁃SCHUGHART L A,et al.Oxidative phosphorylation as an emerging target in cancer therapy[J].Clin Cancer Res,2018,24(11):2482-2490
参考文献 38
CHEKULAYEV V,MADO K,SHEVCHUK I,et al.Meta⁃ bolic remodeling in human colorectal cancer and sur⁃ rounding tissues:alterations in regulation of mitochondri⁃ al respiration and metabolic fluxes[J].Biochem Biophys Rep,2015,4:111-125
参考文献 39
Kaldma A,Klepinin A,Chekulayev V,et al.An in situ study of bioenergetic properties of human colorectal can⁃ cer:The regulation of mitochondrial respiration and distri⁃ bution of flux control among the components of ATP syn⁃ thasome[J].Int J Bio Cell Biol,2014,55:171-186
参考文献 40
GE Q,JIA D,CEN D,et al.Micropeptide ASAP encoded by LINC00467 promotes colorectal cancer progression by directly modulating ATP synthase activity[J].J clin in⁃ vest,2021,131(22):1-17
目录contents

    摘要

    肿瘤无限增殖的能力依赖于它独特的代谢方式。现已证实非编码RNA(noncoding RNA,ncRNA)具有编码微肽/蛋白的能力,其中有一小部分微肽/蛋白能够参与肿瘤能量代谢的调控,在肿瘤的发生发展中起着关键作用。本文对目前关于 ncRNA编码的微肽/蛋白与癌症代谢之间的研究作一综述,并讨论了这些功能性微肽/蛋白在肿瘤发生发展中的作用机制及其临床意义。深入了解肿瘤代谢重编程中ncRNA编码的微肽/蛋白介导的调控机制,必将在癌症诊疗和预后研究方面发挥重要作用。

    Abstract

    The ability of tumor to proliferate indefinitely depends on its unique metabolic mode. It has been confirmed that non - coding RNA has the ability to encode micropeptides/proteins,of which a small number of micropeptides/proteins can participate in the regulation of tumor energy metabolism and play a key role in the occurrence and development of tumors. This article reviews the current research on the relationship between micropeptides/proteins encoded by ncRNA and cancer metabolism,and discusses the mechanism and clinical significance of these functional micropeptides/proteins in tumorigenesis and development. We believe that in- depth understanding of the regulatory mechanism mediated by ncRNA - encoded micropeptides/proteins in tumor metabolic reprogramming will play an important role in cancer diagnosis,treatment and prognosis.

  • 近年来,肿瘤代谢已经成为肿瘤研究的热门领域。肿瘤细胞具有无限增殖的特点,依赖于它独特的代谢方式,即肿瘤代谢重编程[1]。这种代谢方式的改变可以满足肿瘤细胞快速增殖时旺盛的能量和物质需求,帮助细胞适应缺氧的肿瘤微环境,进而为肿瘤的增殖、侵袭、迁移等生物活动提供能量和物质支持[2]

  • 在人类基因组中,有3/4的DNA可以被转录,但只有 2%能够编码蛋白质,其余绝大多数的转录物为非编码RNA(non⁃coding RNA,ncRNA)[3],主要包括 3 大类:短链非编码 RNA、长链非编码 RNA(long non ⁃ coding RNA,lncRNA)和环状 RNA(circular RNA,circRNA)。许多实验结果表明,ncRNA 能够参与各种生理和病理过程,发挥着重要的生物学功能,尤其是与肿瘤的产生和发展密切相关[4-6]。随着生物信息学和高通量测序技术的发展,许多研究者发现这些ncRNA同样具有编码蛋白的潜能,其编码的微肽/蛋白在生物体内同样发挥着关键的作用,如代谢、肌肉发育、胚胎发育、癌症的发生发展等[7-10]

  • 虽然ncRNA编码的微肽/蛋白在一系列生物过程中功能已经得到证实,然而对于它们在肿瘤代谢中的作用仍然知之甚少。因此本文重点讨论了 ncRNA编码的微肽/蛋白在肿瘤代谢重编程和肿瘤发生发展中发挥的重要作用,并期望为未来的肿瘤治疗提供一个新方向。

  • 1 ncRNA编码微肽/蛋白的发现

  • 1.1 lncRNA编码微肽

  • lncRNA 是一类长度超过 200 个核苷酸大小的 RNA序列,由于缺乏编码性开放阅读框(open read⁃ ing frame,ORF),在过去被纳为 ncRNA[11]。随着生物信息学和高通量测序技术的发展,许多实验证明部分 lncRNA 上存在一个或多个短开放阅读框 (short open reading frame,sORF)[12],这些sORF能够编码出小于100个氨基酸(amino acid,aa)大小的具有生物活性的微肽[13]

