-
帕金森病(Parkinson’s disease,PD)是一种年龄相关的神经退行性疾病,预计2030年全球将有超过一千万 PD 患者,给社会带来沉重负担[1]。PD 的主要病理特点表现为黑质纹状体系统多巴胺能神经元的丢失,多巴胺能神经元的死亡导致释放到纹状体中的多巴胺水平降低,随着疾病的进展,患者会出现特征性运动症状(震颤、僵硬、运动迟缓)、认知能力下降(痴呆)、精神症状(抑郁,冷漠,焦虑)、便秘和睡眠障碍等神经相关症状[1]。
-
据报道,5%~10%的 PD 病例与遗传[编码α⁃突触核蛋白、帕金森综合征相关脱糖酶(parkinsonism associated deglycase,DJ⁃1)、PTEN诱导激酶1(PTEN⁃ induced putative kinase protein 1,PINK1)、富含亮氨酸的重复激酶 2 等基因突变]密切相关,但大多数 PD病例是特发性的,其发病过程受到遗传易感性和环境因素(环境毒素、杀虫剂、重金属、创伤性病变和感染相关的风险因素)的共同作用[2]。几乎所有 PD致病因素都与炎症密切相关,能在中枢神经系统 (central nervous system,CNS)中引发针对病原体相关分子模式(pathogen ⁃ associated molecular pattern molecules,PAMP)和损伤相关分子模式(damage⁃ associated molecular pattern molecules,DAMP)的先天免疫反应[3]。脑内神经胶质细胞可以被PAMP和 DAMP激活,如受损神经元、蛋白质聚集体和分泌因子等,导致持续的神经炎症。目前认为神经炎症可能不是所有PD的起始因素,但慢性神经炎症是PD 进展的重要促进因素。在这篇综述中,关注脑内主要免疫细胞——小胶质细胞,在 PD 进展中的作用及其作为PD治疗靶点的潜在意义。
-
1 小胶质细胞
-
小胶质细胞是驻留CNS的单核巨噬细胞,目前小胶质细胞的来源主要有中胚层起源[4]、神经外胚层起源[5]、血液循环中的单核细胞起源[6] 3种科学假说。小胶质细胞属于支持和保护神经元的胶质细胞,占 CNS 实质内神经胶质细胞总数的 10%~15%[7]。小胶质细胞广泛分布于大脑和脊髓,其在脑内不同区域的分布具有明显的差异性,在中脑黑质最为致密,在脑干与小脑最为稀疏[8]。
-
小胶质细胞是脑内重要的免疫细胞,属于神经组织固有的防御系统。在生理情况下小胶质细胞处于静息状态,显示出多分枝形态特点,起到监视大脑微环境的作用[9]。生理性的监视功能包括:清除累积或退化的神经元等组织成分;动态调节神经元;突触修剪;维持大脑的整体稳态。在发育过程中,小胶质细胞通过吞噬作用消除多余新生神经元的凋亡残留物,并对大脑发育过程中的神经发生具有促进作用[10]。在健康的成人大脑中,小胶质细胞则发挥突触修剪作用,精细调控突触的连接和神经环路的功能[10]。同时,小胶质细胞来源的脑源性神经营养因子(brain ⁃ derived neurotrophic factor, BDNF)对学习过程中树突棘的形成有着重要的意义[11]。但是,在某些病理因素刺激下,小胶质细胞被激活进入病理性状态,在形态学上表现为阿米巴样变化。激活的小胶质细胞通常分为两类:M1 型 (促炎)或 M2 型(抗炎),当这两种状态失平衡则加剧中枢神经系统疾病的发生发展[12]。在阿尔茨海默病、PD等神经退行性疾病中,疾病关联脑区中小胶质细胞激活水平与其病理进展密切相关[12]。
-
2 激活的小胶质细胞参与PD疾病进程
-
早在1988年,McGeer等[13] 在来自PD患者的黑质(substantia nigra,SN)样本中检测到活化小胶质细胞的聚集,这些小胶质细胞高表达人类主要组织相容性复合物Ⅱ类(major histocompatibility complex classⅡ,MHC⁃Ⅱ)蛋白,并且表现为阿米巴样的激活形态,为小胶质细胞参与 PD 提供了有力的神经病理学证据。随之,更多实验证据证明了激活态的小胶质细胞参与 PD 疾病进程:PD 患者 SN 切片中,小胶质细胞的富含亮氨酸重复和 pyrin 结构域的 3(NLR family pyrin domain containing3,NLRP3) 炎性体表达升高[14];PD患者SN中肿瘤坏死因子⁃α (tumor necrosis factor alpha,TNF ⁃α)和白细胞介素 (interleukin,IL)⁃6等促炎细胞因子呈强阳性反应[15]; 通过放射性示踪的正电子发射断层扫描,证明了早期的特发性 PD 患者脑内小胶质细胞处于活化状态[16];暴露于 1⁃甲基⁃4⁃苯基⁃1、2、3、6⁃四氢吡啶 (1 ⁃ methyl ⁃ 4 ⁃ phenyl ⁃ 1,2,3,6 ⁃tetrahydropyridine, MPTP)所导致的 PD 患者,其黑质残存神经元的周围,存在小胶质细胞的增生,并发现了小胶质细胞对神经黑色素的吞噬现象[17]。
