-
高原地区空气稀薄,氧分压降低。随着海拔的升高,机体的活性氧(reactive oxygen species,ROS) 产生加速,细胞和组织中ROS的过度产生和积累以及低压低氧刺激缺氧诱导因子(hypoxia inducible factor,HIF)释放[1],可引起肺部、心血管和代谢性疾病等[2],如急性高山病(acute mountain sickness, AMS)、高原脑水肿(high ⁃ altitude cerebral edema, HACE)和高原肺水肿(high ⁃ altitude pulmonary edema,HAPE),这些疾病可以在海拔上升到一定高度后几个小时到几天内的任何时间发展,严重程度从轻度到危及生命[3]。此外,在低压低氧条件下,细胞通过调节基因表达来适应低氧环境,机体许多代谢变化受HIF的调节,参与编码的酶涉及糖酵解、脂质代谢、营养吸收、过氧化物酶体代谢和线粒体功能等过程的调节[4-5]。因此,机体在长期处于高原低氧环境下引发的一系列能量代谢、过氧化物酶体代谢、线粒体功能的改变越来越受研究者的关注。
-
近年来,转录组学测序(RNA⁃Seq)技术有了突飞猛进的发展,利用RNA⁃Seq技术可以帮助我们了解各种条件下基因的差异表达情况。研究表明, RNA⁃Seq已成为研究基因表达、探索RNA生物发生和代谢广泛应用和不可或缺的方法[6]。对大量差异表达基因(differentially express gene,DEG)的统计分析,有助于探索不同条件下基因表达改变引起的一系列生理、生化以及免疫学疾病,从而帮助我们阐明各种复杂疾病的潜在发病机制[7]。目前,RNA⁃ Seq技术已经广泛应用于研究高原低压低氧胁迫条件下机体各组织器官的应激分子变化情况,以及阐明复杂高原疾病的机制。RNA⁃Seq应用于早期慢性阻塞性肺病(chronic obstructive pulmonary disease, COPD)患者肺组织的研究,发现COPD 受试者肺组织中氧化磷酸化和蛋白质分解代谢相关的基因表达降低可能与染色质修饰相关基因的失调存在密切联系[8]。低压低氧可以有效调节免疫、炎症过程和能量代谢。将大鼠小肠组织暴露于高原低氧条件下,发现PPAR信号通路、脂代谢、维生素消化吸收等通路显著上调,提示低氧条件下会导致组织器官出现代谢失调[9-10]。Lu等[11] 分析了藏绵羊复杂的生命过程并通过 RNA⁃Seq 技术研究其适应高海拔缺氧条件的表型,进一步筛选与调控藏绵羊缺氧适应相关的基因,通过基因本体数据库(gene ontology, GO)注释分析和京都基因和基因组百科全书数据库 (Kyoto encyclopedia of genes and genomes,KEGG)富集分析,发现DEG在高原地区藏绵羊的能量代谢、免疫反应、氧化应激、消化和新陈代谢以及体温调节等途径显著富集。通过对不同海拔高度饲养的藏猪进行 RNA⁃Seq 分析,结果提示高原地区藏猪 DEG主要富集在HIF⁃1信号通路和血管内皮生长因子(vascular endothelial growth factor,VEGF)信号通路,这些DEG与机体适应低压低氧条件相关[12]。以上结果显示,RNA⁃Seq技术应用广泛,为研究低压低氧条件下高海拔生存机体复杂的基因表达情况及遗传特性提供了有利条件。因此,关注转录组学变化的潜在机制可以为人类及高原物种适应高原低压低氧胁迫提供依据。
-
肾脏是机体重要的代谢器官,需要大量的三磷酸腺苷(adenosine triphosphate,ATP)来维持水和溶质重吸收所需的能量,能量产生或利用异常时可导致细胞功能障碍和死亡[13]。因此,本研究选取小鼠的肾脏组织作为研究对象,通过 RNA⁃Seq 技术,比较高原低氧与平原常氧条件下基因的差异表达情况,从而筛选出与低压低氧胁迫相适应的 DEG,重点关注氧化磷酸化、能量代谢、过氧化物酶体相关基因在高原低氧暴露下的变化,探究肾脏在低氧胁迫下的分子响应机制。
-
1 材料和方法
-
1.1 材料
-
1.1.1 实验动物及分组
-
选用购自西安交通大学医学院实验动物中心的 6~8 周龄 C57BL/6 小鼠为实验对象,将小鼠随机分为两组(每组 5 只),其中一组饲养于海拔 400 m的西安交通大学医学部实验动物中心,作为本研究的对照组即平原肾脏对照组(plain kidney control group,PKC);另一组饲养于海拔 4 200 m 的青海省果洛藏族自治州玛多县人民医院实验动物房,作为实验组即高原肾脏实验组(high⁃altitude kidney test group,HKT)。将两组小鼠置于相同的饲养环境下分笼喂养,环境温度为18~25℃,相对湿度为40%~50%,在饲养过程中给予相同的水和食物。饲养 30 d后,在无菌条件下分别采集PKC组和HKT组的小鼠肾脏组织,并将组织置于液氮中快速冷冻,然后于-80℃低温储存。
-
1.1.2 实验试剂
-
