en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

曹新,E-mail:caoxin@njmu.edu.cn

中图分类号:Q344

文献标识码:A

文章编号:1007-4368(2023)05-648-07

DOI:10.7655/NYDXBNS20230509

参考文献 1
DICKSON E J.Phosphoinositide transport and metabo⁃ lism at membrane contact sites[J].Biochim Biophys Acta Mol Cell Biol Lipids,2022,1867(3):159107
参考文献 2
XING G,YAO J,WU B,et al.Identification of OSBPL2 as a novel candidate gene for progressive nonsyndromic hearing loss by whole⁃exome sequencing[J].Genet Med,2015,17(3):210-218
参考文献 3
YAO J,ZENG H,ZHANG M,et al.OSBPL2 ⁃ disrupted pigs recapitulate dual features of human hearing loss and hypercholesterolaemia[J].J Genet Genomics,2019,46(8):379-387
参考文献 4
SHI H,WANG H,ZHANG C,et al.Mutations in OSBPL2 cause hearing loss associated with primary cilia defects via sonic hedgehog signaling[J].JCI Insight,2022,7(4):e149626
参考文献 5
THOENES M,ZIMMERMANN U,EBERMANN I,et al.OSBPL2 encodes a protein of inner and outer hair cell ste⁃ reocilia and is mutated in autosomal dominant hearing loss(DFNA67)[J].Orphanet J Rare Dis,2015,10:15
参考文献 6
TAKAHASHI K,KANERVA K,VANHARANTA L,et al.ORP2 couples LDL ⁃ cholesterol transport to FAK activa⁃ tion by endosomal cholesterol/PI(4,5)P(2)exchange[J].Embo J,2021,40(14):e106871
参考文献 7
KENTALA H,KOPONEN A,KIVELÄ A M,et al.Analy⁃ sis of ORP2⁃knockout hepatocytes uncovers a novel func⁃ tion in actin cytoskeletal regulation[J].Faseb J,2018,32(3):1281-1295
参考文献 8
CHINCHOLE A N,LONE K A,TYAGI S.MLL regulates actin cytoskeleton and cell migration by stabilizing Rho GTPases via the transcription of RhoGDI1[J].J Cell Sci,2022,135(20):jcs260042
参考文献 9
SHI H,WANG H,YAO J,et al.Comparative transcrip⁃ tome analysis of auditory OC ⁃ 1 cells and zebrafish inner ear tissues in the absence of human OSBPL2 orthologues [J].Biochem Biophys Res Commun,2020,521(1):42-49
参考文献 10
张洪都,王红顺,王天明,等.USP14调控OSBPL2蛋白去泛素化作用的实验研究[J].南京医科大学学报(自然科学版),2022,42(6):759-767
参考文献 11
ARORA A,TASKINEN J H,OLKKONEN V M.Coordina⁃ tion of inter ⁃organelle communication and lipid fluxes by OSBP ⁃ related proteins[J].Prog Lipid Res,2022,86:101146
参考文献 12
CORBEIL D,SANTOS M F,KARBANOVÁ J,et al.Up⁃ take and fate of extracellular membrane vesicles:nucleo⁃ plasmic reticulum ⁃ associated late endosomes as a new gate to intercellular communication[J].Cells,2020,9(9):1931
参考文献 13
WEBER⁃BOYVAT M,KENTALA H,LILJA J,et al.OSBP ⁃ related protein 3(ORP3)coupling with VAMP ⁃associat⁃ ed protein A regulates R ⁃Ras activity[J].Exp Cell Res,2015,331(2):278-291
参考文献 14
WYLES J P,PERRY R J,RIDGWAY N D.Characteriza⁃ tion of the sterol⁃binding domain of oxysterol⁃binding pro⁃ tein(OSBP)⁃ related protein 4 reveals a novel role in vi⁃ mentin organization[J].Exp Cell Res,2007,313(7):1426-1437
参考文献 15
KOPONEN A,PAN G,KIVELÄ A M,et al.ORP2,a cho⁃ lesterol transporter,regulates angiogenic signaling in en⁃ dothelial cells[J].Faseb J,2020,34(11):14671-14694
参考文献 16
DING B,YANG S,SCHAKS M,et al.Structures reveal a key mechanism of WAVE regulatory complex activation by Rac1 GTPase[J].Nat Commun,2022,13(1):5444
参考文献 17
ZHAO H,KONG H,WANG W,et al.High glucose aggra⁃ vates retinal endothelial cell dysfunction by activating the RhoA/ROCK1/pMLC/Connexin43 signaling pathway[J].Invest Ophthalmol Vis Sci,2022,63(8):22
参考文献 18
SAWMA T,SHAITO A,NAJM N,et al.Role of RhoA and Rho ⁃ associated kinase in phenotypic switching of vascu⁃ lar smooth muscle cells:Implications for vascular function [J].Atherosclerosis,2022,358:12-28
参考文献 19
TRIBOLLET V,CERUTTI C,GÉLOËN A,et al.ERRα coordinates actin and focal adhesion dynamics[J].Can⁃ cer Gene Ther,2022,29(10):1429-1438
参考文献 20
WU Y,MENG W,GUAN M,et al.Pitavastatin protects against neomycin ⁃ induced ototoxicity through inhibition of endoplasmic reticulum stress[J].Front Mol Neurosci,2022,15:963083
参考文献 21
HAN Y,WANG X,CHEN J,et al.Noise⁃induced cochle⁃ ar F ⁃ actin depolymerization is mediated via ROCK2/p ⁃ ERM signaling[J].J Neurochem,2015,133(5):617-628
参考文献 22
MCGRATH J,TUNG C Y,LIAO X,et al.Actin at stereo⁃ cilia tips is regulated by mechanotransduction and ADF/cofilin[J].Curr Biol,2021,31(6):1141-1153.e1147
目录contents

