en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

孔颖宏,E-mail:kongyinghong@163.com

中图分类号:R774.1

文献标识码:A

文章编号:1007-4368(2023)02-187-10

DOI:10.7655/NYDXBNS20230206

参考文献 1
MARESCH C C,STUTE D C,FLEMING T,et al.Hyper⁃ glycemia induces spermatogenic disruption via major pathways of diabetes pathogenesis[J].Sci Rep,2019,9(1):13074
参考文献 2
SCHMIDT A M.Highlighting diabetes mellitus:The epi⁃ demic continuess[J].Arterioscler Thromb Vasc Biol,2018,38(1):e1-e8
参考文献 3
COLE J B,FLOREZ J C.Genetics of diabetes mellitus and diabetes complications[J].Nat Rev Nephrol,2020,16(7):377-390
参考文献 4
胡启桢,顾蕙兰,秦瑶,等.161例成人起病经典1型糖尿病微血管并发症的临床特征及相关风险因素分析 [J].南京医科大学学报(自然科学版),2021,41(9):1364-1368
参考文献 5
TEO Z L,THAM Y C,YU M,et al.Global prevalence of diabetic retinopathy and projection of burden through 2045:systematic review and meta⁃analysis.ophthalmology [J].Ophthalmology,2021,128(11):1580-1591
参考文献 6
SASONGKO M B,WIDYAPUTRI F,AGNI A N,et al.Prevalence of diabetic retinopathy and blindness in indo⁃ nesian adults with type 2 diabetes[J].Am J Ophthalmol,2017,181:9-87
参考文献 7
IYER M K,NIKNAFS Y S,MALIK R,et al.The land⁃ scape of long noncoding RNAs in the human transcrip⁃ tome[J].Nat Genet,2015,47(3):199-208
参考文献 8
WEI J C,SHI Y L,WANG Q.LncRNA ANRIL knock⁃ down ameliorates retinopathy in diabetic rats by inhibit⁃ ing the NF⁃κB pathway[J].Eur Rev Med Pharmacol Sci,2019,23(18):7732-7739
参考文献 9
ZHANG D,QIN H,LENG Y,et al.LncRNA MEG3 over⁃ expression inhibits the development of diabetic retinopa⁃ thy by regulating TGF⁃β1 and VEGF[J].Exp Ther Med,2018,16(3):2337-2342
参考文献 10
LIU P,JIA S B,SHI J M,et al.et al.LncRNA⁃MALAT1 promotes neovascularization in diabetic retinopathy through regulating miR⁃125b/VE⁃cadherin axis[J].Bios⁃ ci Rep,2019,39(5):BSR20181469
参考文献 11
ZHANG X,SHI E,YANG L,et al.LncRNA AK077216 is downregulated in diabetic retinopathy and inhibited the apoptosis of retinal pigment epithelial cells by downregu⁃ lating miR⁃383[J].Endocr J,2019,66(11):1011-1016
参考文献 12
REZANEJAD B H,ASADI M H,YAGHOOBI M M.Long noncoding RNA VIM⁃AS1 promotes colorectal cancer pro⁃ gression and metastasis by inducing EMT[J].Eur J Cell Biol,2018,97(4):279⁃288
参考文献 13
ERFANIAN O M,GHAEDI H,KAZEROUNI F,et al.Clinical significance of long noncoding RNA VIM ⁃ AS1 and CTBP1⁃AS2 expression in type 2 diabetes[J].J Cell Biochem,2019,120(6):9315-9323
参考文献 14
ZENG F,LUO G,LU Y,et al.Long non⁃coding RNA VIM Antisense RNA 1(VIM ⁃ AS1)sponges microRNA ⁃ 29 to participate in diabetic retinopathy[J].Acta Diabetol,2020,57(9):1111-1116
参考文献 15
BARTEL D P.MicroRNAs:genomics,biogenesis,mecha⁃ nism,and function[J].Cell,2004,116(2):281-97
参考文献 16
ZENG L Q,WEI S B,SUN Y M,et al.Systematic profil⁃ ing of mRNA and miRNA expression in the pancreatic is⁃ lets of spontaneously diabetic Goto⁃Kakizaki rats[J].Mol Med Rep,2015,11(1):67-74
参考文献 17
SUN N,ZHANG G,LIU Y.Long non ⁃coding RNA XIST sponges miR ⁃ 34a to promotes colon cancer progression via Wnt/beta⁃catenin signaling pathway[J].Gene,2018,665:141-148
参考文献 18
SHAO J,FAN G,YIN X,et al.A novel transthyretin/STAT4/miR ⁃ 223 ⁃ 3p/FBXW7 signaling pathway affects neovascularization in diabetic retinopathy[J].Mol Cell Endocrinol,2019,498:110541
参考文献 19
HU L,LV X,LI D,et al.The anti ⁃ angiogenesis role of FBXW7 in diabetic retinopathy by facilitating the ubiqui⁃ tination degradation of c ⁃Myc to orchestrate the HDAC2 [J].J Cell Mol Med,2021,25(4):2190-2202
参考文献 20
BERG K,CLEMMENSEN T S,TRAM E M,et al.Surviv⁃ al,graft function,and of allograft vasculopathy in heart transplant patients receiving adverse risk profile donor hearts[J].Clin Transplant,2018,32(8):e13343
参考文献 21
CARRAL ⁃ SANTANDER I E,SANTOS ⁃ PALACIOS A,MARTÍNEZ⁃BAEZ B E,et al.Secondary hyperhomocyste⁃ inemia ⁃ related occlusive retinal vasculopathy:A case re⁃ port[J].Am J Ophthalmol Case Rep,2019,13:41⁃45
参考文献 22
BOYER M M,POULSEN G L,NORK T M.Relative con⁃ tributions of the neurosensory retina and retinal pigment epithelium to macular hypofluorescence[J].Arch Oph⁃ thalmol,2000,118(1):27-31
参考文献 23
SIMÓ R,VILLARROEL M,CORRALIZA L,et al.The ret⁃ inal pigment epithelium:something more than a constitu⁃ ent of the blood⁃retinal barrier⁃⁃implications for the patho⁃ genesis of diabetic retinopathy[J].J Biomed Biotechnol,2010:190724
参考文献 24
LI Y,XU F,XIAO H,et al.Long noncoding RNA BDNF⁃ AS inversely regulated BDNF and modulated high ⁃ glu⁃ cose induced apoptosis in human retinal pigment epitheli⁃ al cells[J].J Cell Biochem,2018,119(1):817-823
参考文献 25
XIAO F,LI L,FU J S,et al.Regulation of the miR⁃19b⁃ mediated SOCS6 ⁃ JAK2/STAT3 pathway by lncRNA MEG3 is involved in high glucose ⁃ induced apoptosis in hRMECs[J].Biosci Rep,2020,40(7):BSR20194370
参考文献 26
TAHERI M,EGHTEDARIAN R,GHAFOURI ⁃FARD S,et al.Non⁃coding RNAs and type 2 diabetes mellitus[J].Arch Physiol Biochem,2020:1-10
参考文献 27
CUI H,XU Z,QU C.Tetramethylpyrazine ameliorates iso⁃ flurane⁃induced cognitive dysfunction by inhibiting neuro⁃ inflammation via miR ⁃ 150 in rats[J].Exp Ther Med,2020,20(4):3878-3887
参考文献 28
PENG W X,KOIRALA P,MO Y Y.LncRNA ⁃mediated regulation of cell signaling in cancer[J].Oncogene,2017,36(41):5661-5667
参考文献 29
YANG J,YANG F J,WANG Y G,et al.LncRNA MIR497HG inhibits proliferation and migration of retinal endothelial cells under high ⁃ level glucose treatment via miRNA⁃128⁃3p/SIRT1 axis[J].Eur Rev Med Pharmacol Sci,2020,24(11):5871-5877
参考文献 30
LANG H,XIANG Y,LIN N,et al.Identification of a pan⁃ el of MiRNAs as positive regulators of insulin release in pancreatic Β ⁃ cells[J].Cell Physiol Biochem,2018,48(1):185-193
参考文献 31
WANG J,ZHAO S M.LncRNA ⁃ antisense non ⁃ coding RNA in the INK4 locus promotes pyroptosis via miR⁃497/thioredoxin⁃interacting protein axis in diabetic nephropa⁃ thy[J].Life Sci,2021,264:118728
参考文献 32
LI X J.Long non⁃coding RNA nuclear paraspeckle assem⁃ bly transcript 1 inhibits the apoptosis of retina Müller cells after diabetic retinopathy through regulating miR ⁃ 497/brain⁃derived neurotrophic factor axis[J].Diab Vasc Dis Res,2018,15(3):204-213
参考文献 33
BAO X Y,CAO J.MiRNA⁃138⁃5p protects the early dia⁃ betic retinopathy by regulating NOVA1[J].Eur Rev Med Pharmacol Sci,2019,23(18):7749-7756
参考文献 34
ZHENG Y,LIU Y,WANG L,et al.MicroRNA-126 sup⁃ presses the proliferation and migration of endothelial cells in experimental diabetic retinopathy by targeting polo ⁃ like kinase 4[J].Int J Mol Med,2021,47(1):151-160
参考文献 35
ZHAO J,XIONG X,LI Y,et al.Hepatic F ⁃ Box protein FBXW7 maintains glucose homeostasis through degrada⁃ tion of fetuin⁃A[J].Diabetes,2018,67(5):818-830
参考文献 36
ZHANG G,LI S,LU J,et al.LncRNA MT1JP functions as a ceRNA in regulating FBXW7 through competitively binding to miR⁃92a⁃3p in gastric cancer[J].Mol Cancer,2018,17(1):87
目录contents