  • 1.2 circRNA编码蛋白

  • circRNA 是一类共价闭合环状 RNA,没有 5′端帽子和3′端poly A尾的结构。以前普遍认为,真核细胞中蛋白质的合成是通过 5′帽依赖的的翻译途径,因此circRNA被纳入ncRNA的范畴。但是,近几年的研究发现,有些circRNA 可以通过内部核糖体进入位点(internal ribosome entry site,IRES)启动非 5′帽依赖的翻译方式编码蛋白质,而缺乏 IRES 的 circRNA 也可以通过滚环扩增(rolling circle amplifi⁃ cation,RCA)机制翻译蛋白质。还有部分 circRNA 存在大量的N6⁃腺苷酸甲基化(N6⁃methyladenosine, m6 A)修饰,这些甲基化修饰可以像 IRES 一样驱动 circRNA翻译蛋白质[14]

  • 2 ncRNA编码微肽/蛋白与肿瘤代谢

  • 肿瘤的代谢与正常组织不同,为了快速适应缺氧、营养匮乏的微环境,其代谢模式会发生改变,进而获取更多的能源物质以及生物合成的原料,这就是所谓的“肿瘤代谢重编程”[15]。代谢重编程在不同组织来源的肿瘤以及肿瘤发生发展的不同阶段广泛存在,包括葡萄糖代谢、脂质代谢、谷氨酰胺代谢等[16-17]。已有多项研究证实ncRNA 编码微肽/蛋白参与了肿瘤代谢重编程的驱动和调控。

  • 2.1 ncRNA编码微肽/蛋白调控葡萄糖代谢

  • 无论是肿瘤细胞还是正常细胞,葡萄糖都是主要的能源物质。正常情况下,葡萄糖转化为丙酮酸后,有两条途径产生能量。一种是在有氧情况下,丙酮酸进入线粒体参与三羧酸循环(tricarboxylic ac⁃ id cycle,TCA cycle),然后偶联氧化磷酸化(oxida⁃ tive phosphorylation,OXPHOS)产生大量 ATP,为细胞提供能量。另一种则是在无氧或缺氧条件下,丙酮酸不进入线粒体,而是在细胞质中被转化为乳酸并产生少量ATP,即糖酵解过程。

  • 肿瘤细胞利用葡萄糖的方式与正常细胞截然不同,即使在氧气充足的情况下,大部分肿瘤细胞会优先选择糖酵解的方式产生能量,这一现象被称为有氧糖酵解或Warburg效应[18]。实际上糖酵解是一种低效的产能方式,但肿瘤细胞可以通过这种方式,竞争性消耗大量的葡萄糖,为其迅速增殖提供能量;而肿瘤细胞通过糖酵解所生成的中间代谢产物,还可以参与磷酸戊糖途径[19] (pentose phosphate pathway,PPP)以及丝氨酸代谢途径[20],为肿瘤细胞的复制提供生物大分子[21]。多项研究发现,肿瘤的发生发展与糖代谢途径关键酶的异常表达和调控密切相关[22]

  • 丙酮酸激酶(pyruvate kinase,PK)是糖酵解过程中的关键酶,可以将磷酸烯醇丙酮酸转化为丙酮酸,并产生 ATP。PK 有 4 种同工酶,分别为 L 型、R 型、M1 型、M2 型,其中 PKM1 和 PKM2 是由 PKM 基因的单个 mRNA 转录产物通过交替剪接形成的, PKM2主要参与介导有氧糖酵解途径,而PKM1介导 OXPHOS 代谢途径[23]。有学者发现,PKM2 在肿瘤细胞中出现明显上调[24],并且PKM2能够诱导肿瘤细胞发生代谢重编程,即从正常的OXPHOS代谢途径转变为有氧糖酵解途径并产生大量乳酸,塑造一个利于肿瘤生长的微环境[25]

  • Huang 等[26] 的研究发现,lncRNA 编码的微肽可以通过调控PKM2的表达,从而调控肿瘤代谢重编程,影响肿瘤的发生与发展。首先,Yan 等[26] 利用实时定量聚合酶链式反应(quantitative real⁃time PCR,qRT⁃PCR)、微阵列数据集发现,与正常组织相比,无论是原发还是转移性结肠癌组织中的 lncRNA——HOXB⁃AS3均出现显著下调,Huang等[26] 推测 HOXB⁃AS3可能作为肿瘤抑制因子,在肿瘤发生发展中起着重要作用。之后又通过核糖体分析发现HOXB⁃AS3可以编码出一条53aa大小的微肽,并通过一系列体内外试验证实HOXB⁃AS3编码的微肽能够抑制结肠癌的进展,而非 HOXB⁃AS3 本身。实验中发现,HOXB⁃AS3肽能够竞争性结合mRNA剪切抑制分子——核内不均一核糖核蛋白A1(heteroge⁃ neous Nuclear Ribonucleoprotein A1,hnRNP A1)上的 RNA结合结构域RGG中的精氨酸残基,阻止了此精氨酸残基与PKM mRNA外显子9序列的结合,从而阻断了hnRNP A1对PKM剪切的调控作用,抑制了 PKM2剪切体的形成,促使PKM1剪切体的形成,介导细胞OXPHOS代谢途径,抑制结肠癌细胞的糖代谢重编程,从而抑制结肠癌的增殖和转移(图1)。

