-
近年来,脑梗死的发病率大幅上升,虽然病死率有所降低,但致残率仍得不到改善,这使脑梗死成为全球成人因病致残的主要诱因[1-2]。脑梗死后运动相关神经网络重塑对患者运动功能恢复至关重要[3]。功能连接是指不同脑区之间神经元活动模式的时间同步性[4]。血氧水平依赖⁃功能磁共振成像技术可以用来解析全脑功能连接,反映神经网络重塑方式,对理解脑梗死后运动功能恢复的结构基础具有重要意义[5]。本文主要对脑梗死后静息态功能连接改变及其与运动功能恢复的关系进行总结,并揭示潜在的分子机制,为研究脑梗死后运动功能恢复提供思路。
-
1 运动皮质功能连接改变与运动功能预后
-
躯体运动的最高级中枢为运动中枢,位于大脑皮层的 Brodmann 4 区和 6 区,即初级运动皮质 (primary motor cortex,M1)、前运动皮质(premotor cortex,PMC)和辅助运动皮质(supplementary motor area,SMA)(图1)。运动皮层直接参与运动的执行、规划,是运动相关神经网络的重要组成部分。脑缺血造成的局部脑组织破坏会导致损伤远隔部位运动相关神经网络功能连接中断,进而造成广泛的皮质功能受累,最终引起运动障碍[6]。造成上述影响的机制是:①局部组织破坏引起向远隔部位投射的白质纤维变性;②局部组织破坏导致两个间接结构连接的脑区之间的最短结构路径长度(shortest structural path length,SSPL)增加[6-8]。
-
图1 运动相关神经网络
-
Figure1 Motion⁃related neural networks
-
1.1 患侧大脑半球内部功能连接与运动功能预后
-
在脑梗死后,患侧大脑皮层内部功能连接程度影响脑梗死患者运动功能恢复。脑梗死会导致患侧运动脑区之间(如 PM 和初级运动皮质、SMA 和初级运动皮质)的相互连接减弱[9-11]。在慢性期,运动功能恢复患者上述结点之间的功能连接强度恢复[12]。利用Hebbian类型的经颅电刺激选择性增强患侧初级运动皮质与周围皮质的连接可以促进患者运动功能恢复[13]。
-
脑梗死后,患侧皮层内部 PM⁃初级运动皮质、 SMA⁃初级运动皮质连接强度和运动表现的关系并不是一成不变的,受到脑梗死时期的影响。对不同时期脑梗死患者的分析发现,在脑梗死亚急性期,上述连接强度与运动功能呈负相关,而在脑梗死慢性期,二者呈正相关[9,11,14]。此外,患侧皮层内部 PM⁃初级运动皮质连接强度和运动表现的关系还受脑梗死严重程度影响。Lee等[10] 依据脑梗死患者神经功能受损程度,将患者分为极重度组、重度组、中度组,研究亚急性期患侧PM⁃初级运动皮质连接增强与慢性期运动功能改善的关系,发现极重度组患者中二者呈正相关,而在重度组、中度组中二者无明显相关。
-
目前尚未发现亚急性期患侧PMC⁃SMA静息态功能连接强度与慢性期运动功能评分相关[15]。但在对脑梗死患者镜像治疗后,患侧PMC与SMA之间的功能连接增强,肢体运动功能随之改善[16]。
-
1.2 双侧大脑半球间功能连接与运动功能预后
-
脑梗死后急性期即可出现双侧大脑半球间运动相关神经网络功能连接减弱,该现象在慢性期运动功能障碍的患者中仍然存在[15,17]。大脑半球间运动相关神经网络功能连接的减弱与运动功能障碍有关[18-19]。
-
在脑梗死慢性期,感觉运动相关脑区同伦半球间功能连接增强往往与运动功能恢复相关,包括双侧初级运动皮质和双侧初级感觉皮质,以上功能连接强度可以通过运动训练来增强[9,18,20]。最近研究发现,脑梗死后1个月时大脑半球间初级运动皮质功能连接和脑梗死后3个月时的大脑半球间初级感觉皮质功能连接与卒中患者的运动功能恢复呈正相关。大脑半球间功能连接越强,患者运动功能恢复越好[18-19]。与健康对照组相比,脑梗死后 1 个月时大脑半球间SMA功能连接减弱,尚未发现其与运动功能恢复程度相关[19,21]。但脑梗死患者在慢性期接受脑⁃机接口康复治疗后,可发现大脑半球间SMA 功能连接增强,这一增强的连接是脑⁃机接口训练促进运动功能恢复的机制之一[19,21]。
-
慢性期脑梗死患者感觉运动区内双侧非同伦脑区之间的连接强度也与运动功能恢复相关[22-23]。 Yuan等[24] 纳入14例脑梗死患者进行脑⁃机接口指导的机器人辅助上肢训练,发现脑梗死患者的患侧初级运动皮质与对侧 SMA、PM 之间的功能连接改善与运动恢复相关。其中,在脑梗死亚急性期,患侧初级运动皮质和对侧PM间的功能连接增强预示着上肢运动功能恢复良好[22]。另外,在慢性期,脑梗死患者健侧初级运动皮质与患侧SMA之间的功能连接强度与运动评分呈正相关[14]。但也有文献报道,对侧大脑半球与患侧大脑半球之间的功能连接增强对卒中后运动功能恢复不利。Caria等[23] 发现,与未接受脑机接口治疗的脑梗死患者相比,接受脑机接口治疗的脑梗死患者运动功能改善,其对侧初级运动皮质与患侧 PM 之间的功能连接、对侧 SMA 与患侧PM之间的功能连接均减弱。
-
2 静息态网络改变与运动功能预后
-
脑梗死后运动功能恢复不仅与运动皮质的功能有关,而且与脑内静息态神经网络有关。Hong等[25] 通过独立成分分析,发现15个运动相关的静息态神经网络,为卒中后运动功能修复提供了参考。进一步观察发现,与正常对照组相比,慢性期脑梗死患者脑内静息态神经网络发生改变,具体表现为患侧感觉运动与健侧感觉运动、腹侧感觉运动、听觉、视觉等神经网络功能连接减弱,其中患侧感觉运动与背侧感觉运动、腹侧视觉神经网络的功能连接强度与上肢运动评分呈正相关[25]。默认网络参与认知功能,慢性期脑梗死患者患侧感觉运动⁃默认网络之间的功能连接与运动评分无相关关系,但在接受康复训练后,二者的功能连接增强,且与运动评分呈正相关[26]。与认知功能有关的另一个网络是额顶神经网络,在脑梗死后的前 3 个月可出现运动⁃额顶网络之间的功能连接减弱,慢性期运动⁃额顶神经网络之间的功能连接强度与上肢运动评分呈正相关[14,27]。然而,静息态网络的无效重组会损害运动功能恢复,对健侧运动网络的慢性光遗传学刺激可以导致无效重组发生[6]。以上研究表明脑梗死导致全脑多个功能神经网络不同程度的功能重组,其介导了卒中后运动功能恢复。