无酶无菌水(北京 Solarbio 公司);TRIzol RNA 提取试剂(Invitrogen 公司,美国);逆转录试剂盒 PrimeScriptTM RT reagent kit with gDNA eraser、qPCR 试剂盒 TB Green® Premix Ex TaqTMⅡ(Tli RNaseH Plus)(TaKaRa 公司,日本);引物由上海 Sangon Biotech公司合成。
-
1.2 方法
-
1.2.1 总RNA的提取
-
根据制造商的说明使用TRIzol试剂,从PKC组和HKT组的肾脏组织样本中提取总RNA,然后立即储存在-80℃的冰箱中。通过纳米光度计光谱仪检测 RNA 纯度,同时用安捷伦 2100 生物分析仪检测 RNA的完整性及其质量。
-
1.2.2 cDNA文库的构建与质检
-
建库起始RNA 为total RNA,总量≥1 μg。建库中使用的建库试剂盒为 Illumina 试剂,在逆转录酶体系中合成 cDNA 第 1 条链,随后用 RNase H 降解 RNA链,然后以dNTPs为原料合成cDNA第2条链,然后对cDNA 进行纯化和扩增,最终获得文库。然后使用 RT⁃qPCR 技术对文库有效浓度进行准确定量(文库有效浓度高于2 nmol/L),以保证文库质量。
-
1.2.3 Illumina测序
-
库检合格后,把不同文库按照有效浓度及目标下机数据量的需求 pooling 后进行 Illumina 测序(北京诺禾致源有限公司)。
-
1.2.4 RNA⁃Seq质量评估和序列对比
-
为了保证数据分析的质量及可靠性,需要对高通量测序仪测得的原始数据(reads)进行过滤,同时对clean data进行Q20、Q30和GC含量计算。直接从基因组网站下载参考基因组和基因模型注释文件。使用HISAT2 v2.0.5构建参考基因组的索引,并将配对末端 clean reads 与参照基因组比对,对 5 个生物学重复样本之间的基因表达水平采用皮尔逊相关性检验进行分析。
-
1.2.5 差异表达基因分析
-
HKT组与PKC组之间DEG的分析通过DESeq2 软件(1.20.0)来完成,每组5个生物学重复。将DEG 基于|log2FC| >0,P <0.05 作为显著差异表达的阈值。其中 log2FC >0 的基因被定义为上调基因, log2FC <0的基因被定义为下调基因。
-
1.2.6 GO注释和KEGG富集分析
-
通过 clusterProfiler(3.4.4)软件实现 DEG 的 GO 分析,考虑校正 P 值 <0.05 的 GO term 通过 DEG 显著富集。GO 数据库包括生物过程(biological process,BP)、分子功能(molecular function,MF)和细胞组分(cellular components,CC)3部分。
-
KEGG数据库用于从分子水平即基因组测序结果来了解生物系统的高级功能和效用,通路数据库用于在数据库中注释路径上的DEG 以进行统计分析。同样使用clusterProfiler(3.4.4)软件分析KEGG 通路中 DEG 的显著富集分析并计算 P 值,P <0.05 为显著富集。
-
1.2.7 RT⁃qPCR验证
-
为了验证本次转录组测序结果的准确性,随机挑选了15个表达上调或下调的基因进行RT⁃qPCR 验证,其引物信息详见表1。cDNA 使用逆转录试剂盒合成,根据制造商的说明使用反转录 cDNA,以β⁃actin 作为内部参考基因,采用 LightCycler® 96 SW 1.1检测系统进行实时荧光定量PCR,测定基因 mRNA 表达量。PKC 组基因表达相对于 HKT 组的倍数变化用2-ΔΔCT方法计算。
-
1.3 统计学方法
-
SPSS18.0软件用于所有统计分析,符合正态分布的计量资料采用均数±标准差(± s)表示。使用两独立样本t检验比较HKT组与PKC组的DEG,同时用 GraphPad Prism 8.0 软件对 DEG 的 mRNA 表达量进行绘图,P <0.05为差异有统计学意义。
-
2 结果
-
2.1 测序数据处理与质量评估
-
通过双端测序法分别对PKC和HKT的5个重复样本进行测序,构建转录组文库,并对原始数据进行质量控制,获得了41.47 M(PKC)和40.68 M(HKT)的 clean reads。测序所得数据碱基错误率均为0.02%,且各个样本 Q20 均 >98.14%、Q30 均 >94.47%,GC 含量在46.97%~48.71%。因此,本次转录组测序数据质量较高、结果可靠,可用于后续分析(表2)。
-
2.2 差异表达基因分析
-
肾脏转录组分析结果显示,在韦恩图(图1)中,有12 326个基因在HKT和PKC中共表达,两组特有表达基因明显分离,其中HKT 组有1 096个特有表达基因。HKT 和 PKC 对比共鉴定出 3 007 个 DEG,包括 1 349 个上调基因和 1 658 个下调基因 (|log2FC|>0和P <0.05)。从火山图(图2)可见,暴露于高原低氧环境中的小鼠肾脏中下调基因多于上调基因。基于火山图中DEG,在PKC组与HKT组之间呈现这些基因的热图(图3),并显示样本和基因的分层聚类,与PKC组相比,HKT组DEG的表达模式差异较大。