    摘要

    目的:探索氧化固醇结合蛋白样蛋白2(oxysterol binding protein-like 2,OSBPL2)对听觉细胞肌动蛋白骨架形态和功能的影响及其相关分子机制。方法:采用OSBPL2基因敲除(Osbpl2-KO)HEI-OC1细胞探讨OSBPL2缺陷对听觉细胞肌动蛋白细胞骨架形态和功能的影响;扫描电镜观察Osbpl2-KO小鼠毛细胞静纤毛形态;Western blot实验检测HEI-OC1细胞和耳蜗内 Rho/ROCK 信号通路关键效应因子 Rho 激酶 2(Rho-associated coiled-coil-containing protein kinase 2,ROCK2)、Lim 激酶 1(LIM domain kinase 1,LIMK1)、肌动蛋白解聚因子/丝切蛋白1(actin depolymerizing factor/cofilin 1,ADF/CFL-1)的表达水平。结果: Osbpl2-KO HEI-OC1细胞微丝骨架中纤维肌动蛋白(F-actin)的分布明显减少,细胞外周微刺突和丝状伪足明显减少,细胞迁移能力明显减弱;扫描电镜下观察发现Osbpl2敲除导致小鼠耳蜗内毛细胞静纤毛变短且排列紊乱;Western blot检测结果表明,在HEI-OC1细胞和小鼠耳蜗中OSBPL2-KO均导致RhoA/ROCK2信号通路的抑制。结论:在听觉细胞中OSBPL2介导的RhoA/ ROCK2信号通路在维持肌动蛋白细胞骨架形态和功能的过程中发挥重要的调控作用。

    Abstract

    Objective:To explore the effect of oxysterol-binding protein-like 2(OSBPL2)on the actin cytoskeleton in auditory cells and its related molecular mechanisms. Methods:OSBPl2 knockout(Osbpl2-KO)HEI-OC1 cells were used to investigate the effect of OSBPL2 deficiency on the the actin cytoskeleton in auditory cells. The stereocilia onmouse hair cells were observed by scanning electron microscopy. Western blot was used to detect the expression of Rho - associated coiled - coil - containing protein kinase 2 (ROCK2),Lim domain kinase 1(LIMK1)and actin depolymerizing factor 1(ADF/CFL - 1)in HEI -OC1 cells and mouse cochleae. Results:In Osbpl2-KO HEI-OC1 cells,the distribution of F-actin in the microfilament skeleton was down-regulated,the pericellular microspikes and filopodia were noticeably reduced,and the cell migration ability was significantly weakened. In vivo,OSBPL2 deficiency resulted in shortened and disordered stereocilia on mouse inner hair cells. Western blot assay showed that OSBPL2 deficiency led to the inhibition of RhoA/ROCK2 signaling pathway in HEI - OC1 cells and mouse cochleae. Conclusion:OSBPL2 mediats RhoA/ROCK2 signaling pathway in auditory cells and plays an important role in maintaining the morphology and function of actin cytoskeleton.