-
在 PD 动物模型中,当小鼠暴露于神经毒素 MPTP后,SN中的小胶质细胞数量迅速增加并处于激活状态,而小胶质细胞激活后数天才出现多巴胺能神经元的丢失,在此期间阻断小胶质细胞的活化可以减轻多巴胺能神经元的死亡[18]。在MPTP诱导的猕猴PD模型中,动物表现出僵硬和弯曲姿势的症状,并出现显著的多巴胺能神经元丢失以及小胶质细胞激活,并且血清中炎症因子的高水平表达能维持数年之久[18]。6⁃羟基多巴胺(6⁃hydroxydopamine, 6⁃OHDA)诱导的PD动物模型也证明了小胶质细胞的显著激活参与了 PD 疾病进程[19]。不同类型 PD 动物模型的结果与 PD 患者的病理结果相似,进一步说明小胶质细胞的增殖和激活参与了PD疾病过程。
-
近年来,影响神经退行性变的因素被认为可以分为3类,分别为诱发因素、促进因素和加重因素,这3类因素对PD疾病进程的作用被认为是一个连续的过程[20]。诱发因素包括病原体感染、环境毒素与头部创伤,表现为长期的肠道功能异常、组织的慢性炎症及α⁃突触核蛋白的错误折叠。周围炎症等促进因素虽然不会即刻引起明显的 PD 表征,但是其导致了α⁃突触核蛋白在肠神经的积累和聚集向脑干蔓延,而加重因素则推动了PD的进展。其中,小胶质细胞介导的神经炎症被认为是重要的加重因素,其推动了多巴胺能神经元的退行性变和致病蛋白的中枢扩散(图1)。
-
图1 外周炎症与脑内小胶质细胞的交谈,渐进性介导小胶质细胞的炎性病理转变,参与PD的神经毒性过程
-
Figure1 Inflammations in peripheral tissues talk with microglia in the brain which gradually mediate inflammatory patho⁃ logical changes of microglia and contribute to the neurological toxicity of PD
-
综合PD患者和PD动物模型的研究结果,小胶质细胞尤其是异常激活的小胶质细胞对PD的疾病发展有着重要的作用。
-
3 与 PD 相关的遗传突变介导了小胶质细胞活性异常
-
目前,PD的发生和发展过程被认为是遗传因素和环境因素共同作用的结果,部分 PD 相关的显性遗传(如编码 leucine rich repeat kinase2 和α突触核蛋白的基因)或隐性遗传(如编码 Parkin、DJ ⁃1 和 PINK1的基因)异常增强了小胶质细胞的活性并加快了PD疾病进程[21]( 图2)。
-
3.1 α⁃突触核蛋白
-
PD病理学的标志是α⁃突触核蛋白的聚集和含 α⁃突触核蛋白的路易体的形成,α⁃突触核蛋白编码基因的多种基因突变类型也被证明为PD的重要致病因素。在中脑神经元⁃小胶质细胞共培养实验中,细胞外α⁃突触核蛋白通过激活小胶质细胞产生的活性氧(reactive oxygen species,ROS)引起强烈的神经毒性作用,当消除共培养体系中的小胶质细胞,α⁃突触核蛋白的神经毒性也会被消除[22]。在PD模型动物中,SN区注射α⁃突触核蛋白可引发小胶质细胞活化,而小胶质细胞的活化使得小鼠更容易受到环境因素损害[23]。此外,小胶质细胞中α⁃突触核蛋白过表达也会促进小胶质细胞产生 ROS、TNF⁃α、白细胞介素⁃1β(interleukin⁃1 beta,IL⁃1β)、环氧化酶 2(cyclooxygenase⁃2,COX2)、诱导型一氧化氮合酶 (inducible nitric oxide synthase,iNOS)等炎性损伤介质[24]。此外,α⁃突触核蛋白暴露激活了Toll样受体 (Toll like receptor,TLR),并增加其下游重要分子如 MyD88和NF⁃κB等的表达[25]。TLR的激活是α⁃突触核蛋白介导黑质纹状体损伤的重要早期反应。研究表明,α⁃突触核蛋白可以激活NLRP3炎性小体,诱导 IL⁃1β和剪切型 caspase⁃1 的产生和释放,从而增强了神经炎症和神经损伤[26]。在不同类型的α⁃突触核蛋白中,A53T突变型显示出最强的小胶质细胞激活效果,与其他类型α⁃突触核蛋白相比,A53T突变型通过NF⁃κB/AP⁃1/Nrf2通路,可诱导更高水平的细胞因子和ROS。这些研究表明致病性α⁃突触核蛋白增强小胶质细胞活性,其介导的神经炎症过程促进PD的疾病发展[27]。
-
3.2 富含亮氨酸的重复激酶 2(leucine rich repeat kinase2,LRRK2)
-