-
3 神经可塑性机制介导脑梗死后功能连接改变
-
脑梗死会引起受损伤的大脑重建神经网络,从而修复或代偿受损的功能,即大脑具有可塑性[28-29]。大脑某些功能网络间静息态功能连接强度可以作为生物学指标,以评价脑梗死后功能恢复,这反映了脑梗死后静息态功能连接变化过程中存在可塑性事件。功能连接的变化与神经递质γ⁃氨基丁酸 (γ⁃aminobutyric acid,GABA)水平有关[30-31]。在健康成人中,细胞外GABA水平与感觉运动神经网络内部功能连接强度呈负相关[31]。在光照致脑梗死小鼠模型中,健侧后运动区的小清蛋白阳性(parvalbumin⁃ expressing,PV+ )中间神经元数量与一些功能连接强度呈负相关,如双侧后运动区之间、健侧后运动区和后顶部之间的功能连接[30]。由于细胞外GABA由 PV+ 中间神经元释放,参与tonic信号,因此GABA水平影响神经功能连接的潜在机制可能是tonic/GABA 信号抑制了脑的可塑性。
-
临床上脑梗死患者接受康复训练,已被证明通过增强神经网络功能连接,进而促进卒中患者运动功能修复[20,32-33]。实验动物环境丰富化(environmental enrichment,EE)是指给动物提供一种丰富的、刺激的、类似于野外生存环境的饲养条件,由新奇感觉刺激、运动和社交3个元素构成[34]。其已被证明是一种公认的类似于临床卒中患者康复训练的范式。为光照致脑梗死后的小鼠提供丰富化环境,可改善患侧和对侧大脑运动区的功能连接[30]。在另一项动物实验中,光照致脑梗死小鼠模型在暴露于 EE 后,一方面 tonic 电流被抑制;另一方面,突触数目和轴突芽生增加,这些变化与小鼠运动功能恢复程度相关[35]。以上研究提示,在脑梗死后功能连接改变过程中,发生了突触结构和功能重塑事件。
-
4 神经可塑性改善运动功能预后的分子机制
-
在过去几十年里,有关神经可塑性改善运动功能的机制成为学界重要的探讨内容。但临床上仍缺乏可靠的提示可塑性变化的生物学指标,这限制了神经重塑用于改善脑梗死患者康复。因此在将神经可塑性向临床转化时,需要明确其生物学指标。动物实验中,刺激小鼠健侧运动皮层可改变全脑多个网络功能连接,并改变脑组织中神经可塑性相关基因表达水平,包括脑源性神经营养因子(brain derived neurotrophic factor,BDNF)、介导α⁃ 氨基⁃3⁃羟基⁃5⁃甲基⁃4⁃异恶唑丙酸受体(α⁃amino⁃3⁃ hydroxy⁃5⁃methyl⁃4⁃isoxazole propionic acid receptor, AMPAR)功能的NPTX1、与轴突生长相关的RTN4R 等[6]。这提示许多分子可以通过调控神经可塑性来改变功能连接。明确这些分子机制与功能连接强度的关系,有助于将功能连接强度作为生物学指标,以评估大脑可塑性变化。
-
目前已发现许多促进突触重塑的蛋白可以改善脑梗死后运动功能,并有望影响功能连接。BDNF抑制脑梗死后 GABA 转运体 1(GABA transporter ⁃ 1, GAT⁃1)的内化,恢复GAT⁃1的功能,促进受损脑组织重塑[35]。AMPAR对调节树突棘多态性起到了关键作用,可通过干预 AMPAR 转入突触或转出突触来调控突触强度和可塑性[30,36]。表观遗传方面,抑制组蛋白去乙酰化酶 2(histone deacetylase2, HDAC2)活性不仅可以减少卒中后继发性损伤,也可以上调GAT⁃1和BDNF的表达,从而促进功能恢复[35,37];在小鼠脑梗死后,梗死旁皮质的环磷酸腺苷反应元件结合蛋白(cyclic AMP response element binding protein,CREB)会诱导产生与健康小鼠不同的转录组,使胶质细胞源性神经营养因子(glial cell⁃line derived neurotrophic factor,GDNF)、生长激素、BDNF等蛋白增加,以促进卒中后突触形成、运动功能恢复[38];敲除CC趋化因子受体⁃5(CC chemokine receptor 5,CCR5)基因可以诱导CREB表达,改善卒中后神经功能恢复[39]。
-
5 总结与展望
-
综上所述,脑梗死后大脑运动相关神经网络的功能连接减弱导致了脑梗死患者运动功能障碍。促进大脑运动相关神经网络重塑可以增强功能连接,改善脑梗死患者运动障碍。
-
当下针对脑梗死后全脑功能神经网络的研究存在样本量少的问题,且忽视了功能连接与突触可塑性的关系。因此今后的研究可以从以下角度进行:①扩大样本量;②应用新技术、从多角度评估啮齿动物脑梗死后功能连接改变和突触重塑,并尝试将脑网络功能连接强度作为提示神经重塑的生物学指标;③寻找新的影响功能连接的分子靶向药物。GAT⁃1在EE促进卒中后功能恢复过程中发挥重要作用,是一个有前景的药物靶点[35]。CCR5 因敲除后可以诱导CREB表达,促进卒中后神经功能恢复[39],CCR5拮抗剂已通过一期临床试验[40],因此 CCR5也是一个有潜力的药物靶点。
-
参考文献
-
[1] ROGER V L,GO A S,LLOYD⁃JONES D M,et al.Heart disease and stroke statistics ⁃ 2011 update:a report from the American Heart Association[J].Circulation,2011,123(4):e18-e209
-
[2] FEIGIN V L,ROTH G A,NAGHAVI M,et al.Global burden of stroke and risk factors in 188 countries,during 1990⁃2013:a systematic analysis for the Global Burden of Disease Study 2013[J].Lancet Neurol,2016,15(9):913-924
-