    摘要

    目的:探讨长链非编码RNA(lncRNA)VIM反义RNA 1(VIM-AS1)在糖尿病视网膜病变中的潜在分子机制。方法:使用qRT-PCR测定 LncRNA VIM-AS1、miR-497-5p和FBXW7 mRNA的表达。使用蛋白质印迹检测FBXW7蛋白水平。分别使用CCK-8实验、伤口愈合实验和流式细胞技术分析评估细胞增殖、迁移和凋亡。通过双荧光素酶报告基因分析验证lncRNA VIM-AS1、miR-497-5p和FBXW7之间的结合关系。结果:在高糖处理的ARPE-19细胞中,LncRNAVIM-AS1和 FBXW7的表达显著降低,而miR-497-5p的表达上调。LncRNA VIM-AS1可以通过竞争性结合miR-497-5p上调FBXW7的表达。LncRNA VIM- AS1过表达能够促进HG处理的ARPE-19细胞的增殖和迁移,并抑制细胞凋亡,而miR-497-5p过表达消除了lncRNA VIM-AS1 过表达对HG处理的ARPE-19细胞的影响。此外,FBXW7敲低消除了miR-497-5p 对HG处理的ARPE-19细胞表型的抑制。结论:lncRNA VIM-AS1可通过调控miR-497-5p/FBXW7轴促进HG处理的ARPE-19细胞增殖和迁移,同时抑制细胞凋亡,提示 lncRNA VIM-AS1作为治疗靶点潜力巨大。

    Abstract

    Objective:Our study aimed to probe the potential molecular mechanism of long non - coding RNA(lncRNA)VIM Antisense RNA 1(VIM-AS1)in diabetic retinopathy. Methods:LncRNA VIM-AS1,miR-497-5p and FBXW7 mRNA expressions were determined using qRT - PCR. The FBXW7 protein level was also detected using western blotting. The cell viability,migration and apoptosis were evaluated using CCK-8 assay,wound healing assay and flow cytometry analysis,respectively. Additionally,the binding relationships among lncRNA VIM-AS1,miR-497-5p and FBXW7 were verified by dual luciferase reporter assaies. Results:LncRNA VIM -AS1 and FBXW7 expressions were remarkably reduced in HG -treated ARPE - 19 cells,while miR - 497 - 5p was upregulated. LncRNA VIM - AS1 could upregulate the expression of FBXW7 by competitively binding to miR - 497 - 5p. LncRNA VIM - AS1 overexpression promoted cell proliferation and migration,and inhibited cell apoptosis in HG-induced ARPE-19 cells,while miR-497- 5p overexpression abolished the effects of lncRNA VIM -AS1 overexpression on HG -induced ARPE -19 cells. Furthermore,FBXW7 knockdown abrogated the effects of miR -497-5p inhibition on cell phenotypes of HG -treated ARPE -19 cells. Conclusion:LncRNA VIM-AS1 could promote the proliferation and migration,while inhibited cell apoptosis of HG-treated ARPE-19 cells by regulation of miR-497-5p/FBXW7 axis,suggesting that lncRNA VIM-AS1 might have great potential as therapeutic target for diabetic retinopathy.

  • 糖尿病(diabetes mellitus,DM)是世界上最常见的代谢性疾病,由胰岛素缺乏及作用减弱引起[1]。目前全球有10%的人患有DM[2]。DM会引起微血管并发症,例如糖尿病视网膜病变(diabetic retinopathy, DR)、肾病和神经病变[3]。据报道,超过 30% 的DM 患者患有DR[4-5],即使积极治疗,仍有10%的 DR患者不可避免地会失明[6]。虽然早期检测和治疗对于防治DR非常重要,但是目前可用于 DR早期发现和风险预测的诊断性生物标志物仍需要探索。

  • 长链非编码RNA(long non⁃coding RNA,lncRNA) 是指转录本超过200 nt的单链RNA,参与调控许多生物过程[7]。已有研究表明,lncRNA与DR发生和发展密切相关,可作为DR诊断和治疗的潜在靶点[8-9]。例如,Liu等[10] 研究揭示了lncRNA MALAT1敲低可以抑制高糖(high glucose,HG)环境下的人视网膜微血管内皮细胞(human retinal microvascular endothelial cell,hRMEC)的小管形成。Zhang 等[11]研究显示 lncRNA AK077216过表达显著抑制人视网膜色素上皮细胞(human retinal pigment epithelial cell,hRPE) 的凋亡。lncRNA VIM 反义 RNA 1(LncRNA VIM Antisense RNA 1,lncRNA VIM⁃AS1)之前被鉴定为癌症相关的 lncRNA[12]。最近有研究显示,lncRNA VIM⁃AS1 在 DM 患者中异常表达[13]。更重要的是, lncRNA VIM⁃AS1在DM合并DR患者中表达明显降低,lncRNA VIM ⁃AS1 过表达明显抑制 HG 处理的 hRPE 的细胞凋亡[14],表明其在 DR 中起关键作用。但 lncRNA VIM⁃AS1 在 DR 中的具体作用机制有待进一步探讨。