  • 果糖⁃1,6⁃二磷酸酶(fructose ⁃l,6⁃Bisphospha⁃ tase,FBP)是糖异生过程的关键酶,可将糖酵解途径的中间产物1,6⁃二磷酸果糖逆转为6⁃磷酸果糖,促使糖酵解向OXPHOS的代谢转换,从而抑制潜在的 Warburg 效应[27]。FBP 分为肝果糖⁃1,6⁃二磷酸酶 (FBP1)和肌果糖⁃1,6⁃二磷酸酶(FBP2)2 个亚型。已有多项研究表明在肾透明细胞癌、胃癌、乳腺癌、肝癌、结肠癌等多种肿瘤中存在 FBP1 表达及功能的下调,并且与患者的预后有明显相关性[28]。FBP1 的缺失对于诱发肿瘤细胞的代谢重编程及肿瘤侵袭转移发挥着重要作用,比如在基底样乳腺癌细胞中,FBP1的缺失可以诱导糖酵解过程,导致葡萄糖摄取增加,促进PKM2剪接体的形成,并且维持肿瘤在缺氧环境下ATP的合成[29]。FBP1 除了参与糖酵解过程,同样也是Snail基因的下游靶点,Snail作为 E⁃钙黏蛋白的关键转录抑制因子,能够介导肿瘤细胞上皮⁃间充质转化(epithelial⁃mesenchymal transition, EMT),增强肿瘤细胞的侵袭作用,同时Snail能够参与FBP1的启动子区甲基化,抑制FBP1的表达[30]

  • 目前已经发现有 ncRNA 编码蛋白可以通过调控FBP1的表达,从而调控肿瘤代谢重编程,影响肿瘤的发生发展。例如,Pan 等[31] 利用 Sanger 测序和RNase R实验证实了结肠癌细胞中环状RNA⁃circF⁃ NDC3B的存在,同时利用qRT⁃PCR发现与正常人的结肠上皮细胞系相比,结肠癌细胞系中CircFNDC3B 的表达显著降低,并且提示预后不良。之后Pan等[31] 进一步通过序列分析,发现circFNDC3B上存在一个大于其一圈长度的ORF(长度为657nt),并通过液相质谱分析(liquid chromatography⁃mass spectrometry, LC⁃MS),发现其能编码一条218aa大小的蛋白。之后又通过一系列体内外实验证实这个 circFNDC3B 编码蛋白对于结肠癌细胞的增殖和侵袭发挥着关键作用。这个218aa的蛋白能够调控Snail/FBP1信号轴,通过负调控Snail的表达,抑制肿瘤EMT过程,同时减低Snail对FBP1的抑制效应,增强FBP1的表达,促使了从糖酵解向 OXPHOS 的代谢重编程,最终抑制结肠癌细胞的增殖和侵袭转移(图2)。

  • 2.2 ncRNA编码微肽/蛋白调控脂质代谢

  • 除了异常的葡萄糖代谢外,肿瘤细胞也可以从脂质代谢中获得能量,包括脂肪酸(fatty acid,FA)的摄取、脂质的从头合成、脂肪酸β氧化(fatty acid β⁃ oxidation,FAO)等[32]。相关研究发现ncRNA编码微肽/蛋白可以与某些转录因子相互作用,调控与代谢相关基因的转录激活,从而调控肿瘤脂质代谢重编程。例如转录调控因子Zuotin相关因子1(Zuotin⁃re⁃ lated factor 1,ZRF1),已被发现在多种恶性肿瘤中高表达,并且与不良预后显著相关[33]

  • 图1 HOXB⁃AS3肽竞争性结合hnRNPA1,拮抗hnRNPA1介导的PKM剪接调控

  • Figure1 HOXB ⁃AS3 peptide competitively binds to hnRNPA1 and antagonizes the regulation of PKM splicing mediated by hnRNPA1

  • 图2 circFNDC3B编码蛋白能够负调控Snail的表达,从而增强FBP1的表达

  • Figure2 A proteinencoded by circFNDC3B negatively regulates Snail expression and thus enhances FBP1 expression