-
2.3 差异表达基因的KEGG富集分析与GO注释分析
-
为了探索先前所得 DEG 在高原低氧胁迫下的生物学功能、适应性通路以及机体响应低氧应急的分子机制,我们进行了KEGG通路(图4)和GO注释富集(图5)分析。KEGG 结果显示,DEG 共富集到 322个信号通路,差异基因显著富集在过氧化物酶体、氧化磷酸化、产热、碳代谢以及三羧酸循环等多条通路中,提示高原低压低氧胁迫条件下,机体的能量代谢发生了重要变化。
-
用基因本体分析来注释受低压低氧影响的 DEG,在BP方面,富集磷酸核糖代谢过程、嘌呤核苷酸代谢过程、前体代谢物的能量产生过程;在CC方面,线粒体内膜、细胞器内膜和线粒体蛋白复合物活性较强;在 MF 方面,核糖体的结构成分和辅酶结合等显著富集。GO 注释分析结果表明,低压低氧环境下机体的能量及代谢在一定程度上发生了改变。GO 注释分析验证了 KEGG 通路分析的结果。
-
图中圈内所有数字之和代表 HKT 组与 PKC 组共表达基因总数,重叠区域表示组合间共有的基因个数,非重叠区域为该组特有基因个数。
-
图1 基因共表达韦恩图
-
Figure1 Venn diagram of gene coexpression
-
图中横坐标为log2FC值,表示基因在HKT组和PKC组中的表达倍数变化;纵坐标为-lgP,表示基因在HKT组和PKC组中表达差异的显著性水平。灰色的虚线表示差异基因筛选标准的阈值线。
-
图2 DEG火山图
-
Figure2 Volcano plot of DEG
-
2.4 RT⁃qPCR验证结果
-
为了进一步评估RNA测序结果的可靠性,随机选择 PRLR、APOE、APOA4、CYCS 和 HSPB1 等 15 个表达模式不同的DEG 进行RT⁃qPCR,结果显示,所选择的基因表达水平在HKT组与PKC组之间均有显著差异(图6),且 RT ⁃qPCR 的相对表达水平与 RNA⁃Seq 的相对表达水平完全一致(图7),表明测序数据是高效可靠的。
-
3 讨论
-
将小鼠暴露于高原低氧环境30 d后,与PKC组相比,小鼠肾脏组织中 PRLR、APOE、APOA4、 CYCS、ACOX2、COX5A、COX5B、COX7A 和 HSPB1 等基因显著差异表达,其中PRLR和APOE等基因表达上调,APOA4、CYCS、ACOX2、COX5A、COX5B、 COX7A和HSPB1等基因表达下调。
-
图中横坐标为样品名,纵坐标为差异基因FPKM归一化后的数值,颜色越红,表达量越高,颜色越绿,表达量越低。
-
图3 DEG热图
-
Figure3 DEG heat map
-
催乳素受体(prolactin receptors,PRLR)属于细胞因子受体家族。研究发现,催乳素激素(prolactin, PRL)及其受体可参与乳腺癌的发病机制,并证明了人中间型催乳素受体基因是一种刺激细胞存活和增殖的乳腺原癌基因[14]。此外,乳腺肿瘤中 PRLR 的过表达可以最大限度地发挥其配体的作用,并进一步诱导细胞增殖,促进恶性肿瘤发生[15]。
-
载脂蛋白(apolipoprotein,APO)家族是血浆脂蛋白中的蛋白质部分,负责将血脂运输到机体各组织参与机体代谢调节。与 PKC 组相比,HKT 组 RNA⁃Seq检测结果中APOE基因过表达,APOA4基因表达显著下调。APOE是调节脂质代谢的重要基因之一,APOE 水平与心血管、癌症以及痴呆相关死亡率相关[16]。APOE 表达调控和 APOE 基因的多态性与阿尔茨海默病(Alzheimer’s disease,AD)、帕金森病(Parkinson’s disease,PD)、缺血性中风和其他疾病等神经系统或神经退行性疾病有重要联系[17]。APOA4 基因在甘油三酯和高密度脂蛋白代谢中起重要作用。有报道称,APOA4 在调节大鼠的葡萄糖和脂质代谢中发挥作用,并且可以作为肝脏葡萄糖和脂质代谢之间的潜在连接物[18]。Cheng等[19] 发现,APOA4水平与肾功能参数相关,APOA4 水平升高伴随血清尿素氮(BUN)和肌酸(Cr)的增加以及血清蛋白和白蛋白的降低,可作为预测糖尿病患者肾功能损害进展的循环标志物。
-
图中横坐标为注释到KEGG通路上的差异基因数与差异基因总数的比值,纵坐标为KEGG通路,点的大小代表注释到GO term上的基因数,颜色从红到紫代表富集的显著性大小。
-
图4 DEG的 KEGG富集分析
-
Figure4 KEGG pathway enrichment diagram of DEG
-
图中横坐标为GO条目,纵坐标为GO 条目富集的显著性水平,用-lgP表示,数值越高越显著。上方数据表示差异基因个数。
-
图5 DEG的GO注释分析
-