LRRK2基因的突变也是PD最常见的遗传因素之一,LRRK2主要在中枢神经系统、某些外周组织和血液免疫细胞中表达,LRRK2被认为参与先天免疫[28]。PD疾病相关LRRK2突变体能增加多巴胺能神经元的丢失和运动能力缺陷。目前认为 LRRK2 突变体不会直接导致PD,其主要增强了PD进程中的“二次损伤”,即在神经炎症诱导因素的作用下, LRRK2 突变体的存在会增强神经炎性反应,进而增加多巴胺能神经元丢失,加剧 PD 的疾病进展过程[28]。LRRK2(R1441G)转基因小鼠给予脂多糖 (lipopolysaccharide,LPS)后,LRRK2水平显著增加,并且小胶质细胞的促炎因子TNF⁃α、IL⁃1β和IL⁃6会有更高水平的表达,而抗炎因子 IL⁃10 表达水平更低,敲低LRRK2则能抑制小胶质细胞向促炎表型转化[29]。
-
图2 多种PD危险因素触发了小胶质细胞内促炎应答信号通路及线粒体异常,从而引起神经元损伤
-
Figure2 Multiple risk factors of PD trigger the proinflammatory response signaling pathway and mitochondrial abnormal⁃ ities in microglia which induce neuronal damage
-
3.3 帕金蛋白(parkin RBR E3 ubiquitin protein ligase, parkin)
-
PRKN 基因编码了 parkin 蛋白的表达,其突变以常染色体隐性方式遗传,是早发性家族性 PD 的重要遗传致病因素。Parkin 蛋白作为一种 E3 泛素连接酶,参与受损线粒体清除过程,即线粒体自噬。Parkin蛋白的功能缺失可能引起线粒体自噬异常,受损线粒体中炎性相关成分(如 ROS、N⁃甲酰肽、细胞色素C、心磷脂和线粒体DNA)的释放会导致 NLRP3 炎性小体激活并激活炎症反应[30]。慢性神经炎症可导致parkin蛋白耗竭,引起受损线粒体的积累,从而增强线粒体 DNA(mitochondria DNA, mtDNA)释放、线粒体 ROS(mitochondria ROS, mtROS)水平和促炎因子的释放。释放的mtDNA又可激活环状GMP⁃AMP合酶(cyclic GMP⁃AMP synthase, cGAS)⁃干扰素基因刺激物(stimulator of interferon response cGAMP interactor,STING)途径,cGAS⁃STING 信号转导的增强同样上调了促炎因子的表达[31]。
-
3.4 PD相关脱糖酶(parkinsonism associated deglycase)
-
DJ⁃1 基因编码了 parkinsonism associated degly⁃ case,该基因的突变与早发性PD相关。DJ⁃1可通过稳定红细胞衍生核因子2相关因子2(nuclear factor erythroid 2⁃related factor 2,Nrf2)降低氧化应激,早先的研究主要集中于多巴胺能神经元[32]。目前对小胶质细胞的研究发现,DJ⁃1 可以与含有 Src 同源结构域 2 的蛋白酪氨酸磷酸酶⁃1(protein tyrosine phosphatase⁃1,SHP ⁃1)和信号转导与转录激活子 (signal transducer and activator of transcription 1, STAT1)结合,抑制两者所介导的 COX ⁃2、iNOS 和 TNF⁃α等炎症相关基因转录,从而降低小胶质细胞的活化[33]。还有证据表明,DJ⁃1缺陷型小胶质细胞出现线粒体活性异常增加及ROS水平升高,并且在 LPS暴露后会导致ROS水平、一氧化氮(nitric oxide, NO)生成和炎症细胞因子释放的进一步增加。DJ⁃1 本身还通过调节 Nrf2/Trx1 抗氧化信号通路活性抑制NLRP3活性[34]。因此,DJ⁃1的功能异常会导致小胶质细胞活性调节失衡并增强向炎性状态的转化,从而加快PD的疾病发展。
-
4 多因素介导的小胶质细胞类型失衡促进了 PD 疾病进程
-
通常认为,根据被激活时所处的环境或刺激因素的差异,小胶质细胞可以形成M1型和M2型两种激活状态。在 PD 疾病进程中,α⁃突触核蛋白、LPS 或IFN⁃γ等多种因素的长期刺激,可导致M1型小胶质细胞的过度激活或增殖。由于M1型小胶质细胞表面MHC⁃Ⅱ及CD86等标志物的表达上调,并以释放TNF⁃α、IL⁃1β、NO、ROS和蛋白酶等促炎、毒性物质为主要形式,因此过度活化的 M1 型小胶质细胞可诱发神经毒性,而来自死亡或损伤神经元释放的内容物或凋亡小体会进一步增强M1型小胶质细胞的活化并促进促炎因子及毒性介质的释放,这一恶性反馈过程推动PD疾病的发展[35]。