  • 过去发现转录因子CUT样同源框1(Cut like ho⁃ meobox 1,CUX1)在神经母细胞瘤(neuroblastoma, NB)中明显上调,与NB的发生发展密切相关[34]。之后 Yang 等[35] 通过 Sanger 测序和 CircRNADb 数据库发现 CUX1 的 9~11 号外显子可以剪接形成一个含 ORF 的环状 RNA ⁃ecircCUX1,同时 ecircCUX1 可以编码出1个113aa大小的核蛋白p113。Yang等[35] 发现与正常组织相比,NB 组织和细胞系中均出现了 ecircCUX1和p113的高表达,与NB 不良预后相关,并且其他恶性肿瘤中也检测出p113高表达。之后作者进一步通过免疫共沉淀、质谱分析和RNA测序等方法发现p113能与ZRF1和辅助因子溴结构域蛋白 4(bromodomain protein 4,BRD4)相互作用,形成 p113/ZRF1/BRD4转录调控复合物,诱导醛脱氢酶3 家族成员 A1(aldehyde dehydrogenase3 family mem⁃ ber A1,ALDH3A1)、NADH 泛醌氧化还原酶亚单位 A1(NADH:ubiquinone oxidoreductase subunit A1, NDUFA1)和 NADH 泛醌氧化还原酶复合体组装因子 5(NADH:ubiquinone oxidoreductase complex as⁃ sembly factor 5,NDUFAF5)的转录激活,促进 FA 的生成、FAO 和增强线粒体复合物Ⅰ的活性,从而诱导 NB 细胞的脂质代谢重编程和 ATP 的生成,促进 NB的发生发展(图3)。并且Yang等[35] 还利用Pep⁃ tiderive server设计了一个靶向阻断p113和ZRF1之间相互作用的抑制性细胞穿透肽(ZIP⁃12),通过体外实验证实 ZIP⁃12 能够与 p113 相结合,阻断 p113与ZRF1的相互作用,并且能够抑制NB细胞的脂质代谢重编程,从而抑制NB的进展。因此,p113可能成为一种新的 NB 预后生物标志物,同时 p113/ ZRF1/BRD4轴可能成为NB治疗的新靶点。

  • 2.3 ncRNA编码微肽/蛋白通过影响线粒体功能直接调控能量代谢

  • 在真核细胞中,线粒体是将葡萄糖、脂质以及谷氨酰胺代谢等主要代谢过程整合的重要枢纽,线粒体 OXPHOS 途径就是将各种物质氧化所产生的能量通过线粒体内膜上的复合体I⁃IV形成电子传递链(electron transfer chain,ETC)传递给ADP,最后通过ATP合成酶(复合物V)将ADP转化为ATP,维持细胞能量代谢的动态平衡。

  • 过去认为肿瘤细胞主要依赖有氧糖酵解的代谢方式获取能量,同时会抑制正常的 OXPHOS 途径。ATP 合成酶作为线粒体 OXPHOS 途径的关键酶,其活性和表达在许多癌症中均出现了下调,同时许多实验证实促进线粒体OXPHOS代谢途径,可以抑制肿瘤的进展[36]

  • 但是,线粒体的功能与肿瘤进展的关系并非我们想象的那么简单。有学者发现,一些癌症仍主要通过线粒体OXPHOS途径来合成ATP,而非通过上调糖酵解途径[37]。例如,Chekulayev 等[38] 发现结直肠癌(colorectal cancer,CRC)可能不是一种完全依赖Warburg效应的肿瘤,因为在CRC细胞中表现出比正常结直肠细胞更高的 OXPHOS 发生率。同时一项CRC的原位研究进一步发现,CRC细胞的总糖酵解能力与周围正常结直肠细胞相似,但CRC细胞的呼吸频率要高得多[39]。因此,线粒体功能失调与不同恶性肿瘤之间的关系仍需要进一步探索。

  • 图3 ecircCUX1编码的p113,促进NB细胞脂质代谢重编程

  • Figure3 P113 encoded by ecircCUX1 promotes lipid metabolism reprogramming in NB cells

  • 目前发现 ncRNA 编码的微肽可以通过调控线粒体的功能直接调控肿瘤细胞的能量代谢,从而影响肿瘤发生发展。如 Ge 等[40]通过核糖体测序、 lncRNA 衍生微肽数据库和 ORF⁃Finder 分析,发现 lncRNA⁃LINC00467可以编码出一个94aa大小的未知微肽,作者将其命名为 ATP 合成酶相关肽(ATP synthase ⁃ associated peptide,ASAP)。同时发现 LINC00467和ASAP在CRC组织中的表达明显高于邻近正常组织,与 CRC 不良预后相关。ASAP 的亚细胞定位于线粒体内,Ge等[40] 通过一系列实验证实 ASAP 能与 ATP 合成酶的亚单位α(ATP5A)和γ (ATP5C)结合,增强它们之间的相互作用,提高ATP 合成酶的活性,促进 CRC 的 OXPHOS 过程,从而促进CRC的发生发展(图4)。因此,靶向抑制ASAP可能成为治疗CRC的新方法。