[3] OLAFSON EMILY R,JAMISON KEITH W,SWEENEY ELIZABETH M,et al.Functional connectome reorganiza⁃ tion relates to post ⁃ stroke motor recovery and structural and functional disconnection[J].Neuroimage,2021,245:118642
-
[4] 史安平,于瀛,胡博,等.全脑功能连接模式分析研究及临床应用进展[J].中国介入影像与治疗学,2021,18(7):430-433
-
[5] SIEGEL J S,SEITZMAN B A,RAMSEY L E,et al.Re ⁃ emergence of modular brain networks in stroke recovery [J].Cortex,2018,101:44-59
-
[6] BICE ANNIE R,XIAO Q L,JUSTIN K,et al.Homotopic contralesional excitation suppresses spontaneous circuit repair and global network reconnections following ischemic stroke[J].eLife,2022,11:e68852
-
[7] CHENG H J,NG K K,QIAN X,et al.Task⁃related brain functional network reconfigurations relate to motor recov⁃ ery in chronic subcortical stroke[J].Sci Rep,2021,11(1):8442
-
[8] GRIFFIS J C,METCALF N V,CORBETTA M,et al.Dam⁃ age to the shortest structural paths between brain regions is associated with disruptions of resting ⁃ state functional connectivity after stroke[J].Neuroimage,2020,210(C):116589
-
[9] PAUL T,HENSEL L,REHME A K,et al.Early motor net⁃ work connectivity after stroke:an interplay of general reor⁃ ganization and state ⁃ specific compensation[J].Hum Brain Mapp,2021,42(16):5230-5243
-
[10] LEE J,PARK E,LEE A,et al.Recovery ⁃ related indica⁃ tors of motor network plasticity according to impairment severity after stroke[J].Eur J Neurol,2017,24(10):1290-1299
-
[11] GREFKES C,NOWAK D A,EICKHOFF S B,et al.Corti⁃ cal connectivity after subcortical stroke assessed with functional magnetic resonance imaging[J].Ann Neurol,2008,63(2):236-246
-
[12] REHME A K,EICKHOFF S B,WANG L E,et al.Dynam⁃ ic causal modeling of cortical activity from the acute to the chronic stage after stroke[J].Neuroimage,2011,55(3):1147-1158
-
[13] REVILL K P,HAUT M W,BELAGAJE S R,et al.Hebbi⁃ an⁃type primary motor cortex stimulation:a potential treat⁃ ment of impaired hand function in chronic stroke patients [J].Neurorehabilit Neural Repair,2020,34(2):159-171
-
[14] LAM T K,DAWSON D R,HONJO K,et al.Neural cou⁃ pling between contralesional motor and frontoparietal net⁃ works correlates with motor ability in individuals with chronic stroke[J].J Neurol Sci,2018,384:21-29
-
[15] JUNGSOO L,EUNHEE P,AHEE L,et al.Alteration and role of interhemispheric and intrahemispheric connectivi⁃ ty in motor network after stroke[J].Brain Topogr,2018,31(4):708-719
-
[16] MICHIELSEN M E,SELLES R W,VAN DER GEEST J N,et al.Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients:a phase II ran⁃ domized controlled trial[J].Neurorehabil Neural Repair,2011,25(3):223-233
-