在PD小鼠模型中发现,PD早期,小胶质细胞促炎表型及抗炎表型的标志物同时存在,随着神经退行性病变的加重,促炎表型小胶质细胞的数量和比例逐渐上升[36]。通过调控 NOX2⁃NF⁃κB 的信号通路抑制 M1 型小胶质细胞极性,可以改善多巴胺神经元功能并降低α⁃突触核蛋白积聚[36]。经典激活途径导致小胶质细胞活化的同时,中枢神经系统的抗炎及修复机制也随即启动,M2 型小胶质细胞分泌包括 IL⁃4、 IL ⁃13、IL ⁃10、转化生长因子⁃β(transforming growth factor beta,TGF⁃β)和神经营养性胰岛素样生长因子1 (insulin like growth factor 1,IGF⁃1)在内的抗炎细胞因子,起到拮抗炎症反应,参与组织修复及免疫调节等神经保护作用[10]。
-
因此,PD病理发展过程中,遗传及环境因素共同导致了M1/M2型小胶质细胞失衡,具有神经毒性的 M1 型小胶质细胞渐进性增加,促炎及损伤相关物质的释放增加,这一慢性神经炎症过程介导了PD 中多巴胺能神经元的退行性丢失(图3)。
-
5 调节小胶质细胞极化、活性及神经炎症在PD治疗中的进展
-
目前 PD 临床治疗主要为对症治疗,核心是增加脑内尤其是突触间隙多巴胺的浓度,例如给予左旋多巴(levodopa)或者通过使用单胺氧化酶 B (monoamine oxidase B,MAO⁃B)的抑制剂等。但是目前的临床治疗不能缓解和逆转 PD 的疾病进程,随着神经炎症尤其是小胶质细胞的活化在PD中的重要性和生物学机制解析的深入,越来越多的研究通过抗炎及免疫调节探究新的PD治疗方法。
-
图3 M1型和M2型小胶质细胞间转化的失衡是PD进程中的重要因素
-
Figure3 The imbalance of M1 and M2 microglia is important to the pathological process of PD
-
5.1 抗炎治疗
-
由于小胶质细胞的免疫细胞属性,以及神经炎性损伤中的炎症特质,非甾体抗炎药(non⁃steroidal anti⁃inflammatory agent,NSAID)被用于降低PD过程中炎症水平。在多种PD模型动物中,NSAID表现出显著的神经保护作用,减少了PD模型动物SN区多巴胺能神经元的丢失。但在基于NSAID治疗PD的临床实验中,多项研究表明给予NSAID不能降低PD 风险,并且基于剂量反应的分析也没有发现NSAID 给药剂量和给药次数的增加能降低 PD 风险,但是实验结果也提示NSAID在一定程度上能缓解PD临床症状[37-38]。
-
5.2 靶向小胶质细胞活化的治疗
-
这种治疗方法主要通过减少小胶质细胞活化,降低小胶质细胞介导的神经炎症和神经损伤。其中,坎地沙坦西酯(candesartan cilexetil)、利福平(rifampin)、TAK⁃242和RSLA等候选药物主要通过靶向抑制Toll样受体,从而降低小胶质细胞对激活触发因素的应答;JWH133 等候选药物抑制内源性大麻素受体CB2,起到降低小胶质细胞活化的作用;丹参酮(tanshinone)⁃Ⅰ和α⁃细辛胞(α⁃asarone) 等候选药物靶向经典NF⁃κB信号通路,降低小胶质细胞的活化;JNJ7777120 和 MCC950 等候选药物靶向抑制NLRP3炎性小体通路,起到降低小胶质细胞活化和炎症因子释放的作用;吡格列酮(piogli⁃ tazone)和罗格列酮(rosiglitazone)等候选药物靶向过氧化酶活化增生受体γ(peroxisome proliferator activated receptor gamma,PPAR⁃γ)[2,39-40]。
-
5.3 靶向小胶质细胞极化的治疗
-
除降低小胶质细胞活化外,通过增强小胶质细胞的 M2 极化状态也是 PD 治疗中降低神经炎症的重要策略。其方法包括增加脑内抗炎因子的表达和调节 M1 向 M2 的极化状态转化。其中增加脑内抗炎因子表达的主要策略为基于病毒策略的脑内过表达IL⁃10[41];给予维生素D及醋酸格拉替雷被证明能促进小胶质细胞向M2型转化[42-43]。但是目前上述方法尚未进入临床实验。
-
虽然目前对小胶质细胞介导PD进程机制的解析逐渐深入,并且通过抗炎和靶向小胶质细胞的治疗能一定程度上改善 PD 的症状,但由于小胶质细胞异质性、活化过程的复杂性和类型转化的不确定性等诸多疑问尚未解决,因此需要进一步解析小胶质细胞在 PD 中的作用及变化机制,才能实现靶向疾病特异性小胶质细胞的干预,从而起到治疗 PD 的作用。
-
6 展望
-
神经炎症在 PD 发生和发展中的作用日益重要,小胶质细胞是诱导神经炎症的主要细胞,抑制小胶质细胞的过度活化及其介导的神经炎症能有效减缓PD的进展。由于小胶质细胞高度异质性对 PD病理过程的具体影响尚不清楚,并且M1型和M2 型小胶质细胞的激活机制及其时空特征仍需进一步研究。因此,解析 PD 中小胶质细胞过度活化及病理作用的关键分子和通路将为 PD 治疗和药物开发提供新的靶点和策略,具有重要的科学和临床意义。