  • 微小RNA(microRNA,miRNA)是一种长度约为 22 nt的非编码单链RNA分子,参与基因表达的转录后调控[15]。先前的一项研究显示,miR⁃497在DM大鼠的胰腺中显着上调,这表明miR⁃497可能在DM进展中充当某种作用[16]。此外,Li等[17] 研究显示miR⁃ 497⁃5p在HG处理的视网膜神经胶质细胞中显著上调,miR⁃497⁃5p 过表达显著促进 HG 处理的视网膜神经胶质细胞的凋亡。

  • F⁃box 和 WD⁃40 结构域蛋白(F⁃box and WD⁃40 domain proteins,FBXW7)作为泛素⁃蛋白酶体降解途径的关键识别因子之一,被证实在调节 DR 进展中起关键作用。Shao等[18] 证明了 FBXW7 敲低可以促进 DR 中的新生血管形成。据报道,DR 小鼠和HG 处理的 hRMEC 中 FBXW7 表达显著降低,并且 FBXW7过表达可以抑制HG诱导的血管生成[19]。因此,本研究对 lncRNA VIM ⁃ AS1、miR ⁃ 497 ⁃ 5p 和FBXW7 在 DR 发展中的调控关系及作用机制进行探讨。

  • 1 材料和方法

  • 1.1 材料

  • ARPE⁃19 购自美国模式培养物集存库(Ameri⁃ can type culture collection,ATCC)。 lncRNA VIM ⁃ AS1 的过表达质粒(overexpression plasmid of ln⁃ cRNA VIM⁃AS1,OE⁃VIM⁃AS1)、短发夹⁃FBXW7(sh⁃ FBXW7)、miR⁃497⁃5p 模拟物(miR⁃497⁃5p mimics)、 miR⁃497⁃5p 抑制剂(miR⁃497⁃5p inhibitror)及其阴性对照组(pcDNA3.1、shRNA、mimics/inhibitror NC)(上海吉玛基因)。双荧光素酶报告基因测定系统(北京Promega公司)。细胞计数试剂盒⁃8(cell counting kit⁃8,CCK⁃8)(上海生工公司)。Annexin V⁃FITC凋亡检测试剂盒、BCA 试剂盒(Beyotime 公司,上海)。SYBR 试剂盒(Thermo Fisher Scientific 公司,美国)。

  • 1.2 方法

  • 1.2.1 细胞培养和处理

  • 所有细胞均在含有10%胎牛血清(FBS)(Thermo Fisher Scientific公司,美国)和 1% 青霉素/链霉素溶液(上海生工)的 DMEM(Thermo Fisher Scientific 公司,美国)中于37℃ 5% CO2培养。HG处理为细胞用 30 mmol/L D⁃葡萄糖(Sigma⁃Aldrich公司,美国)处理 48 h。使用 600 μg/mL 晚期糖基化终末产物(ad⁃ vanced glycation end products,AGE)(Biovision 公司,美国)处理细胞,并将其作为HG处理的阳性对照组。

  • 1.2.2 细胞转染

  • 使用 LipofectamineTM 3000(Invitrogen 公司,美国)将OE⁃VIM⁃AS1、sh⁃FBXW7和miR⁃497⁃5p mim⁃ ics/inhibitror 及其阴性对照组(pcDNA3.1、shRNA、 mimics/inhibitror NC)转染 ARPE⁃19细胞。

  • 1.2.3 双荧光素酶报告基因检测

  • 使用常见的在线工具预测 lncRNA VIM⁃AS1、 miR⁃497⁃5p 和 FBXW7之间的结合位点。 PCR扩增人 lncRNA VIM⁃AS1/FBXW7 片段。使用定点突变试剂盒(Stratagene 公司,美国)对lncRNA VIM⁃AS1/ FBXW7 片段中的 miR⁃497⁃5p 结合位点进行定点突变检测。将 lncRNA VIM⁃AS1/FBXW7 序列的野生型(wild type,wt)和突变型(mutate,mut)报告质粒克隆到pmirGLO载体(上海吉玛基因)中。用 lncRNA VIM ⁃AS1⁃ wt/FBXW7⁃ wt 或 lncRNA VIM ⁃AS1⁃ mut/ FBXW7 ⁃ mut 质粒和 miR ⁃ 497 ⁃ 5p mimics 或 mimics NC 或 miR⁃497⁃5p inhibitor或inhibitor NC 共转染细胞LipofectamineTM 3000。使用双荧光素酶报告基因测定系统检查荧光素酶活性。

  • 1.2.4 伤口愈合试验

  • 将细胞接种到6孔板(Corning公司,美国)。当细胞融合程度达到约90%时,使用200 μL移液器吸头在融合的细胞单层中产生人工伤口。用PBS洗涤细胞3次并加入无血清培养基培养细胞,使用显微镜(Olympus公司,日本)在0 h和24 h拍摄图像。

  • 1.2.5 CCK⁃8检测

  • 将细胞接种在 96 孔板中,与 CCK⁃8(10 μL) 一起孵育,并在37℃的培养箱中孵育2 h。使用微孔板分光光度计(Thermo Fisher Scientific 公司,美国) 在450 nm处检测吸光度。

  • 1.2.6 细胞凋亡测定

  • 使用Annexin V⁃FITC凋亡检测试剂盒分析细胞凋亡。收获细胞并重新悬浮在500 μL的1×Annexin 结合缓冲液(中国Beyotime)中。细胞在黑暗条件下用 10 μL Annexin V ⁃ FITC 和 5 μL PI(中国 Beyo⁃ time)染色10 min,立即使用流式细胞仪分析样品。

  • 1.2.7 定量实时聚合酶链反应(quantitative reverse transcription⁃PCR,qRT⁃PCR)

  • 用 TRIzol 试剂(Thermo Fisher Scientific 公司,美国)分离总 RNA。对于 mRNA,使用逆转录酶试剂盒(Toyobo公司,日本)合成cDNA。对于 miRNA,使用第一链 cDNA 合成试剂盒合成 cDNA。然后,使用 SYBR 试剂盒将 cDNA 用于 qRT ⁃ PCR 测定。 miRNA 和 mRNA 的相对表达分别用 U6 和 GAPDH 为内参,用2-ΔΔCT法计算。研究中使用的引物如下: LncRNA VIM⁃AS1正义:5′⁃ACTGTAATGGACTCGT⁃ GGTG ⁃3′,反义:5′ ⁃CGTCGTGTTGTCCTGATG ⁃ 3′; miR⁃497⁃5p 正义:5′⁃CCTTCAGCAGCACACTGTGG⁃ 3′,反义:5′⁃CAGTGCAGGGTCCGAGGTAT⁃3′;FBXW7 正义:5′⁃ACTGGGCTTGTACCATGTTCA⁃3′,反义:5′⁃ TGAGGTCCCCAAAAGTTGTTG⁃3′;U6 正义:5′⁃CG⁃ CTTCGGCAGCACATATAC⁃3′,反义:5′⁃AAATATG⁃ GAACGCTTCACGA⁃3′;GAPDH 正义:5′⁃TCAAGA⁃ AGGTGGTGAAGCAGG ⁃3′,反义:5′ ⁃TCAAAGGTG⁃ GAGGAGTGGGT⁃3′。