  • 氧化固醇结合蛋白样蛋白 2(oxysterol binding protein⁃like2,OSBPL2)与氧化固醇结合蛋白(oxys⁃ terol binding protein,OSBP)同源,属于OSBP 相关蛋白(OSBP⁃related protein,ORP)家族成员,作为一种重要的固醇感受器,参与了脂质代谢、囊泡运输、信号转导和细胞骨架调控等生物学过程[1]。本课题组在前期研究中发现OSBPL2是常染色体显性遗传性非综合征型耳聋(DFNA)的致病基因之一[2],OSBPL2 敲除的巴马小型猪以及小鼠模型均表现为进行性听力损失,并伴随有毛细胞静纤毛的形态异常[3-4]。毛细胞静纤毛是主要由肌动蛋白构成的特化细胞器,静纤毛以及肌动蛋白骨架功能正常是听觉发生的必要条件。OSBPL2在耳蜗内毛细胞和外毛细胞的静纤毛中均有定位[5],提示OSBPL2在听觉细胞的肌动蛋白骨架调控中可能发挥重要作用。有研究发现,OSBPL2缺失会导致HuH7细胞中黏着斑激酶 (focal adhesion kinase,FAK)的磷酸化水平降低,并进一步抑制细胞肌动蛋白骨架重塑、伪足与细胞极性形成、细胞迁移、细胞黏附和细胞周期[6]。此外, OSBPL2也可以作为肌动蛋白细胞骨架的脂质感受器,通过介导RhoA信号通路影响肝脏细胞的迁移、黏附和增殖[7]。RhoA 是Rho GTPase 家族重要成员之一,参与了多种以肌动蛋白为基础的生物学过程,特别在肌动蛋白细胞骨架的重排中发挥重要调控作用[8]。但在内耳组织和听觉细胞中,OSBPL2是否存在同样的调控机制仍需进一步研究。本研究将从体内外水平研究OSBPL2参与听觉细胞肌动蛋白细胞骨架调控的机制,为进一步探索 OSBPL2 生物学功能及其突变致聋机制提供理论依据。

  • 1 材料和方法

  • 1.1 材料

  • 小鼠耳蜗感觉上皮永生化细胞株 HEI⁃OC1 细胞及其 OSBPL2 敲除(Osbpl2⁃KO)细胞株由本实验室构建和保存[9],Osbpl2⁃KO 小鼠及其同窝野生型 (Osbpl2⁃WT)小鼠由南京医科大学动物中心净化并配繁[4]。实验经过南京医科大学动物福利伦理委员会同意(伦理编号:IACUC⁃1801003⁃1)。

  • 实验所用抗体:纤维肌动蛋白(fibros actin,F⁃ actin)抗体(MA1⁃80729,上海赛默飞)、OSBPL2抗体 (14751 ⁃ 1 ⁃ AP,武汉 Proteintech 公司)、GAPDH (5174S,CST,美国)、RhoA(A19106,武汉爱博泰克)、Rho 激酶 2(Rho⁃associated coiled⁃coil⁃contain⁃ ing proteing kinase2,ROCK2)(A5698,武汉爱博泰克)、肌动蛋白解聚因子/丝切蛋白 1(actin depoly⁃ meriza factor/cofilin 1,ADF/CFL ⁃1)抗体(5175,CST 公司,美国)、Lim激酶1(LIM domain kinase1,LIMK1) 抗体(A16664,武汉爱博泰克),Phospho⁃LIMK1抗体 (APO387,武汉爱博泰克),山羊抗鼠、抗兔IgG二抗 (SA00001⁃1、SA00001⁃2,武汉 Proteintech 公司)、荧光标记山羊抗鼠、抗兔二抗(1741782、1748346,上海赛默飞)。

  • 其他试剂:Western及IP细胞裂解液(P0013,南京碧云天)、RIPA 裂解液(P0013B,南京碧云天)、 SYBRRGreen Master Mix(Q131,南京诺唯赞)、TGX Stain⁃FreeTM FastCastTM Acrylamide Kit、基因扩增引物由北京擎科生物科技有限公司合成。