-
参考文献
-
[1] TOLOSA E,WENNING G,POEWE W.The diagnosis of Parkinson’s disease[J].Lancet Neurol,2006,5(1):75-86
-
[2] PIROOZNIA S K,ROSENTHAL L S,DAWSON V L,et al.Parkinson disease:translating insights from molecular mechanisms to neuroprotection[J].Pharmacol Rev,2021,73(4):33-97
-
[3] PORTUGAL C C,ALMEIDA T O,RENATO S,et al.Src family kinases(SFKs):critical regulators of microglial ho⁃ meostatic functions and neurodegeneration in Parkinson’ s and Alzheimer’s disease[J].FEBS J,2021,doi:10.1111/febs.16197
-
[4] DEL RÍO⁃HORTEGA BERECIARTU J.Pío del río⁃horte⁃ ga:the revolution of glia[J].Anat Rec(Hoboken),2020,303(5):1232-1241
-
[5] PRINZ M,JUNG S,PRILLER J.Microglia biology:one century of evolving concepts[J].Cell,2019,179(2):292-311
-
[6] CUADROS M A,SEPULVEDA M R,MARTIN ⁃ OLIVA D,et al.Microglia and microglia ⁃ like cells:similar but different[J].Front Cell Neurosci,2022,16:816439
-
[7] JAYARAM S,KRISHNAMURTHY P T.Role of microgli⁃ osis,oxidative stress and associated neuroinflammation in the pathogenesis of Parkinson’s disease:the therapeutic role of Nrf2 activators[J].Neurochem Int,2021,145:105014
-
[8] BARATA ⁃ANTUNES S,CRISTÓVÃO A C,PIRES J,et al.Dual role of histamine on microglia⁃induced neurode⁃ generation[J].Biochim Biophys Acta Mol Basis Dis,2017,1863(3):764-769
-
[9] WARD R J,DEXTER D T,CRICHTON R R.Ageing,neuroinflammation and neurodegeneration[J].Front Bios⁃ ci(Schol Ed),2015,7(1):189-204
-
[10] STEFANOVA N.Microglia in Parkinson’s disease[J].J Parkinsons Dis,2022,12(s1):S105-S112
-
[11] BLAGBURN⁃BLANCO S V,CHAPPELL M S,DE BIASE L M,et al.Synapse⁃specific roles for microglia in develop⁃ ment:new horizons in the prefrontal cortex[J].Front Mol Neurosci,2022,15:965756
-
[12] GUO S,WANG H,YIN Y.Microglia polarization from M1 to M2 in neurodegenerative diseases[J].Front Aging Neu⁃ rosci,2022,14:815347
-
[13] MCGEER P L,ITAGAKI S,BOYES B E,et al.Reactive microglia are positive for HLA⁃DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains[J].Neu⁃ rology,1988,38(8):1285-1291