  • 1.2.8 蛋白质印迹法

  • 用RIPA分离蛋白质,用BCA试剂盒(中国Bey⁃ otime)测定蛋白质浓度。样品通过 8%~12% SDS⁃ PAGE分离,进一步转移到PVDF膜(Millipore公司,美国)。然后将膜与针对 FBXW7(1∶1 000,Abcam公司,美国)和 GAPDH(1∶10 000,Sigma⁃Aldrich 公司,美国)的抗体在4℃下孵育过夜。用PBS⁃T洗涤后,将膜与用 HRP(1∶10 000,Abcam 公司,美国)标记的相应二抗孵育60 min。通过GEL成像系统(Bio⁃ Rad公司,美国)对膜进行可视化和成像。通过软件 Image J分析蛋白质的定量。

  • 1.3 统计学方法

  • 本研究使用 GraphPad Prism 8 进行统计数据分析。进行的所有实验至少重复3次。测量数据表示为均数±标准差(x-±s)。两两比较采用t检验,多组比较采用单因素方差分析。所有数据均来自至少 3个重复实验。P <0.05 表示差异有统计学意义。

  • 2 结果

  • 2.1 HG处理抑制ARPE⁃19细胞的增殖和迁移,同时通过下调lncRNA VIM⁃AS1促进细胞凋亡

  • 首先,评估了不同培养基中的ARPE⁃19细胞中 lncRNA VIM ⁃AS1 的表达,结果显示 lncRNA VIM ⁃ AS1 在 HG 及 AGE 处理后的 ARPE⁃19 细胞中的表达分别为0.40±0.05及0.45±0.06,正常培养基(NG) 组的表达为1.00±0.13,HG组及AGE组与NG相比显著下调,t值分别为7.449及6.723,P值分别为0.002 及 0.003(图1A)。为了评估 lncRNA VIM ⁃AS1 在 DR中的功能,用 lncRNA VIM⁃AS1过表达质粒转染 ARPE⁃19 细胞,并评估细胞表型。qRT⁃PCR结果显示,转染 OE ⁃VIM ⁃AS1 后 ARPE ⁃19 细胞中 lncRNA VIM ⁃AS1 的表达显著增加(4.51±0.87,t=6.481,P= 0.003,图1B)表明转染成功。CCK⁃8实验显示经过 HG 处理后,ARPE ⁃19 的细胞活力明显受到抑制 [(54.06±11.16)%,t=3.346,P=0.028,图1C]。 HG处理后,流式细胞检测结果显示Q2及Q3象限中的细胞凋亡明显增加[(18.48 ± 1.65)%,t=11.86,P <0.001]。过表达 lncRNA VIM ⁃AS1,细胞凋亡减少 [(7.69±2.28)%,t=6.640,P=0.003]。这表明 HG 处理后的ARPE⁃19 细胞的细胞增殖受到抑制,而过表达lncRNA VIM⁃AS1则逆转这一改变(图1D)。此外观察到HG处理ARPE⁃19 细胞后,伤口愈合实验显示细胞迁移受到抑制[(37.35±5.77)%,t=5.631,P= 0.005]。过表达 lncRNA VIM⁃AS1 后细胞迁移增加 [(65.60±8.87)%,t=5.299,P=0.006,图1E]。所有这些结果表明,HG 处理抑制了 ARPE⁃19 细胞的增殖和迁移,同时通过降低 lncRNA VIM⁃AS1 表达促进了细胞凋亡。

  • 2.2 LncRNA VIM⁃AS1 在 ARPE⁃19 细胞中通过海绵化miR⁃497⁃5p抑制miR⁃497⁃5p的表达

  • 众所周知,lncRNA 通过充当 miRNA 的海绵来实现生物学功能(即lncRNA通过与miRNA结合,减弱 miRNA 对靶基因的沉默,从而对 miRNA 的靶基因进行调控)。本研究发现在 lncRNA VIM⁃AS1 过表达后,ARPE⁃19细胞中miR⁃497⁃5p的表达显著降低(0.42 ± 0.08,t=6.768,P=0.003,图2A)。在转染 miR⁃497⁃5p mimics后,ARPE⁃19 细胞中 miR⁃497⁃5p 表达显著升高(3.31±0.30,t=11.38,P <0.001),而 miR⁃497⁃5p 在 miR⁃497⁃5p 敲低后显著下调(0.31± 0.11,t=5.911,P=0.004,图2B),表明转染成功。预测lncRNA VIM⁃AS1和miR⁃497⁃5p之间存在结合位点(图2C)。为了进一步验证这种结合关系,进行了双荧光素酶报告基因测定,结果显示 miR⁃497⁃5p mimics/inhibitor在与 lncRNA VIM⁃AS1⁃wt 质粒共转染后抑制/提高了荧光素酶活性(0.54±0.09)/(1.53± 0.21),t值分别为5.541及4.228,P值分别为0.005及 0.013。共转染 lncRNA VIM⁃AS1⁃mut 载体后没有发生显著性影响(P >0.05,图2D)。因此,lncRNA VIM⁃AS1 靶向 miR⁃497⁃5p 以负向调节 miR⁃497⁃5p 表达。

  • 2.3 miR⁃497⁃5p过表达逆转lncRNA VIM⁃AS1过表达对HG处理的ARPE⁃19细胞迁移和凋亡的影响

  • 首先,观察到 miR ⁃ 497 ⁃ 5p 在 HG 处理后的 ARPE ⁃19 细胞中显著上调(2.36±0.31,t=6.820,P= 0.002,图3A)。为探究 lncRNA VIM⁃AS1/miR⁃497⁃5p 在DR进展中的潜在作用,将 miR⁃497⁃5p mimics和 OE ⁃VIM ⁃AS1 共转染 HG 处理的 ARPE ⁃ 19 细胞。CCK⁃8实验显示lncRNA VIM⁃AS1过表达促进了HG 处理的ARPE⁃19细胞的活性[(181.01±26.98)%,t= 4.621,P=0.009]。在miR⁃497⁃5p过表达后细胞活性为(93.98±17.00)%(t=4.726,P=0.009),miR⁃497⁃5p 过表达能恢复lncRNA VIM⁃AS1过表达的造成的细胞活性增加(图3B)。与 HG+mimics NC+vector 组相比,HG+mimics NC+OE⁃VIM⁃AS1 组的流式细胞检测结果显示Q2及Q3象限中的细胞凋亡明显减少 [(7.92±1.94)%,t=11.33,P <0.001]。而转染 miR⁃ 497 ⁃ 5p mimics 后细胞凋亡为(19.59 ± 3.44)%(t= 5.528,P=0.005)。转染 miR⁃497⁃5p mimics 逆转了 lncRNA VIM⁃AS1 过表达引起的细胞凋亡减少(图3C)。此外,OE ⁃ VIM ⁃ AS1 转染导致 HG 处理的 ARPE⁃19 细胞迁移增加[(58.61±5.17)%,t=5.551, P=0.005]。而 miR ⁃497⁃5p 过表达的细胞迁移为 (42.03±7.75)%(t=3.083,P=0.036)。miR⁃497⁃5p 过表达能够逆转lncRNA VIM⁃AS1过表达引起的细胞迁移增加(图3D)。因此,miR⁃497⁃5p 过表达逆转 lncRNA VIM⁃AS1 过表达对 HG 处理的 ARPE⁃19 细胞迁移和凋亡的影响。

  • 图1 HG处理抑制ARPE⁃19细胞的增殖和迁移,同时通过下调 lncRNA VIM⁃AS1促进细胞凋亡

  • Figure1 HG treatment inhibited the proliferation and migration of ARPE⁃19 cells,while promoting apoptosis by down⁃reg⁃ ulating lncRNA VIM⁃AS1