  • 1.2 方法

  • 1.2.1 细胞培养

  • 在 DMEM 培养基中加入 10%胎牛血清制成完全培养基。将 HEI⁃OC1 细胞培养在 DMEM 完全培养基中,置于10% CO2饱和湿度的33℃细胞培养箱中培养,当细胞密度达到80%~90%,用胰酶消化、传代并冻存,以备后续实验使用。

  • 1.2.2 耳蜗组织采集

  • 取 Osbpl2⁃KO 小鼠和 Osbpl2⁃WT 对照小鼠,麻醉后用生理盐水进行心脏灌注。待灌注出的生理盐水澄清后,给小鼠断头,取出耳蜗,体视显微镜下用镊子去除多余肌肉组织并在蜗顶打洞后多聚甲醛固定过夜,第2天将耳蜗取出用PBS清洗3遍后,置于EDTA慢脱钙液中,脱钙7~10 d,脱钙过程中可用镊子夹一下耳蜗来衡量脱钙状态,镊子夹起富有弹性则表示脱钙完成。

  • 1.2.3 扫描电镜

  • 将完成脱钙的小鼠耳蜗置于体式显微镜下,采用显微镊与显微剪分离基底膜,浸入 5%戊二醛固定过夜;将固定后的基底膜依次浸入 50%、70%、 90%、100%乙醇中脱水各 5 min,冻干后喷金;扫描电镜下观察毛细胞静纤毛的形态与排列,并在不同观察视野中选取17~18个细胞,Image J统计静纤毛长度和宽度。

  • 1.2.4 细胞爬片免疫荧光染色

  • 待细胞密度为60%~80%时,吸弃原培养基,在培养板中将已爬好细胞的玻片用4℃预冷PBS洗涤 3遍;4%多聚甲醛固定爬片30 min,PBS浸洗玻片3 次,每次3 min;0.3% Triton X室温穿膜30 min,山羊血清封闭 30 min;加稀释后的一抗 4℃孵育过夜, PBS洗涤3遍,每遍5 min,加稀释后的二抗室温避光孵育1 h,PBS洗涤3遍后,DAPI室温孵育10 min,封片,荧光显微镜拍片,在观察视野中选取8~10个细胞,Image J分析F⁃actin荧光强度以及ADF/CFL⁃1的表达定位。

  • 1.2.5 细胞划痕实验

  • 用直尺在6孔板底部画间隔1 cm的直线。将消化下来的细胞重悬移入6孔板,每孔约5×105 个细胞,待细胞生长融合成单层状态后,用灭菌的200 μL枪头垂直于6孔板底部横线划线,PBS洗涤3遍使得划痕边缘清晰,随后加入无血清培养基。分别在0、12、 24 h用倒置荧光显微镜拍照保存,使用Image J软件进行分析。

  • 1.2.6 Western blot实验

  • 取处在对数生长期的细胞株培养瓶,弃去培养液后,PBS清洗3遍。加入含蛋白酶抑制剂的RIPA 强裂解液于冰上裂解15 min;将细胞裂解液转移至 1.5 mL离心管,冰浴中超声破碎处理3次,每次5 s; 12 000 r/min离心10 min(4℃),收集上清,采用BCA 法测定各样品蛋白浓度。取等量蛋白,采用 12% SDS ⁃PAGE 电泳分离蛋白,并转移至 PVDF 膜上。 5%脱脂奶粉溶液封闭2 h,PBS洗涤后加入一抗4℃ 孵育过夜,加入相对应二抗室温孵育2 h,PBS洗涤后采用增强化学发光显色法显色,采用凝胶成像系统观察拍照。

  • 1.2.7 实时定量PCR

  • 使用 TRIzol 提取 HEI ⁃OC1 细胞总 RNA,测定 RNA 浓度后,取 1 μg 总 RNA 反转录成 cDNA,然后进行实时荧光定量PCR(real⁃time quantitative PCR, qRT ⁃ PCR)检测。采用 20 μL 扩增体系: SYBR®Green Master Mix 10 μL,cDNA 1 μL,上下游引物各0.5 μL,ddH2O 8 μL。扩增程序如下:预变性 95℃ 5 min;变性95℃10 s,退火/延伸60℃ 30 s,共 40个循环,目标基因CT值使用GAPDH基因CT值校正。引物序列见表1。