  • 图4 ASAP通过增强ATP合成酶的活性,促进肿瘤细胞的氧化磷酸化过程

  • Figure4 ASAP promotes oxidative phosphorylationof tumor cells by enhancing the activity of ATP synthase

  • 3 总结与展望

  • ncRNA 编码的微肽/蛋白不仅能通过调控代谢相关酶的表达和转录因子来调控肿瘤代谢重编程,还能通过调控线粒体的功能影响肿瘤的能量代谢,从而影响肿瘤的发生发展。

  • 这些ncRNA编码微肽/蛋白的功能研究丰富了我们对癌症调控机制的认识,为我们靶向肿瘤细胞代谢重编程提供了许多新的治疗靶点。但目前仍存在许多问题,对于ncRNA编码性的研究仍处于初级阶段,目前发现的 ncRNA 编码的微肽/蛋白仅占极小一部分,能够鉴定出具有生物学功能的更是少之又少。不过,相信随着质谱、RNA测序、核糖体图谱分析等技术的发展和进步,未来能够发现越来越多的与肿瘤相关 ncRNA 编码的微肽/蛋白,这也意味着一个个新的肿瘤预后标志物和抗癌药物干预靶点的出现,为癌症的研究提供新的方向。

  • 综上所述,深入了解代谢重编程中ncRNA编码的微肽/蛋白介导的调控机制,将有助于人们认识肿瘤发生发展的机制。同时,代谢相关的ncRNA编码的微肽/蛋白也能作为潜在的肿瘤诊断/预后标志物和治疗靶点,为肿瘤的治疗做出更大的贡献。

  • 参考文献

    • [1] PAVLOVA N N,THOMPSON C B.The emerging hall⁃ marks of cancer metabolism[J].Cell Metab,2016,23(1):27-47

    • [2] WANG Y,XIA Y,LU Z.Metabolic features of cancer cells [J].Cancer Commun,2018,38(1):65

    • [3] YE M,ZHANG J,WEI M,et al.Emerging role of long non⁃ coding RNA⁃encoded micropeptides in cancer[J].Cancer Cell Int,2020,20:506

    • [4] CHAN J,TAY Y.Noncoding RNA:RNA regulatory net⁃ works in cancer[J].Int J Mol Sci,2018,19(5):1310

    • [5] 潘春峰,刘锦源.长链非编码RNA TPTEP1在肺腺癌中的表达及作用研究[J].南京医科大学学报(自然科学版),2022,42(5):673-678

    • [6] 马佩,方圆,查全斌,等.长链非编码 RNA LINC01197调节胃癌进展的机制研究[J].南京医科大学学报(自然科学版),2021,41(7):992-998

    • [7] CHOI S W,KIM H W,NAM J W.The small peptide world in long noncoding RNAs[J].Brief Bioinform,2019,20(5):1853-1864

    • [8] LI P,SONG R,YIN F,et al.circMRPS35 promotes malig⁃ nant progression and cisplatin resistance in hepatocellu⁃ lar carcinoma[J].Mol Ther,2022,30(1):431-447

    • [9] NIU L,LOU F,SUN Y,et al.A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflamma⁃ tion via modulating antigen presentation[J].Sci Adv,2020,6(21):z2059

    • [10] GUO B,WU S,ZHU X,et al.Micropeptide CIP2A⁃BP en⁃ coded by LINC00665 inhibits triple ⁃ negative breast can⁃ cer progression[J].EMBO J,2020,39(1):e102190

    • [11] CHEN J,BRUNNER A,COGAN J Z,et al.Pervasive func⁃ tional translation of noncanonical human open reading frames[J].Sci,2020,367(6482):1140⁃1146

    • [12] WU P,MO Y,PENG M,et al.Emerging role of tumor⁃re⁃ lated functional peptides encoded by lncRNA and cir⁃ cRNA[J].Mol Cancer,2020,19(1):22

    • [13] LI X L,PONGOR L,TANG W,et al.A small protein en⁃ coded by a putative lncRNA regulates apoptosis and tu⁃ morigenicity in human colorectal cancer cells[J].eLife,2020,9 e53734:

    • [14] WANG Y,WU C,DU Y,et al.Expanding uncapped trans⁃ lation and emerging function of circular RNA in carcino⁃ mas and noncarcinomas[J].Mol Cancer,2022,21(1):13

    • [15] MARTÍNEZ ⁃REYES I,CHANDEL N S.Cancer metabo⁃ lism:looking forward[J].Nat Rev.Cancer,2021,21(10):669-680

    • [16] SUN L,SUO C,LI S,et al.Metabolic reprogramming for cancer cells and their microenvironment:Beyond the War⁃ burg Effect[J].Biochim Biophys Acta Rev Cancer,2018,1870(1):51-66