  • 图2 LncRNA VIM⁃AS1通过海绵化miR⁃497⁃5p抑制miR⁃497⁃5p表达

  • Figure2 LncRNA VIM⁃AS1 inhibits miR⁃497⁃5p expression by sponging miR⁃497⁃5p

  • 2.4 FBXW7是miR⁃497⁃5p的靶基因

  • qRT ⁃PCR 结果显示,FBXW7 的 mRNA 表达因 miR ⁃497⁃5p 过表达而显著降低[(0.43±0.13),t= 6.995,P=0.002]。miR ⁃ 497 ⁃ 5p 敲低后 FBXW7 的 mRNA 表达升高(2.16 ± 0.18,t=7.960,P=0.001,图4A)。免疫印迹检测结果显示显示,FBXW7的蛋白表达因 miR⁃497⁃5p 过表达而显著降低(0.16±0.04, t=6.995,P=0.002)。miR⁃497⁃5p 敲低后 FBXW7 的蛋白表达升高(0.63 ± 0.06,t=2.822,P=0.048,图4B)。使用生物信息学软件 miRanda 预测了 miR ⁃ 497⁃5p和FBXW7之间的潜在结合位点(图4C)。随后进行了双荧光素酶报告基因测定以验证miR⁃496 ⁃5p和FBXW7之间的相互作用,将FBXW7的3′UTR 区域构建至载体中报告基因luciferase的后面,构建荧光素酶质粒。然后转染至细胞中,比较过表达或干扰 miR⁃496⁃5p 后目的 FBXW7 的荧光素酶活性,发现过表达miR⁃496⁃5p后野生型FBXW7(FBXW7⁃ WT)的荧光素酶活性明显下降(0.55±0.19,t=3.702, P=0.021)。同时敲低 miR ⁃496⁃5p 后发现 FBXW7⁃ WT 的的荧光素酶活性明显上升(1.45 ± 0.11,t= 4.385,P=0.012)。miR⁃496⁃5p的过表达及敲低后突变型FBXW7的荧光素酶活性无显著改变(P >0.05,图4D)。因此,FBXW7 是 miR⁃497⁃5p 的靶基因,过表达miR⁃497⁃5p可以抑制 FBXW7的表达。

  • 2.5 敲低miR⁃497⁃5p可以调节FBXW7的表达促进 ARPE⁃19细胞的增殖和迁移并抑制细胞凋亡

  • 探索FBXW7对miR⁃497⁃5p介导的体外生物学功能的影响。qRT⁃PCR 检测显示,转染 sh⁃FBXW7 抑制了 FBXW7 mRNA 在 ARPE⁃19 细胞中的(0.36± 0.10,t=6.325,P=0.003,图5A)。免疫印迹检测结果显示转染 sh⁃FBXW7 抑制了 FBXW7 蛋白在 ARPE⁃ 19 细胞中的表达(0.21±0.08,t=4.590,P=0.010,图5B)。CCK⁃8检测实验的结果显示miR⁃497⁃5p的敲低促进了 HG 处理的 ARPE ⁃ 19 细胞的细胞活性 [(183.05 ± 22.38)%,t=6.269,P=0.003]。抑制 FBXW7可以逆转敲低miR⁃497⁃5p导致的细胞活性增加[(91.02±22.38)%,t=6.128,P=0.004,图5C]。此外,如图5D 所示,转染miR⁃497⁃5p inhibitor导致 HG处理的ARPE⁃19细胞凋亡减少[(7.79±1.66)%, t=9.309,P <0.001]。转染 sh⁃FBXW7后则可逆转转染miR⁃497⁃5p inhibitor导致的ARPE⁃19细胞凋亡减少[(19.43±4.02)%,t=4.636,P=0.009,图5D]。伤口愈合实验结果表明,miR⁃497⁃5p 的敲低促进了 HG 处理的 ARPE ⁃19 细胞的迁移[(62.30±7.48)%,t= 4.471,P=0.011],抑制 FBXW7而能够逆转细胞迁移的增多[(45.42±6.13)%,t=3.024,P=0.039,图5E]。因此,敲低miR⁃497⁃5p 促进了 ARPE⁃19 细胞的增殖和迁移,并通过调节FBXW7的表达抑制细胞凋亡。

  • 图3 miR⁃497⁃5p过表达逆转lncRNAVIM⁃AS1过表达对HG处理的ARPE⁃19细胞表型的影响

  • Figure3 miR⁃497⁃5p overexpression reverses the effect of lncRNA VIM⁃AS1 overexpression on the phenotype of HG⁃treat⁃ ed ARPE⁃19 cells

  • 3 讨论

  • DM 是一种高发的慢性病,其病理和生理的改变能够引起一系列并发症,对人类健康构成巨大威胁[20-21]。DR 常见于病程较长的 DM 患者[5],DR 是 DM相关失明的危险因素,中晚期DR可能会导致不可逆的病变。DR的发病机制尚不清楚,给DR的早期诊断和治疗带来了困难。本研究发现 lncRNA VIM⁃AS1 通过调节 miR⁃497⁃5p/FBXW7 轴来介导 DR中ARPE⁃19细胞的增殖、迁移和凋亡。

  • 图4 FBXW7是miR⁃497⁃5p的靶基因

  • Figure4 FBXW7 is the target gene of miR⁃497⁃5p

  • 视网膜上皮细胞是指滋养视网膜视觉细胞[22]。视网膜上皮细胞增殖降低和细胞凋亡增加会导致 DR患者视力丧失[23]。正如广泛报道的那样,视网膜上皮细胞的增殖和凋亡受某些 lncRNA的调节[24]。 LncRNA AK077216可以抑制HG处理的ARPE⁃19细胞的凋亡[11]。此外,据报道 lncRNA MEG3 可抑制 HG处理的ARPE⁃19细胞的凋亡[25]。此外,lncRNA VIM⁃AS1在DM和DM相关并发症中的作用之前已有报道[13-1426],但在DR中的调节功能尚不清楚。最近一项研究表明,与其他DM 患者相比,DR患者的 lncRNA VIM⁃AS1表达降低[14],这表明 lncRNA VIM⁃ AS1 有可能成为 DR 预后和治疗的新型生物标志物。值得注意的是,据报道,lncRNA VIM⁃AS1通过 miR⁃29 抑制HG诱导的人视网膜上皮细胞凋亡[14]。然而,lncRNA VIM⁃AS1 调控DR进展的具体分子机制仍不清楚。本研究中,lncRNA VIM⁃AS1 在HG处理的ARPE⁃19细胞中被下调,这与之前的研究完全一致[14]。此外,lncRNA VIM⁃AS1过表达促进了HG 处理的ARPE⁃19细胞的增殖和迁移,并抑制了细胞凋亡。