Figure5 GO annotation analysis of DEG
-
P:PKC组,H:HKT组;与PKC组相比,* P <0.05,**P <0.01,***P <0.001(n=5)。
-
图6 随机挑选15个基因的RT⁃qPCR结果
-
Figure6 RT⁃qPCR results of 15 randomly selected genes
-
图中横坐标为基因名称,纵坐标为log2FC。
-
图7 RT⁃qPCR验证结果
-
Figure7 RT⁃qPCR validation reesults
-
细胞色素 C(cytochrome C somatic,CYCS)是电子传递链的核心成分,在酶存在的情况下,对组织的氧化、还原有促进作用。研究表明,CYCS是参与 ATP 合成的线粒体电子传递蛋白的核心元素,故 CYCS 被选为线粒体的代表基因[20]。CYCS 的下调会抑制电子传递和氧化磷酸化(ATP产生的主要来源),从而减少线粒体ATP合成并增加ROS的产生,最终引起炎症反应[21-22]。本次 RNA⁃Seq 结果显示 CYCS 基因显著下调,故低氧条件下会使机体 ATP 的产生减少,提示高原低氧胁迫会抑制机体线粒体能量代谢。
-
热休克蛋白β⁃1(heat shock protein β⁃1,HSPB1) 为热休克蛋白家族成员,热休克蛋白家族是一组具有多种生物学功能的蛋白质。研究表明,HSPB1通过降低细胞内ROS和一氧化氮水平,维持谷胱甘肽 (glutathione,GSH)水平以及稳定线粒体膜电位,在抵抗氧化应激反应中起重要作用[23-24]。此外有报道称,HSPB1改善了大鼠心肌细胞内源性谷胱甘肽还原酶(glutathione reductase,GR)/GSH/谷胱甘肽过氧化物酶(glutathione peroxidase,GPx)和硫氧还蛋白 (thioredoxin,Trx)/过氧化还原素(peroxiredoxin,Prx) 抗氧化系统的还原功能,证实了HSPB1参与蛋白质抗氧化反应[25]。因此,HSPB1的表达有助于维持机体氧化应激。本研究中,HKT组HSPB1基因表达明显低于PKC组。
-
通过对差异基因进行 GO 注释分析发现,三大功能分类中占比最高的GO条目与机体能量代谢有关,提示高原持续性低氧刺激条件下机体的能量代谢途径发生了重要变化。同时,本研究对能量代谢相关基因进行了KEGG通路富集分析,发现包括氧化磷酸化、过氧化物酶体、产热、碳代谢以及三羧酸循环等多条通路发生了显著变化。
-
过氧化物酶体是一种具有多种氧化酶的细胞器,主要参与机体脂肪酸的β⁃氧化。研究表明,过氧化物酶体在复杂脂质合成和转化中起核心作用,是必需的代谢细胞器,此外过氧化物酶体已经成为一种细胞因子,可通过多种途径调节免疫反应和炎症的发生[26]。本研究中高原低氧处理条件下,过氧化物酶体通路中酰基辅酶 A 氧化酶(acyl⁃coenzyme A oxidase,ACOX)中的 ACOX1、ACOX2、ACOX3 表达显著下调。ACOX是过氧化物酶体中催化分解各种底物β氧化的第一步[27]。ACOX1、ACOX2和ACOX3 与脂肪酸β⁃氧化有关[28]。ACOX1负责长直链脂肪酸的氧化[29],ACOX2是唯一参与胆汁酸生物合成的酰基辅酶 A 氧化酶,ACOX2 和 ACOX3 都参与支链脂肪酸的降解[27]。
-
氧化磷酸化信号通路是机体产生能量的重要通路,与体内能量代谢密切相关。细胞色素C氧化酶(cytochrome C oxidase subunit,COX)亚基在氧化磷酸化信号通路中维持线粒体的正常功能,高原低氧组小鼠肾脏组织中COX5A、COX5B、COX7A等基因表达显著下调。研究发现,在缺氧条件下大鼠心脏和心肌细胞中 COX5A 表达显著降低,COX5A 基因表达下调与缺氧诱导的细胞凋亡密切相关,同时 COX5A 可能是抗衰老药物的潜在靶标[30-31]。 COX5B的缺失会诱发线粒体功能障碍,抑制细胞生长并促进细胞衰老,衰老细胞可促进白介素⁃8和其他细胞因子的产生,从而增强细胞迁移,促进炎症的发生[32]。COX7A具有抗衰老功能,在衰老小鼠心脏线粒体中表达下调[33]。
-
综上所述,本研究通过比较不同海拔暴露下的小鼠肾脏组织转录组谱,检测到高原低氧胁迫下大量与能量代谢途径相关的DEG,KEGG分析发现这些差异基因高度富集于过氧化物酶体、氧化磷酸化、产热、碳代谢以及三羧酸循环等途径,在GO 注释分析中也发现了类似的结果,因此,高原低氧胁迫影响机体能量代谢,致使机体氧化应激、炎症反应和脂质代谢失衡的分子机制有待进一步深入研究。本研究丰富了高原医学在低压低氧胁迫条件下能量代谢方面的研究内容,为深入探讨机体能量代谢响应高原低氧胁迫的分子调控机制提供了线索,也为与能量代谢相关高原病的病因学研究提供了新的理论依据和研究方向。
-
参考文献
-