[17] GOLESTANI A M,TYMCHUK S,DEMCHUK A,et al.Longitudinal evaluation of resting ⁃ state fMRI after acute stroke with hemiparesis[J].Neurorehabilit Neural Re⁃ pair,2013,27(2):153-163
-
[18] FRÍAS I,STARRS F,GISIGER T,et al.Interhemispheric connectivity of primary sensory cortex is associated with motor impairment after stroke[J].Sci Rep,2018,8(1):12601
-
[19] MIN Y S,PARK J W,PARK E,et al.Interhemispheric functional connectivity in the primary motor cortex as⁃ sessed by resting⁃state functional magnetic resonance im⁃ aging aids long⁃term recovery prediction among subacute stroke patients with severe hand weakness[J].J Clin Med,2020,9(4):975
-
[20] MEKBIB D B,ZHAO Z,WANG J,et al.Proactive motor functional recovery following immersive virtual reality ⁃ based limb mirroring therapy in patients with subacute stroke[J].Neurotherapeutics,2020,17(4):1919-1930
-
[21] SINHA ANITA M,NAIR VEENA A,VIVEK P.Brain ⁃ computer interface training with functional electrical stim⁃ ulation:facilitating changes in interhemispheric function⁃ al connectivity and motor outcomes post⁃stroke[J].Front Neurosci,2021,15:670953
-
[22] CHI N F,KU H L,CHEN D Y T,et al.Cerebral motor functional connectivity at the acute stage:an outcome pre⁃ dictor of ischemic stroke[J].Sci Rep,2018,8(1):16803
-
[23] CARIA A,DALBONI DA ROCHA J L,GALLITTO G,et al.Brain ⁃ machine interface induced morpho ⁃ functional remodeling of the neural motor system in severe chronic stroke[J].Neurotherapeutics,2020,17(2):635-650
-
[24] YUAN K,WANG X,CHEN C,et al.Interhemispheric functional reorganization and its structural base after BCI⁃ guided upper ⁃ limb training in chronic stroke[J].IEEE Trans Neural Syst Rehabil Eng,2020,28(11):2525-2536
-
[25] HONG W J,LIN Q X,CUI Z X,et al.Diverse functional connectivity patterns of resting⁃state brain networks asso⁃ ciated with good and poor hand outcomes following stroke [J].Neuroimage Clin,2019,24:102065
-
[26] WU C W,LIN S N,HSU L M,et al.Synchrony between default ⁃mode and sensorimotor networks facilitates motor function in stroke rehabilitation:a pilot fMRI study[J].Front Neurosci,2020,14:548
-
[27] ZHAO Z,WU J,FAN M,et al.Altered intra⁃and inter⁃net⁃ work functional coupling of resting⁃state networks associ⁃ ated with motor dysfunction in stroke[J].Hum Brain Mapp,2018,39(8):3388-3397
-
[28] 徐兴俊,沈滢,伍琦,等.高频r TMS对健康大鼠认知功能与运动皮质LTP变化的相关性研究[J].南京医科大学学报(自然科学版),2022,42(5):632-637
-
[29] JOY M T,CARMICHAEL S T.Encouraging an excitable brain state:mechanisms of brain repair in stroke[J].Nat Rev Neurosci,2021,22(1):38-53
-