  • lncRNA通过充当miRNA的内源诱饵发挥竞争性内源性RNA(competing endogenous RNA,ceRNA) 的作用,进而影响miRNA与其靶标的结合[27],这被认为是阐明lncRNA分子机制的重要途径之一。据此,科学界提出了 ceRNA 假说,这被描述为一种新的 RNA 调控机制[28]。据报道,lncRNA MIR497HG 通过调节miR⁃128⁃3p来抑制HG处理的视网膜内皮细胞的增殖和迁移[29]。然而,尚不清楚lncRNA VIM⁃ AS1是否通过充当miRNA海绵在DR中发挥调节作用。本研究提出了一个新的ceRNA调控网络,其中 lncRNA VIM⁃AS1海绵化了miR⁃497⁃5p。据报道,在 HG 条件下,miR⁃497的表达与胰岛素水平一致[30]。此外,miR⁃497在糖尿病肾病患者和 HG处理的HK⁃ 2细胞中显著下调,miR⁃497过表达可以抑制HG处理的 HK⁃2 细胞的焦亡[31]。更重要的是,据报道, miR⁃497在DM大鼠的视网膜和HG处理的Müller细胞中显著上调[32],表明miR⁃497在不同的糖尿病并发症中具有不同的表达。本研究证实了 miR⁃497⁃ 5p在HG处理的ARPE⁃19细胞中显著上调。此外,还发现 lncRNA VIM⁃AS1 可以通过直接靶向 miR⁃ 497⁃5p 负调控 ARPE⁃19 细胞中的 miR⁃497⁃5p。正如预期的那样,miR⁃497⁃5p mimics 逆转了 lncRNA VIM⁃AS1过表达对HG诱导的ARPE⁃19细胞表型的影响。本研究所有的结果都提供了支持DR中存在lncRNA VIM⁃AS1/miR⁃497⁃5p 调节轴的证据。

  • 图5 敲低miR⁃497⁃5p可以调节FBXW7的表达促进ARPE⁃19细胞的增殖和迁移并抑制细胞凋亡

  • Figure5 Knockdown of miR ⁃497⁃5p can regulate the expression of FBXW7,promote the proliferation and migration of ARPE⁃19 cells and inhibit apoptosis

  • 众所周知,失调的miRNA结合靶mRNA来抑制基因表达,从而调控DR进展[33-34]。因此,本研究旨在探索 miR⁃497⁃5p在调节DR进展中的下游靶点。 FBXW7 作为胎球蛋白 A 的 E3 泛素连接酶,参与维持葡萄糖稳态,其在肥胖患者肝脏中的表达对葡萄糖代谢具有多种有益作用;同时,敲除正常肝脏中的 FBXW7会导致葡萄糖稳态受损[35]。更重要的是,据报道,FBXW7 可抑制 DR 中的血管生成[19]。本研究发现 HG 处理的 ARPE⁃19 细胞中 FBXW7 的表达显著降低。FBXW7 是 miR ⁃497⁃5p 的直接靶标, FBXW7调节靶蛋白泛素化和降解,FBXW7 的底物包括几种广泛研究的癌蛋白,例如 MYC、Notch、哺乳动物雷帕霉素靶蛋白(mammalian target of rapamy⁃ cin,mTOR,mTOR),FBXW7与底物构建调控网络,可以调节细胞的增殖、凋亡及转移[36]。FBXW7敲低消除了 miR⁃497⁃5p 抑制 ARPE⁃19 细胞生长的调节。因此,lncRNA VIM⁃AS1/miR⁃497⁃5p/FBXW7 轴可能是DR发展的关键参与者。

  • 本研究证明了 lncRNA VIM ⁃AS1 通过海绵化 miR⁃497⁃5p 上调FBXW7。重要的是,lncRNA VIM⁃ AS1 的过表达促进了HG处理的ARPE⁃19细胞的增殖和迁移,并通过 miR⁃497⁃5p/FBXW7 轴抑制细胞凋亡,最终影响DR进展。然而,本研究仍有一些不足之处,如FBXW7调控ARPE⁃19细胞增殖、凋亡及迁移的具体通路是什么?未来需要进行体内实验来验证我们的发现。此外,需要探索lncRNA VIM⁃ AS1/miR⁃497⁃5p/FBXW7 轴对 DR 新生血管的潜在影响。

  • 参考文献

    • [1] MARESCH C C,STUTE D C,FLEMING T,et al.Hyper⁃ glycemia induces spermatogenic disruption via major pathways of diabetes pathogenesis[J].Sci Rep,2019,9(1):13074

    • [2] SCHMIDT A M.Highlighting diabetes mellitus:The epi⁃ demic continuess[J].Arterioscler Thromb Vasc Biol,2018,38(1):e1-e8

    • [3] COLE J B,FLOREZ J C.Genetics of diabetes mellitus and diabetes complications[J].Nat Rev Nephrol,2020,16(7):377-390

    • [4] 胡启桢,顾蕙兰,秦瑶,等.161例成人起病经典1型糖尿病微血管并发症的临床特征及相关风险因素分析 [J].南京医科大学学报(自然科学版),2021,41(9):1364-1368

    • [5] TEO Z L,THAM Y C,YU M,et al.Global prevalence of diabetic retinopathy and projection of burden through 2045:systematic review and meta⁃analysis.ophthalmology [J].Ophthalmology,2021,128(11):1580-1591

    • [6] SASONGKO M B,WIDYAPUTRI F,AGNI A N,et al.Prevalence of diabetic retinopathy and blindness in indo⁃ nesian adults with type 2 diabetes[J].Am J Ophthalmol,2017,181:9-87

    • [7] IYER M K,NIKNAFS Y S,MALIK R,et al.The land⁃ scape of long noncoding RNAs in the human transcrip⁃ tome[J].Nat Genet,2015,47(3):199-208

    • [8] WEI J C,SHI Y L,WANG Q.LncRNA ANRIL knock⁃ down ameliorates retinopathy in diabetic rats by inhibit⁃ ing the NF⁃κB pathway[J].Eur Rev Med Pharmacol Sci,2019,23(18):7732-7739

    • [9] ZHANG D,QIN H,LENG Y,et al.LncRNA MEG3 over⁃ expression inhibits the development of diabetic retinopa⁃ thy by regulating TGF⁃β1 and VEGF[J].Exp Ther Med,2018,16(3):2337-2342

    • [10] LIU P,JIA S B,SHI J M,et al.et al.LncRNA⁃MALAT1 promotes neovascularization in diabetic retinopathy through regulating miR⁃125b/VE⁃cadherin axis[J].Bios⁃ ci Rep,2019,39(5):BSR20181469

    • [11] ZHANG X,SHI E,YANG L,et al.LncRNA AK077216 is downregulated in diabetic retinopathy and inhibited the apoptosis of retinal pigment epithelial cells by downregu⁃ lating miR⁃383[J].Endocr J,2019,66(11):1011-1016

    • [12] REZANEJAD B H,ASADI M H,YAGHOOBI M M.Long noncoding RNA VIM⁃AS1 promotes colorectal cancer pro⁃ gression and metastasis by inducing EMT[J].Eur J Cell Biol,2018,97(4):279⁃288

    • [13] ERFANIAN O M,GHAEDI H,KAZEROUNI F,et al.Clinical significance of long noncoding RNA VIM ⁃ AS1 and CTBP1⁃AS2 expression in type 2 diabetes[J].J Cell Biochem,2019,120(6):9315-9323

    • [14] ZENG F,LUO G,LU Y,et al.Long non⁃coding RNA VIM Antisense RNA 1(VIM ⁃ AS1)sponges microRNA ⁃ 29 to participate in diabetic retinopathy[J].Acta Diabetol,2020,57(9):1111-1116

    • [15] BARTEL D P.MicroRNAs:genomics,biogenesis,mecha⁃ nism,and function[J].Cell,2004,116(2):281-97

    • [16] ZENG L Q,WEI S B,SUN Y M,et al.Systematic profil⁃ ing of mRNA and miRNA expression in the pancreatic is⁃ lets of spontaneously diabetic Goto⁃Kakizaki rats[J].Mol Med Rep,2015,11(1):67-74