[1] DAVIS P R,PATTINSON K T,MASON N P,et al.High altitude illness[J].J R Army Med Corps,2005,151(4):243-249
-
[2] GAUR P,PRASAD S,KUMAR B,et al.High⁃altitude hy⁃ poxia induced reactive oxygen species generation,signal⁃ ing,and mitigation approaches[J].Int J Biometeorol,2021,65(4):601-615
-
[3] GUDBJARTSSON T,SIGURDSSON E,GOTTFREDSSON M,et al.High altitude illness and related diseases ⁃ a re⁃ view[J].Laeknabladid,2019,105(11):499-507
-
[4] LEE P,CHANDEL N S,SIMON M C.Cellular adaptation to hypoxia through hypoxia inducible factors and beyond [J].Nat Rev Mol Cell Biol,2020,21(5):268-283
-
[5] XIE H,SIMON M C.Oxygen availability and metabolic reprogramming in cancer[J].J Biol Chem,2017,292(41):16825-16832
-
[6] HRDLICKOVA R,TOLOUE M,TIAN B.RNA⁃Seq meth⁃ ods for transcriptome analysis[J].Wiley Interdiscip Rev RNA,2017,8(1):10.1002/wrna.1364
-
[7] GAO X,JIANG Z,ZHANG S,et al.Transcriptome analy⁃ sis and immune ⁃ related genes expression reveals the im⁃ mune responses of Macrobrachium rosenbergii infected by Enterobacter cloacae[J].Fish Shellfish Immunol,2020,101:66-77
-
[8] KIM W J,LIM J H,LEE J S,et al.Comprehensive analy⁃ sis of transcriptome sequencing data in the lung tissues of COPD subjects[J].Int J Genomics,2015,2015:206937
-
[9] TIAN L,JIA Z,XU Z,et al.Transcriptional landscape in rat intestines under hypobaric hypoxia[J].Peer J,2021,9:e11823
-
[10] GAN Z,POWELL F L,ZAMBON A C,et al.Transcrip⁃ tomic analysis identifies a role of PI3K ⁃Akt signalling in the responses of skeletal muscle to acute hypoxia in vivo[J].J Physiol,2017,595(17):5797-5813
-
[11] LU Z,YUAN C,LI J,et al.Comprehensive analysis of long non ⁃coding RNA and mRNA transcriptomes related to hypoxia adaptation in tibetan sheep[J].Front Vet Sci,2021,8:801278
-
[12] ZHANG B,CHAMBA Y,SHANG P,et al.Comparative transcriptomic and proteomic analyses provide insights in⁃ to the key genes involved in high ⁃ altitude adaptation in the Tibetan pig[J].Sci Rep,2017,7(1):3654
-
[13] CLARK A J,PARIKH S M.Mitochondrial metabolism in acute kidney injury[J].Semin Nephrol,2020,40(2):101-113
-
[14] GRIBLE J M,ZOT P,OLEX A L,et al.The human inter⁃ mediate prolactin receptor is a mammary proto ⁃oncogene [J].NPJ Breast Cancer,2021,7(1):37