    • [17] 龚俊杰,刘秀秀,王平,等.代谢组学在胶质母细胞瘤相关研究中的应用[J].南京医科大学学报(自然科学版),2021,41(2):296-305

    • [18] PASCALE R M,CALVISI D F,SIMILE M M,et al.The warburg effect 97 years after its discovery[J].Cancers,2020,12(10):2819

    • [19] GE T,YANG J,ZHOU S,et al.The role of the pentose phosphate pathway in diabetes and cancer[J].Front En⁃ docrinol,2020,11:365

    • [20] LI A M,YE J.Reprogramming of serine,glycine and one⁃ carbon metabolism in cancer[J].Biochim Biophys Acta Mol Basis Dis,2020,1866(10):165841

    • [21] DEY P,KIMMELMAN A C,DEPINHO R A.Metabolic codependencies in the tumor microenvironment[J].Can⁃ cer Discov,2021,11(5):1067⁃1081

    • [22] LU S,WANG Y.Nonmetabolic functions of metabolic en⁃ zymes in cancer development[J].Cancer Commun,2018,38(1):63

    • [23] ZAHRA K,DEY T,ASHISH,et al.Pyruvate kinase M2 and cancer:the role of PKM2 in promoting tumorigenesis [J].Front Oncol,2020,10:159

    • [24] PUCKETT D L,ALQURAISHI M,CHOWANADISAI W,et al.The role of PKM2 in metabolic reprogramming:in⁃sights into the regulatory roles of non ⁃ coding RNAs[J].Int J Mol Sci,2021,22(3):1171

    • [25] ZHU S,GUO Y,ZHANG X,et al.Pyruvate kinase M2(PKM2)in cancer and cancer therapeutics[J].Cancer Lett,2021,503:240⁃248

    • [26] HUANG J,CHEN M,CHEN D,et al.A peptide encoded by a putative lncRNA HOXB⁃AS3 suppresses colon can⁃ cer growth[J].Molecular Cell,2017,68(1):171⁃184

    • [27] CHEN L,YUAN R,WEN C,et al.E3 ubiquitin ligase UBR5 promotes pancreatic cancer growth and aerobic gly⁃ colysis by downregulating FBP1 via destabilization of C/EBPα[J].Oncogene,2021,40(2):262-276

    • [28] HIRATA H,SUGIMACHI K,KOMATSU H,et al.De⁃ creased expression of fructose⁃1,6⁃bisphosphatase associ⁃ ates with glucose metabolism and tumor progression in he⁃ patocellular carcinoma[J].Cancer Res,2016,76(11):3265-3276

    • [29] DONG C,YUAN T,WU Y,et al.Loss of FBP1 by snail⁃ mediated repression provides metabolic advantages in basal ⁃like breast cancer[J].Cancer Cell,2013,23(3):316-331

    • [30] LIU G,LI Q,ZHANG P,et al.Restoration of FBP1 sup⁃ pressed Snail ⁃ induced epithelial to mesenchymal transi⁃ tion in hepatocellular carcinoma[J].Cell Death Dis,2018,9(11):1132

    • [31] PAN Z,CAI J,LIN J,et al.A novel protein encoded by circFNDC3B inhibits tumor progression and EMT through regulating Snail in colon cancer[J].Mol Cancer,2020,19(1):71

    • [32] BIAN X,LIU R,MENG Y,et al.Lipid metabolism and cancer[J].J Exp Med,2021,218(1):e20201606

    • [33] IMAMURA T,KOMATSU S,ICHIKAWA D,et al.Over⁃ expression of ZRF1 is related to tumor malignant poten⁃ tial and a poor outcome of gastric carcinoma[J].Carcino⁃ genesis,2018,39(2):263-271

    • [34] LI H,YANG F,HU A,et al.Therapeutic targeting of circ⁃ CUX1/EWSR1/MAZ axis inhibits glycolysis and neuro⁃ blastoma progression[J].EMBO Mol Med,2019,11(12):e10835

    • [35] YANG F,HU A,GUO Y,et al.p113 isoform encoded by CUX1 circular RNA drives tumor progression via facilitat⁃ ing ZRF1/BRD4 transactivation[J].Mol Cancer,2021,20(1):123

    • [36] SÁNCHEZ ⁃ARAGÓ M,FORMENTINI L,CUEZVA J M.Mitochondria ⁃ mediated energy adaption in cancer:The H+⁃ATP synthase⁃geared switch of metabolism in human tumors[J].Antioxid Redox Signal,2013,19(3):285-298

    • [37] ASHTON T M,MCKENNA W G,KUNZ⁃SCHUGHART L A,et al.Oxidative phosphorylation as an emerging target in cancer therapy[J].Clin Cancer Res,2018,24(11):2482-2490