-
[14] GORDON R,ALBORNOZ E A,CHRISTIE D C,et al.In⁃ flammasome inhibition prevents α ⁃ synuclein pathology and dopaminergic neurodegeneration in mice[J].Sci Transl Med,2018,10(465):eaah4066
-
[15] RUSSO T,RIESSLAND M.Age⁃related midbrain inflam⁃ mation and senescence in Parkinson’s disease[J].Front Aging Neurosci,2022,14:917797
-
[16] ALEXANDER G,NICOLA P,GARY H,et al.In vivo im⁃ aging of microglial activation with[11C](R)⁃ PK11195 PET in idiopathic Parkinson’s disease[J].Neurobiol Dis,2006,21(2):404-412
-
[17] HARMS A S,FERREIRA S A,ROMERO⁃RAMOS M.Pe⁃ riphery and brain,innate and adaptive immunity in Par⁃ kinson’s disease[J].Acta Neuropathol,2021,141(4):527-545
-
[18] HEAVENER K S,BRADSHAW E M.The aging immune system in Alzheimer’s and Parkinson’s diseases[J].Semin Immunopathol,2022,44(5):649-657
-
[19] YU Z,YANG L,YANG Y,et al.Epothilone B benefits ni⁃ gral dopaminergic neurons by attenuating microglia acti⁃ vation in the 6 ⁃ hydroxydopamine lesion mouse model of Parkinson’s disease[J].Front Cell Neurosci,2018,12:324
-
[20] JOHNSON M E,STECHER B,LABRIE V,et al.Triggers,facilitators,and aggravators:redefining Parkinson’s dis⁃ ease pathogenesis[J].Trends Neurosci,2019,42(1):4-13
-
[21] DINTER E,SARIDAKI T,DIEDERICHS L,et al.Parkin⁃ son’s disease and translational research[J].Transl Neu⁃ rodegener,2020,9(1):43
-
[22] PARMAR M.Targets for astrocyte ⁃ based treatments of Parkinson’s disease(PD)[J].PNAS,2022,119(30):e2208876119
-
[23] LIU T W,CHEN C M,CHANG K H.Biomarker of neuro⁃ inflammation in Parkinson’s disease[J].Int J Mol Sci,2022,23(8):4148
-
[24] SAHAR R,ULRIKA J,XIONG M F,et al.Reduction of αSYN pathology in a mouse model of PD using a brain ⁃ penetrating bispecific antibody[J].Pharmaceutics,2022,14(7):1412
-
[25] DUTTA D,JANA M,MAJUMDER M,et al.Selective tar⁃ geting of the TLR2/MyD88/NF ⁃ κB pathway reduces α ⁃ synuclein spreading in vitro and in vivo[J].Nat Commun,2021,12(1):5382
-