-
[15] KAVARTHAPU R,ANBAZHAGAN R,DUFAU M L.Crosstalk between PRLR and EGFR/HER2 signaling pathways in breast cancer[J].Cancers(Basel),2021,13(18):4685
-
[16] RASMUSSEN K L,TYBJÆRG⁃HANSEN A,NORDEST⁃ GAARD B G,et al.Plasma levels of apolipoprotein E,APOE genotype,and all⁃cause and cause⁃specific mortali⁃ ty in 105 949 individuals from a white general population cohort[J].Eur Heart J,2019,40(33):2813-2824
-
[17] YIN Y,WANG Z.ApoE and neurodegenerative diseases in aging[J].Adv Exp Med Biol,2018,1086:77-92
-
[18] WANG Z,WANG L,ZHANG Z,et al.Apolipoprotein A⁃IV involves in glucose and lipid metabolism of rat[J].Nutr Metab(Lond),2019,16:41
-
[19] CHENG C W,CHANG C C,CHEN H W,et al.Serum ApoA4 levels predicted the progression of renal impair⁃ ment in T2DM[J].Eur J Clin Invest,2018,48(6):e12937
-
[20] KAN J,HU Y,GE Y,et al.Declined expressions of vast mitochondria ⁃ related genes represented by CYCS and transcription factor ESRRA in skeletal muscle aging[J].Bioengineered,2021,12(1):3485-3502
-
[21] ZHANG X,LI X,JIA H,et al.The m6A methyltransfer⁃ ase METTL3 modifies PGC ⁃ 1α mRNA promoting mito⁃ chondrial dysfunction and oxLDL ⁃ induced inflammation in monocytes[J].J Biol Chem,2021,297(3):101058
-
[22] ARENA G,CISSE M Y,PYRDZIAK S,et al.Mitochondri⁃ al MDM2 regulates respiratory complex I activity indepen⁃ dently of p53[J].Mol Cell,2018,69(4):594-609
-
[23] TERRA L F,WAILEMANN R A M,DOS SANTOS A F,et al.Heat shock protein B1 is a key mediator of prolactin⁃induced beta ⁃ cell cytoprotection against oxidative stress [J].Free Radic Biol Med,2019,134:394-405
-
[24] HANSCHMANN E M,GODOY J R,BERNDT C,et al.Thioredoxins,glutaredoxins,and peroxiredoxins ⁃ molecu⁃ lar mechanisms and health significance:from cofactors to antioxidants to redox signaling[J].Antioxid Redox Sig⁃ nal,2013,19(13):1539-1605
-
[25] LIU X,LIU K,LI C,et al.Heat⁃shock protein B1 upholds the cytoplasm reduced state to inhibit activation of the Hippo pathway in H9c2 cells[J].J Cell Physiol,2019,234(4):5117-5133
-
[26] DI CARA F,ANDREOLETTI P,TROMPIER D,et al.Peroxisomes in immune response and inflammation[J].Int J Mol Sci,2019,20(16):E3877