[30] HAKON J,QUATTROMANI M J,SJÖLUND C,et al.Mul⁃ tisensory stimulation improves functional recovery and resting⁃state functional connectivity in the mouse brain af⁃ ter stroke[J].Neuroimage Clin,2017,17:717-730
-
[31] ANTONENKO D,SCHUBERT F,BOHM F,et al.tDCS ⁃ induced modulation of GABA levels and resting ⁃ state functional connectivity in older adults[J].J Neurosci,2017,37(15):4065-4073
-
[32] MOTTAZ A,CORBET T,DOGANCI N,et al.Modulating functional connectivity after stroke with neurofeedback:effect on motor deficits in a controlled cross ⁃ over study [J].Neuroimage Clin,2018,20:336-346
-
[33] OROZCO PEREZ H D,DUMAS G,LEHMANN A.Binau⁃ ral beats through the auditory pathway:from brainstem to connectivity patterns[J].eNeuro,2020,7(2):ENEU⁃ RO.0232-19.2020
-
[34] 朱东亚.环境丰富化:重塑大脑的交响乐[J].南京医科大学学报(自然科学版),2020,40(10):1411-1413
-
[35] LIN Y H,YAO M C,WU H Y,et al.Environmental en⁃ richment implies GAT ⁃1 as a potential therapeutic target for stroke recovery[J].Theranostics,2021,11(8):3760-3780
-
[36] KALLERGI E,DASKALAKI A D,KOLAXI A,et al.Den⁃ dritic autophagy degrades postsynaptic proteins and is re⁃ quired for long⁃term synaptic depression in mice[J].Nat Commun,2022,13(1):680
-
[37] LIN Y H,DONG J,TANG Y,et al.Opening a new time window for treatment of stroke by targeting HDAC2[J].J Neurosci,2017,37(28):6712-6728
-
[38] CARACCIOLO L,MAROSI M,MAZZITELLI J,et al.CREB controls cortical circuit plasticity and functional re⁃ covery after stroke[J].Nat Commun,2018,9(1):1-16
-
[39] JOY M T,BEN ASSAYAG E,SHABASHOV⁃STONE D,et al.CCR5 is a therapeutic target for recovery after stroke and traumatic brain injury[J].Cell,2019,176(5):1143-1157
-
[40] GHANNAD M,DENNEHY M,LA PORTE C,et al.A drug interaction study investigating the effect of rifabutin on the pharmacokinetics of maraviroc in healthy subjects [J].PLoS One,2019,14(10):e0223969
-
摘要
脑卒中是成人因病致残的主要诱因,促进脑卒中后运动功能恢复至关重要。脑卒中后运动相关神经网络重塑介导脑卒中后运动功能恢复。功能磁共振成像可以解析运动相关神经网络的结构和功能重构。实验动物环境丰富化作为公认的促进卒中后功能修复的范式,可以用来揭示运动相关神经网络重塑的分子机制。本文主要对脑梗死后神经网络重塑的临床和基础研究进展进行总结。
Abstract
Stroke is a leading cause of adult disability worldwide,therefore promoting motor functional recovery from stroke is very important. Motor network remodeling is critical for motor functional recovery after stroke. The structural and functional reorganization of the motor network can be assessed by functional magnetic resonance imaging(fMRI). Environmental enrichment(EE),which is a generally accepted strategy to promote stroke recovery,can be employed to reveal the molecular mechanisms underlying motor network remodeling. This paper reviewed the basal and clinical research progress of neural network remodeling after stroke.