[26] PIKE A F,VARANITA T,HERREBOUT M A C,et al.α⁃ Synuclein evokes NLRP3 inflammasome⁃mediated IL⁃1β secretion from primary human microglia[J].Glia,2021,69(6):1413-1428
-
[27] ZHU B,YIN D,ZHAO H,et al.The immunology of Par⁃ kinson’s disease[J].Semin Immunopathol,2022,44(5):659-672
-
[28] ZHANG M,LI C,REN J,et al.The double⁃faceted role of leucine ⁃ rich repeat kinase 2 in the immunopathogenesis of Parkinson’s disease[J].Front Aging Neurosci,2022,14:909303
-
[29] MAGISTRELLI L,CONTALDI E,VIGNAROLI F,et al.Immune response modifications in the genetic forms of Parkinson’s disease:what do we know?[J].Int J Mol Sci,2022,23(7):3476
-
[30] GIORGI C,BOUHAMIDA E,DANESE A,et al.Rele⁃ vance of autophagy and mitophagy dynamics and markers in neurodegenerative diseases[J].Biomedicines,2021,9(2):149
-
[31] SLITER D A,MARTINEZ J,HAO L,et al.Parkin and PINK1 mitigate STING⁃induced inflammation[J].Nature,2018,561(7722):258-262
-
[32] PAP D,VERES⁃SZÉKELY A,SZEBENI B,et al.PARK7/DJ⁃1 as a therapeutic target in gut⁃brain axis diseases[J].Int J Mol Sci,2022,23(12):6626
-
[33] NEVES M,GRÃOS M,ANJO S I,et al.Modulation of sig⁃ naling pathways by DJ⁃1:an updated overview[J].Redox Biol,2022,51:102283
-
[34] JI Y J,WANG H L,YIN B L,et al.Down⁃regulation of DJ⁃ 1 augments neuroinflammation via Nrf2/Trx1/NLRP3 axis in MPTP ⁃induced Parkinson’s disease mouse model[J].Neuroscience,2020,442:253-263
-
[35] JOERS V,TANSEY M G,MULAS G,et al.Microglial phenotypes in Parkinson’s disease and animal models of the disease[J].Prog Neurobiol,2017,155:57-75
-
[36] CHE Y,HOU L,SUN F,et al.Taurine protects dopami⁃ nergic neurons in a mouse Parkinson’s disease model through inhibition of microglial M1 polarization[J].Cell Death Dis,2018,9(4):435
-
[37] REN L,YI J,YANG J,et al.Nonsteroidal anti⁃inflamma⁃ tory drugs use and risk of Parkinson disease:a dose ⁃ re⁃ sponse meta⁃analysis[J].Medicine(Baltimore),2018,97(37):e12172
-
[38] GROTEMEYER A,MCFLEDER R L,WU J,et al.Neuro⁃ inflammation in Parkinson’s disease⁃putative pathomech⁃ anisms and targets for disease⁃modification[J].Front Im⁃ munol,2022,13:878771