-
[27] FERDINANDUSSE S,DENIS S,VAN ROERMUND C W T,et al.A novel case of ACOX2 deficiency leads to recog⁃ nition of a third human peroxisomal acyl⁃CoA oxidase[J].Biochim Biophys Acta Mol Basis Dis,2018,1864(3):952-958
-
[28] LIU H,SUN W,ZHOU Y,et al.iTRAQ ⁃based quantita⁃ tive proteomics analysis of Sprague ⁃Dawley rats liver re⁃ veals perfluorooctanoic acid ⁃ induced lipid metabolism and urea cycle dysfunction[J].Toxicol Lett,2022,357:20-32
-
[29] RAAS Q,SAIH F E,GONDCAILLE C,et al.A microglial cell model for acyl ⁃ CoA oxidase 1 deficiency[J].Biochim Biophys Acta Mol Cell Biol Lipids,2019,1864(4):567-576
-
[30] JUNG S E,KIM S W,JEONG S,et al.microRNA⁃26a/b⁃ 5p promotes myocardial infarction ⁃induced cell death by downregulating cytochrome c oxidase 5a[J].Exp Mol Med,2021,53(9):1332-1343
-
[31] XIYANG Y B,LIU R,WANG X Y,et al.COX5A plays a vital role in memory impairment associated with brain ag⁃ ing via the BDNF/ERK1/2 signaling pathway[J].Front Aging Neurosci,2020,12:215
-
[32] GAO S P,SUN H F,JIANG H L,et al.Loss of COX5B in⁃ hibits proliferation and promotes senescence via mito⁃ chondrial dysfunction in breast cancer[J].Oncotarget,2015,6(41):43363-43374
-
[33] FUJIOKA H,MOGHADDAS S,MURDOCK D G,et al.Decreased cytochrome C oxidase subunit VIIa in aged rat heart mitochondria:immunocytochemistry[J].Anat Rec(Hoboken),2011,294(11):1825-1833
-
摘要
目的:基于转录组测序技术研究小鼠肾脏组织在适应高原低氧胁迫过程中的基因表达和相应的分子机制。方法:在海拔4200 m(高原肾脏实验组,high-altitude kidney test group,HKT)和海拔400 m(平原肾脏对照组,plain kidney control group, PKC)的环境下分别饲养C57BL/6小鼠,30 d后无菌取出小鼠肾脏组织用高通量测序技术(RNA-sequencing,RNA-Seq)进行转录组测序。将 HKT 组和 PKC 组的测序结果进行基因本体数据库(gene ontology,GO)注释分析和京都基因和基因组百科全书数据库(Kyoto encyclopedia of genes and genomes,KEGG)富集分析,并通过实时荧光定量 PCR(real-time quantitative PCR, RT-qPCR)实验验证测序结果的可靠性。结果:相比于PKC组,HKT组中1349个基因表达上调(P < 0.05),1658个基因表达下调 (P < 0.05)。其中催乳素受体(prolactin receptor,PRLR)、载脂蛋白E(apolipoprotein E,APOE)、载脂蛋白A4(apolipoprotein A4, APOA4)、细胞色素 C(cytochrome C somatic,CYCS)、酰基辅酶 A 氧化酶 2(acyl-coenzyme A oxidase 1,ACOX2)、细胞色素 C 氧化酶亚基5A(cytochrome C oxidase subunit 5A,COX5A)、细胞色素C氧化酶亚基5B(cytochrome C oxidase subunit 5B,COX5B)、细胞色素C氧化酶亚基7A(cytochrome C oxidase subunit 7A,COX7A)和热休克蛋白β-1(heat shock protein β-1,HSPB1)等基因显著富集。GO注释分析和KEGG富集分析结果显示,差异基因显著富集在细胞器内膜、线粒体内膜和线粒体蛋白复合物等部位,此外过氧化物酶体、氧化磷酸化、产热、碳代谢以及三羧酸循环等通路显著富集。结论:高原低氧刺激可能通过影响机体的能量代谢相关通路致使机体氧化应激、炎症反应和脂质代谢失衡。