    • [17] SUN N,ZHANG G,LIU Y.Long non ⁃coding RNA XIST sponges miR ⁃ 34a to promotes colon cancer progression via Wnt/beta⁃catenin signaling pathway[J].Gene,2018,665:141-148

    • [18] SHAO J,FAN G,YIN X,et al.A novel transthyretin/STAT4/miR ⁃ 223 ⁃ 3p/FBXW7 signaling pathway affects neovascularization in diabetic retinopathy[J].Mol Cell Endocrinol,2019,498:110541

    • [19] HU L,LV X,LI D,et al.The anti ⁃ angiogenesis role of FBXW7 in diabetic retinopathy by facilitating the ubiqui⁃ tination degradation of c ⁃Myc to orchestrate the HDAC2 [J].J Cell Mol Med,2021,25(4):2190-2202

    • [20] BERG K,CLEMMENSEN T S,TRAM E M,et al.Surviv⁃ al,graft function,and of allograft vasculopathy in heart transplant patients receiving adverse risk profile donor hearts[J].Clin Transplant,2018,32(8):e13343

    • [21] CARRAL ⁃ SANTANDER I E,SANTOS ⁃ PALACIOS A,MARTÍNEZ⁃BAEZ B E,et al.Secondary hyperhomocyste⁃ inemia ⁃ related occlusive retinal vasculopathy:A case re⁃ port[J].Am J Ophthalmol Case Rep,2019,13:41⁃45

    • [22] BOYER M M,POULSEN G L,NORK T M.Relative con⁃ tributions of the neurosensory retina and retinal pigment epithelium to macular hypofluorescence[J].Arch Oph⁃ thalmol,2000,118(1):27-31

    • [23] SIMÓ R,VILLARROEL M,CORRALIZA L,et al.The ret⁃ inal pigment epithelium:something more than a constitu⁃ ent of the blood⁃retinal barrier⁃⁃implications for the patho⁃ genesis of diabetic retinopathy[J].J Biomed Biotechnol,2010:190724

    • [24] LI Y,XU F,XIAO H,et al.Long noncoding RNA BDNF⁃ AS inversely regulated BDNF and modulated high ⁃ glu⁃ cose induced apoptosis in human retinal pigment epitheli⁃ al cells[J].J Cell Biochem,2018,119(1):817-823

    • [25] XIAO F,LI L,FU J S,et al.Regulation of the miR⁃19b⁃ mediated SOCS6 ⁃ JAK2/STAT3 pathway by lncRNA MEG3 is involved in high glucose ⁃ induced apoptosis in hRMECs[J].Biosci Rep,2020,40(7):BSR20194370

    • [26] TAHERI M,EGHTEDARIAN R,GHAFOURI ⁃FARD S,et al.Non⁃coding RNAs and type 2 diabetes mellitus[J].Arch Physiol Biochem,2020:1-10

    • [27] CUI H,XU Z,QU C.Tetramethylpyrazine ameliorates iso⁃ flurane⁃induced cognitive dysfunction by inhibiting neuro⁃ inflammation via miR ⁃ 150 in rats[J].Exp Ther Med,2020,20(4):3878-3887

    • [28] PENG W X,KOIRALA P,MO Y Y.LncRNA ⁃mediated regulation of cell signaling in cancer[J].Oncogene,2017,36(41):5661-5667

    • [29] YANG J,YANG F J,WANG Y G,et al.LncRNA MIR497HG inhibits proliferation and migration of retinal endothelial cells under high ⁃ level glucose treatment via miRNA⁃128⁃3p/SIRT1 axis[J].Eur Rev Med Pharmacol Sci,2020,24(11):5871-5877

    • [30] LANG H,XIANG Y,LIN N,et al.Identification of a pan⁃ el of MiRNAs as positive regulators of insulin release in pancreatic Β ⁃ cells[J].Cell Physiol Biochem,2018,48(1):185-193

    • [31] WANG J,ZHAO S M.LncRNA ⁃ antisense non ⁃ coding RNA in the INK4 locus promotes pyroptosis via miR⁃497/thioredoxin⁃interacting protein axis in diabetic nephropa⁃ thy[J].Life Sci,2021,264:118728

    • [32] LI X J.Long non⁃coding RNA nuclear paraspeckle assem⁃ bly transcript 1 inhibits the apoptosis of retina Müller cells after diabetic retinopathy through regulating miR ⁃ 497/brain⁃derived neurotrophic factor axis[J].Diab Vasc Dis Res,2018,15(3):204-213

    • [33] BAO X Y,CAO J.MiRNA⁃138⁃5p protects the early dia⁃ betic retinopathy by regulating NOVA1[J].Eur Rev Med Pharmacol Sci,2019,23(18):7749-7756

    • [34] ZHENG Y,LIU Y,WANG L,et al.MicroRNA-126 sup⁃ presses the proliferation and migration of endothelial cells in experimental diabetic retinopathy by targeting polo ⁃ like kinase 4[J].Int J Mol Med,2021,47(1):151-160

    • [35] ZHAO J,XIONG X,LI Y,et al.Hepatic F ⁃ Box protein FBXW7 maintains glucose homeostasis through degrada⁃ tion of fetuin⁃A[J].Diabetes,2018,67(5):818-830

    • [36] ZHANG G,LI S,LU J,et al.LncRNA MT1JP functions as a ceRNA in regulating FBXW7 through competitively binding to miR⁃92a⁃3p in gastric cancer[J].Mol Cancer,2018,17(1):87

  • 参考文献

    • [1] MARESCH C C,STUTE D C,FLEMING T,et al.Hyper⁃ glycemia induces spermatogenic disruption via major pathways of diabetes pathogenesis[J].Sci Rep,2019,9(1):13074

    • [2] SCHMIDT A M.Highlighting diabetes mellitus:The epi⁃ demic continuess[J].Arterioscler Thromb Vasc Biol,2018,38(1):e1-e8

    • [3] COLE J B,FLOREZ J C.Genetics of diabetes mellitus and diabetes complications[J].Nat Rev Nephrol,2020,16(7):377-390

    • [4] 胡启桢,顾蕙兰,秦瑶,等.161例成人起病经典1型糖尿病微血管并发症的临床特征及相关风险因素分析 [J].南京医科大学学报(自然科学版),2021,41(9):1364-1368

    • [5] TEO Z L,THAM Y C,YU M,et al.Global prevalence of diabetic retinopathy and projection of burden through 2045:systematic review and meta⁃analysis.ophthalmology [J].Ophthalmology,2021,128(11):1580-1591

    • [6] SASONGKO M B,WIDYAPUTRI F,AGNI A N,et al.Prevalence of diabetic retinopathy and blindness in indo⁃ nesian adults with type 2 diabetes[J].Am J Ophthalmol,2017,181:9-87

    • [7] IYER M K,NIKNAFS Y S,MALIK R,et al.The land⁃ scape of long noncoding RNAs in the human transcrip⁃ tome[J].Nat Genet,2015,47(3):199-208

    • [8] WEI J C,SHI Y L,WANG Q.LncRNA ANRIL knock⁃ down ameliorates retinopathy in diabetic rats by inhibit⁃ ing the NF⁃κB pathway[J].Eur Rev Med Pharmacol Sci,2019,23(18):7732-7739