    • [38] CHEKULAYEV V,MADO K,SHEVCHUK I,et al.Meta⁃ bolic remodeling in human colorectal cancer and sur⁃ rounding tissues:alterations in regulation of mitochondri⁃ al respiration and metabolic fluxes[J].Biochem Biophys Rep,2015,4:111-125

    • [39] Kaldma A,Klepinin A,Chekulayev V,et al.An in situ study of bioenergetic properties of human colorectal can⁃ cer:The regulation of mitochondrial respiration and distri⁃ bution of flux control among the components of ATP syn⁃ thasome[J].Int J Bio Cell Biol,2014,55:171-186

    • [40] GE Q,JIA D,CEN D,et al.Micropeptide ASAP encoded by LINC00467 promotes colorectal cancer progression by directly modulating ATP synthase activity[J].J clin in⁃ vest,2021,131(22):1-17

  • 参考文献

    • [1] PAVLOVA N N,THOMPSON C B.The emerging hall⁃ marks of cancer metabolism[J].Cell Metab,2016,23(1):27-47

    • [2] WANG Y,XIA Y,LU Z.Metabolic features of cancer cells [J].Cancer Commun,2018,38(1):65

    • [3] YE M,ZHANG J,WEI M,et al.Emerging role of long non⁃ coding RNA⁃encoded micropeptides in cancer[J].Cancer Cell Int,2020,20:506

    • [4] CHAN J,TAY Y.Noncoding RNA:RNA regulatory net⁃ works in cancer[J].Int J Mol Sci,2018,19(5):1310

    • [5] 潘春峰,刘锦源.长链非编码RNA TPTEP1在肺腺癌中的表达及作用研究[J].南京医科大学学报(自然科学版),2022,42(5):673-678

    • [6] 马佩,方圆,查全斌,等.长链非编码 RNA LINC01197调节胃癌进展的机制研究[J].南京医科大学学报(自然科学版),2021,41(7):992-998

    • [7] CHOI S W,KIM H W,NAM J W.The small peptide world in long noncoding RNAs[J].Brief Bioinform,2019,20(5):1853-1864

    • [8] LI P,SONG R,YIN F,et al.circMRPS35 promotes malig⁃ nant progression and cisplatin resistance in hepatocellu⁃ lar carcinoma[J].Mol Ther,2022,30(1):431-447

    • [9] NIU L,LOU F,SUN Y,et al.A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflamma⁃ tion via modulating antigen presentation[J].Sci Adv,2020,6(21):z2059

    • [10] GUO B,WU S,ZHU X,et al.Micropeptide CIP2A⁃BP en⁃ coded by LINC00665 inhibits triple ⁃ negative breast can⁃ cer progression[J].EMBO J,2020,39(1):e102190

    • [11] CHEN J,BRUNNER A,COGAN J Z,et al.Pervasive func⁃ tional translation of noncanonical human open reading frames[J].Sci,2020,367(6482):1140⁃1146

    • [12] WU P,MO Y,PENG M,et al.Emerging role of tumor⁃re⁃ lated functional peptides encoded by lncRNA and cir⁃ cRNA[J].Mol Cancer,2020,19(1):22

    • [13] LI X L,PONGOR L,TANG W,et al.A small protein en⁃ coded by a putative lncRNA regulates apoptosis and tu⁃ morigenicity in human colorectal cancer cells[J].eLife,2020,9 e53734:

    • [14] WANG Y,WU C,DU Y,et al.Expanding uncapped trans⁃ lation and emerging function of circular RNA in carcino⁃ mas and noncarcinomas[J].Mol Cancer,2022,21(1):13

    • [15] MARTÍNEZ ⁃REYES I,CHANDEL N S.Cancer metabo⁃ lism:looking forward[J].Nat Rev.Cancer,2021,21(10):669-680

    • [16] SUN L,SUO C,LI S,et al.Metabolic reprogramming for cancer cells and their microenvironment:Beyond the War⁃ burg Effect[J].Biochim Biophys Acta Rev Cancer,2018,1870(1):51-66

    • [17] 龚俊杰,刘秀秀,王平,等.代谢组学在胶质母细胞瘤相关研究中的应用[J].南京医科大学学报(自然科学版),2021,41(2):296-305

    • [18] PASCALE R M,CALVISI D F,SIMILE M M,et al.The warburg effect 97 years after its discovery[J].Cancers,2020,12(10):2819

    • [19] GE T,YANG J,ZHOU S,et al.The role of the pentose phosphate pathway in diabetes and cancer[J].Front En⁃ docrinol,2020,11:365

    • [20] LI A M,YE J.Reprogramming of serine,glycine and one⁃ carbon metabolism in cancer[J].Biochim Biophys Acta Mol Basis Dis,2020,1866(10):165841