-
[39] LIU X,YU H,CHEN B,et al.CB2 agonist GW842166x protected against 6⁃OHDA ⁃induced anxiogenic ⁃ and de⁃ pressive ⁃ related behaviors in mice[J].Biomedicines,2022,10(8):1776
-
[40] WANG T,SHI C,LUO H,et al.Neuroinflammation in Parkinson’s disease:triggers,mechanisms,and immuno⁃ therapies[J].Neuroscientist,2022,28(4):364-381
-
[41] PORRO C,CIANCIULLI A,PANARO M A.The regulato⁃ ry role of IL⁃10 in neurodegenerative diseases[J].Biomol⁃ ecules,2020,10(7):E1017
-
[42] CALVELLO R,CIANCIULLI A,NICOLARDI G,et al.Vitamin D treatment attenuates neuroinflammation and dopaminergic neurodegeneration in an animal model of Parkinson’s disease,shifting M1 to M2 microglia respons⁃ es[J].J Neuroimmune Pharmacol,2017,12(2):327-339
-
[43] WANG J,WANG J,WANG J,et al.Targeting microglia and macrophages:a potential treatment strategy for multi⁃ ple sclerosis[J].Front Pharmacol,2019,10:286
-
摘要
随着社会老龄化进程加快,帕金森病(Parkinson’s disease,PD)的患病率呈上升趋势。近年来大量证据表明神经炎症在PD进展中起到了重要作用,尤其在PD病理学相关的基底神经节和黑质内的风险区域周围,小胶质细胞的受损和过度激活引发了氧化应激、线粒体自噬和自噬功能障碍、α-突触核蛋白积累及促炎细胞因子释放,而这些损伤因素介导的神经元损伤又进一步加剧小胶质细胞激活,这种恶性循环对PD的病理进展起到了重要作用。因此,探究PD病理过程中小胶质细胞的作用及其机制对PD的诊断和治疗具有重要意义。
Abstract
With the aging process of society accelerating,the prevalence of Parkinson’s disease(PD)is rising. In recent years, plenty of evidence has proved that neuroinflammation plays a vital role in the progression of PD,especially around the risk areas in the basal ganglia and substantia nigra(SN). The damage and hyperactivation of microglia trigger oxidative stress,mitochondrial autophagy and autophagy dysfunction,the accumulation of α - synuclein and the release of pro - inflammatory cytokines,the neuronal damage mediated by these injury factors can further aggravate the activation of microglia,emphasizing the importance of this vicious cycle in the pathogenesis of PD. Therefore,exploring the role and mechanism of microglia in the pathogenesis of PD is of great significance for the diagnosis and treatment of PD.
Keywords
Parkinson’s disease ; α-synuclein ; microglia ; neuroinflammation