Abstract
Objective:To investigate the molecular mechanisms of gene expression and response in mouse kidney tissue during adaptation to hypoxic stress in the plateau based on transcriptome sequencing technology. Methods:C57BL/6 mice were reared at 4200 m(high altitude kidney test group,HKT)and 400 m(plain kidney control group,PKC)above sea level,and kidney tissues were removed aseptically after 30 days for transcriptome sequencing using high-throughput RNA-sequencing(RNA-Seq). The sequencing results from the HKT and PKC groups were analyzed by gene ontology(GO)annotation and enrichment in the Kyoto encyclopedia of genes and genomes(KEGG),and the reliability of the sequencing results was verified by real -time quantitative PCR(RT - qPCR). Results:Compared to the PKC group,1349 genes expression were upregulated(P < 0.05)and 1658 genes expression were downregulated in the HKT group(P < 0.05). Among them,prolactin receptor(PRLR),apolipoprotein E(APOE),apolipoprotein A4 (APOA4),cytochrome C somatic(CYCS),acyl - coenzyme A oxidase 1(ACOX2),cytochrome C oxidase subunit 5A(COX5A), cytochrome C oxidase subunit 5B(COX5B),cytochrome C oxidase subunit 7A(COX7)and heat shock protein β-1(HSPB1)genes were significantly enriched. GO annotation analysis and KEGG enrichment analysis showed that differential genes were significantly enriched in organelle inner membrane,mitochondrial inner membrane and mitochondrial protein complexes,in addition to peroxisomal,oxidative phosphorylation,thermogenesis,carbon metabolism and tricarboxylic acid cycle pathways. Conclusion:Hypoxic stimulation at high altitude may cause oxidative stress,inflammatory response and imbalance of lipid metabolism in the body by affecting energy metabolism-related pathways.
Keywords
plateau hypoxia ; kidney ; energy metabolism ; transcriptomic sequencing