    • [21] DEY P,KIMMELMAN A C,DEPINHO R A.Metabolic codependencies in the tumor microenvironment[J].Can⁃ cer Discov,2021,11(5):1067⁃1081

    • [22] LU S,WANG Y.Nonmetabolic functions of metabolic en⁃ zymes in cancer development[J].Cancer Commun,2018,38(1):63

    • [23] ZAHRA K,DEY T,ASHISH,et al.Pyruvate kinase M2 and cancer:the role of PKM2 in promoting tumorigenesis [J].Front Oncol,2020,10:159

    • [24] PUCKETT D L,ALQURAISHI M,CHOWANADISAI W,et al.The role of PKM2 in metabolic reprogramming:in⁃sights into the regulatory roles of non ⁃ coding RNAs[J].Int J Mol Sci,2021,22(3):1171

    • [25] ZHU S,GUO Y,ZHANG X,et al.Pyruvate kinase M2(PKM2)in cancer and cancer therapeutics[J].Cancer Lett,2021,503:240⁃248

    • [26] HUANG J,CHEN M,CHEN D,et al.A peptide encoded by a putative lncRNA HOXB⁃AS3 suppresses colon can⁃ cer growth[J].Molecular Cell,2017,68(1):171⁃184

    • [27] CHEN L,YUAN R,WEN C,et al.E3 ubiquitin ligase UBR5 promotes pancreatic cancer growth and aerobic gly⁃ colysis by downregulating FBP1 via destabilization of C/EBPα[J].Oncogene,2021,40(2):262-276

    • [28] HIRATA H,SUGIMACHI K,KOMATSU H,et al.De⁃ creased expression of fructose⁃1,6⁃bisphosphatase associ⁃ ates with glucose metabolism and tumor progression in he⁃ patocellular carcinoma[J].Cancer Res,2016,76(11):3265-3276

    • [29] DONG C,YUAN T,WU Y,et al.Loss of FBP1 by snail⁃ mediated repression provides metabolic advantages in basal ⁃like breast cancer[J].Cancer Cell,2013,23(3):316-331

    • [30] LIU G,LI Q,ZHANG P,et al.Restoration of FBP1 sup⁃ pressed Snail ⁃ induced epithelial to mesenchymal transi⁃ tion in hepatocellular carcinoma[J].Cell Death Dis,2018,9(11):1132

    • [31] PAN Z,CAI J,LIN J,et al.A novel protein encoded by circFNDC3B inhibits tumor progression and EMT through regulating Snail in colon cancer[J].Mol Cancer,2020,19(1):71

    • [32] BIAN X,LIU R,MENG Y,et al.Lipid metabolism and cancer[J].J Exp Med,2021,218(1):e20201606

    • [33] IMAMURA T,KOMATSU S,ICHIKAWA D,et al.Over⁃ expression of ZRF1 is related to tumor malignant poten⁃ tial and a poor outcome of gastric carcinoma[J].Carcino⁃ genesis,2018,39(2):263-271

    • [34] LI H,YANG F,HU A,et al.Therapeutic targeting of circ⁃ CUX1/EWSR1/MAZ axis inhibits glycolysis and neuro⁃ blastoma progression[J].EMBO Mol Med,2019,11(12):e10835

    • [35] YANG F,HU A,GUO Y,et al.p113 isoform encoded by CUX1 circular RNA drives tumor progression via facilitat⁃ ing ZRF1/BRD4 transactivation[J].Mol Cancer,2021,20(1):123

    • [36] SÁNCHEZ ⁃ARAGÓ M,FORMENTINI L,CUEZVA J M.Mitochondria ⁃ mediated energy adaption in cancer:The H+⁃ATP synthase⁃geared switch of metabolism in human tumors[J].Antioxid Redox Signal,2013,19(3):285-298

    • [37] ASHTON T M,MCKENNA W G,KUNZ⁃SCHUGHART L A,et al.Oxidative phosphorylation as an emerging target in cancer therapy[J].Clin Cancer Res,2018,24(11):2482-2490

    • [38] CHEKULAYEV V,MADO K,SHEVCHUK I,et al.Meta⁃ bolic remodeling in human colorectal cancer and sur⁃ rounding tissues:alterations in regulation of mitochondri⁃ al respiration and metabolic fluxes[J].Biochem Biophys Rep,2015,4:111-125

    • [39] Kaldma A,Klepinin A,Chekulayev V,et al.An in situ study of bioenergetic properties of human colorectal can⁃ cer:The regulation of mitochondrial respiration and distri⁃ bution of flux control among the components of ATP syn⁃ thasome[J].Int J Bio Cell Biol,2014,55:171-186

    • [40] GE Q,JIA D,CEN D,et al.Micropeptide ASAP encoded by LINC00467 promotes colorectal cancer progression by directly modulating ATP synthase activity[J].J clin in⁃ vest,2021,131(22):1-17