  • 1.3 统计学方法

  • 每组实验至少重复 3 次,使用 GraphPad Prism 软件进行相关统计学分析。实验数据采用均数±标准差(x-±s)表示,两独立样本采用t检验进行组间比较,P <0.05为差异有统计学意义。

  • 2 结果

  • 2.1 Osbpl2⁃KO对HEI⁃OC1细胞肌动蛋白骨架形态和功能的影响

  • 采用Phalloidin 对细胞F⁃actin 细胞骨架进行特异性标记。在Osbpl2⁃WT HEI⁃OC1细胞中,细胞周围微刺突和丝状伪足丰富;分布于细胞周边的F⁃ac⁃ tin外周致密束线条连续清晰,界限分明;由非极性单行排列的肌动蛋白丝组成的应力纤维以及核区周围的核骨架线条清晰,分布均匀,轮廓完整,在细胞中平行排列或者纵横交错形成网状结构。而在 Osbpl2⁃KO HEI⁃OC1 细胞中,细胞外周微刺突和丝状伪足明显减少;F⁃actin 外周较为致密,但轮廓并不连续完整;核骨架以及应力纤维分布明显减少 (图1A)。对细胞F⁃actin骨架的免疫荧光检测表明, Osbpl2⁃KO HEI⁃OC1细胞的F⁃actin骨架荧光强度明显变弱。细胞划痕实验结果表明,Osbpl2⁃KO HEI⁃ OC1 细胞迁移能力相比 Osbpl2⁃WT 细胞明显减弱 (图1B)。以上结果表明,Osbpl2⁃KO 显著影响了 HEI⁃OC1 细胞的 F⁃actin 细胞骨架形态、分布和完整性。

  • 表1 实时定量PCR引物

  • Table1 Primers for qRT⁃RCR

  • 2.2 Osbpl2 ⁃ KO 抑制了 HEI ⁃ OC1 细胞中 RhoA/ ROCK2信号通路

  • 基于OSBPL2对HEI⁃OC1细胞F⁃actin细胞骨架结构和功能的影响,OSBPL2 可能通过介导 RhoA/ ROCK2信号通路在听觉细胞肌动蛋白细胞骨架的结构和功能维持中发挥重要作用。qRT ⁃PCR 和 Western blot 检测结果表明,在 Osbpl2⁃KO HEI⁃OC1 细胞中,RhoA、ROCK2和LIMK1的转录和蛋白表达水平均呈现不同程度的下调(图2),而LIMK1作为 Rho/ROCK 信号通路重要的下游分子,其磷酸化修饰程度影响肌动蛋白细胞骨架的解聚和聚合。以上结果表明,OSBPL2 通过介导 HEI ⁃OC1 细胞中 RhoA/ROCK2信号通路来调控肌动蛋白细胞骨架, Osbpl2⁃KO抑制了HEI⁃OC1细胞中RhoA/ROCK2信号通路的活性,导致下游 LIMK1 磷酸化水平降低,使得肌动蛋白细胞骨架的稳定性减弱,从而导致肌动蛋白细胞骨架的功能缺陷。

  • 图1 Osbpl2⁃WT/KO HEI⁃OC1细胞肌动蛋白骨架形态功能分析

  • Figure1 Morphological and functional analysis of actin cytoskeleton in Osbpl2⁃WT/KO HEI⁃OC1 cells

  • 图2 OSBPL2缺陷导致HEI⁃OC1细胞中RhoA/ROCK2信号通路被抑制

  • Figure2 OSBPL2 deficiency led to the inhibition of RhoA/ROCK2 signaling pathway in HEI⁃OC1 cells