    • [9] ZHANG D,QIN H,LENG Y,et al.LncRNA MEG3 over⁃ expression inhibits the development of diabetic retinopa⁃ thy by regulating TGF⁃β1 and VEGF[J].Exp Ther Med,2018,16(3):2337-2342

    • [10] LIU P,JIA S B,SHI J M,et al.et al.LncRNA⁃MALAT1 promotes neovascularization in diabetic retinopathy through regulating miR⁃125b/VE⁃cadherin axis[J].Bios⁃ ci Rep,2019,39(5):BSR20181469

    • [11] ZHANG X,SHI E,YANG L,et al.LncRNA AK077216 is downregulated in diabetic retinopathy and inhibited the apoptosis of retinal pigment epithelial cells by downregu⁃ lating miR⁃383[J].Endocr J,2019,66(11):1011-1016

    • [12] REZANEJAD B H,ASADI M H,YAGHOOBI M M.Long noncoding RNA VIM⁃AS1 promotes colorectal cancer pro⁃ gression and metastasis by inducing EMT[J].Eur J Cell Biol,2018,97(4):279⁃288

    • [13] ERFANIAN O M,GHAEDI H,KAZEROUNI F,et al.Clinical significance of long noncoding RNA VIM ⁃ AS1 and CTBP1⁃AS2 expression in type 2 diabetes[J].J Cell Biochem,2019,120(6):9315-9323

    • [14] ZENG F,LUO G,LU Y,et al.Long non⁃coding RNA VIM Antisense RNA 1(VIM ⁃ AS1)sponges microRNA ⁃ 29 to participate in diabetic retinopathy[J].Acta Diabetol,2020,57(9):1111-1116

    • [15] BARTEL D P.MicroRNAs:genomics,biogenesis,mecha⁃ nism,and function[J].Cell,2004,116(2):281-97

    • [16] ZENG L Q,WEI S B,SUN Y M,et al.Systematic profil⁃ ing of mRNA and miRNA expression in the pancreatic is⁃ lets of spontaneously diabetic Goto⁃Kakizaki rats[J].Mol Med Rep,2015,11(1):67-74

    • [17] SUN N,ZHANG G,LIU Y.Long non ⁃coding RNA XIST sponges miR ⁃ 34a to promotes colon cancer progression via Wnt/beta⁃catenin signaling pathway[J].Gene,2018,665:141-148

    • [18] SHAO J,FAN G,YIN X,et al.A novel transthyretin/STAT4/miR ⁃ 223 ⁃ 3p/FBXW7 signaling pathway affects neovascularization in diabetic retinopathy[J].Mol Cell Endocrinol,2019,498:110541

    • [19] HU L,LV X,LI D,et al.The anti ⁃ angiogenesis role of FBXW7 in diabetic retinopathy by facilitating the ubiqui⁃ tination degradation of c ⁃Myc to orchestrate the HDAC2 [J].J Cell Mol Med,2021,25(4):2190-2202

    • [20] BERG K,CLEMMENSEN T S,TRAM E M,et al.Surviv⁃ al,graft function,and of allograft vasculopathy in heart transplant patients receiving adverse risk profile donor hearts[J].Clin Transplant,2018,32(8):e13343

    • [21] CARRAL ⁃ SANTANDER I E,SANTOS ⁃ PALACIOS A,MARTÍNEZ⁃BAEZ B E,et al.Secondary hyperhomocyste⁃ inemia ⁃ related occlusive retinal vasculopathy:A case re⁃ port[J].Am J Ophthalmol Case Rep,2019,13:41⁃45

    • [22] BOYER M M,POULSEN G L,NORK T M.Relative con⁃ tributions of the neurosensory retina and retinal pigment epithelium to macular hypofluorescence[J].Arch Oph⁃ thalmol,2000,118(1):27-31

    • [23] SIMÓ R,VILLARROEL M,CORRALIZA L,et al.The ret⁃ inal pigment epithelium:something more than a constitu⁃ ent of the blood⁃retinal barrier⁃⁃implications for the patho⁃ genesis of diabetic retinopathy[J].J Biomed Biotechnol,2010:190724

    • [24] LI Y,XU F,XIAO H,et al.Long noncoding RNA BDNF⁃ AS inversely regulated BDNF and modulated high ⁃ glu⁃ cose induced apoptosis in human retinal pigment epitheli⁃ al cells[J].J Cell Biochem,2018,119(1):817-823

    • [25] XIAO F,LI L,FU J S,et al.Regulation of the miR⁃19b⁃ mediated SOCS6 ⁃ JAK2/STAT3 pathway by lncRNA MEG3 is involved in high glucose ⁃ induced apoptosis in hRMECs[J].Biosci Rep,2020,40(7):BSR20194370

    • [26] TAHERI M,EGHTEDARIAN R,GHAFOURI ⁃FARD S,et al.Non⁃coding RNAs and type 2 diabetes mellitus[J].Arch Physiol Biochem,2020:1-10

    • [27] CUI H,XU Z,QU C.Tetramethylpyrazine ameliorates iso⁃ flurane⁃induced cognitive dysfunction by inhibiting neuro⁃ inflammation via miR ⁃ 150 in rats[J].Exp Ther Med,2020,20(4):3878-3887

    • [28] PENG W X,KOIRALA P,MO Y Y.LncRNA ⁃mediated regulation of cell signaling in cancer[J].Oncogene,2017,36(41):5661-5667

    • [29] YANG J,YANG F J,WANG Y G,et al.LncRNA MIR497HG inhibits proliferation and migration of retinal endothelial cells under high ⁃ level glucose treatment via miRNA⁃128⁃3p/SIRT1 axis[J].Eur Rev Med Pharmacol Sci,2020,24(11):5871-5877

    • [30] LANG H,XIANG Y,LIN N,et al.Identification of a pan⁃ el of MiRNAs as positive regulators of insulin release in pancreatic Β ⁃ cells[J].Cell Physiol Biochem,2018,48(1):185-193

    • [31] WANG J,ZHAO S M.LncRNA ⁃ antisense non ⁃ coding RNA in the INK4 locus promotes pyroptosis via miR⁃497/thioredoxin⁃interacting protein axis in diabetic nephropa⁃ thy[J].Life Sci,2021,264:118728

    • [32] LI X J.Long non⁃coding RNA nuclear paraspeckle assem⁃ bly transcript 1 inhibits the apoptosis of retina Müller cells after diabetic retinopathy through regulating miR ⁃ 497/brain⁃derived neurotrophic factor axis[J].Diab Vasc Dis Res,2018,15(3):204-213

    • [33] BAO X Y,CAO J.MiRNA⁃138⁃5p protects the early dia⁃ betic retinopathy by regulating NOVA1[J].Eur Rev Med Pharmacol Sci,2019,23(18):7749-7756

    • [34] ZHENG Y,LIU Y,WANG L,et al.MicroRNA-126 sup⁃ presses the proliferation and migration of endothelial cells in experimental diabetic retinopathy by targeting polo ⁃ like kinase 4[J].Int J Mol Med,2021,47(1):151-160

    • [35] ZHAO J,XIONG X,LI Y,et al.Hepatic F ⁃ Box protein FBXW7 maintains glucose homeostasis through degrada⁃ tion of fetuin⁃A[J].Diabetes,2018,67(5):818-830

    • [36] ZHANG G,LI S,LU J,et al.LncRNA MT1JP functions as a ceRNA in regulating FBXW7 through competitively binding to miR⁃92a⁃3p in gastric cancer[J].Mol Cancer,2018,17(1):87