  • 2.3 OSBPL2对HEI⁃OC1细胞中ADF/CFL⁃1定位和表达的影响

  • ADF和CFL⁃1是肌动蛋白结合蛋白家族成员中作用于解聚微丝的蛋白群,同时也是LIMK1下游磷酸化的靶分子。ADF/CFL⁃1一般定位于细胞富含肌动蛋白微丝的部位,可切断微丝并与肌动蛋白单体结合,在调控微丝聚合与解聚的动态过程中发挥重要作用。对Osbpl2⁃WT/KO HEI⁃OC1细胞的免疫荧光染色显示,ADF/CFL ⁃1 定位于 Osbpl2⁃WT HEI ⁃ OC1细胞外周的微刺突,丝状伪足以及应力纤维和核骨架肌动蛋白丝的末端。而在 Osbpl2⁃KO HEI⁃ OC1细胞中,定位有ADF/CFL⁃1的F⁃actin末端的数量显著减少(图3A、B)。此外,Osbpl2⁃KO HEI⁃OC1 细胞中,ADF/CFL⁃1 的表达水平显著下降(图3C、 D)。这些结果表明Osbpl2⁃KO抑制了HEI⁃OC1细胞中RhoA/ROCK2信号通路的活性,且影响其下游效应蛋白ADF/CFL⁃1在F⁃actin末端的定位,导致细胞肌动蛋白细胞骨架解聚失衡,从而影响了细胞肌动蛋白细胞骨架形态和功能。

  • 2.4 Osbpl2⁃KO对小鼠耳蜗毛细胞静纤毛形态的影响及其分子机制的验证

  • 静纤毛是耳蜗毛细胞最先感受声波刺激的部位,其形态维持和生理功能的行使是听觉发生的必要条件。为此,进一步对 OSBPL2⁃RhoA/ROCK2⁃ ADF/CFL1 的分子机制进行了在体水平的验证,并探索了Osbpl2⁃KO对小鼠耳蜗毛细胞静毛形态的影响。Osbpl2⁃KO小鼠耳蜗中,RhoA、ROCK2和ADF/ CFL1均显示下调,这一结果与Osbpl2⁃KO HEI⁃OC1 细胞中相应效应因子的变化趋势一致(图4A)。扫描电镜观察结果显示,与 Osbpl2⁃WT 小鼠相比,Osbpl2⁃KO 小鼠耳蜗内毛细胞静纤毛排列较为紊乱,静纤毛的长度较短较细(图4B)。结果表明, OSBPL2通过RhoA/ROCK2信号通路介导了毛细胞肌动蛋白骨架的调控,并对耳蜗毛细胞静纤毛微丝骨架的形态维持和功能具有重要影响。

  • 3 讨论

  • 本课题组在前期研究中定位和克隆了一个新的遗传性耳聋致病基因OSBPL2 [2]。在后续研究中,采用CRISPR/Cas9技术构建了Osbpl2⁃KO巴马小型猪模型和小鼠模型,成功模拟了人 OSBPL2 的临床表型。此外,还在巴马小型猪模型上观察到耳蜗毛细胞以及静纤毛的形态异常,包括毛细胞缺失,静纤毛缺失、倒伏和排列紊乱等[3]。在Osbpl2⁃KO小鼠中也观察到异常的耳蜗发育并伴随有纤毛缺陷[4]。以上研究结果提示,OSBPL2突变导致的听力损失可能与耳蜗毛细胞肌动蛋白骨架形态和功能异常有关。

  • OSBP/ORP 家族成员在脂质代谢、囊泡运输和信号转导等方面发挥着重要作用[10-11]:OSBP/ORP羧基端共有含 OSBP 指纹基序“EQVSHHPP”的 ORD结构域(OSBP⁃related ligand⁃binding domain),在固醇结合中发挥重要作用;OSBP/ORP 和囊泡相关膜蛋白(vesicle associated membrane protein,VAP)相互作用介导胞内的膜接触位点进行物质交换和信息交流,从而维持细胞脂质的动态平衡[12];OSBP/ORP 家族成员还参与了细胞骨架的调控过程,如 ORP3 可以调节 R⁃Ras 活性,进而调控 F⁃actin 的组装[13], ORP4 可以调控波形蛋白(vimentin)介导微丝组装过程[14]。OSBPL2(即ORP2)是OSBP/ORP家族中唯一被发现与遗传性耳聋相关的基因,对其功能的研究最初集中在脂质代谢和固醇转运方面。近年来有研究发现OSBPL2可作为特定信号通路的效应因子行使其特有的生物学功能[15]。在HuH7细胞中, OSBPL2 是 AKT 信号通路的关键调控因子,同时也与多个 Rho GTPase 信号通路效应因子如 DIAPH1、 MLC12、SEPT9等存在相互作用,从而影响细胞肌动蛋白骨架重塑、伪足和细胞极性形成、细胞迁移、细胞黏附和细胞周期[7]。在 Osbpl2⁃KO HEI⁃OC1 细胞中还发现了细胞黏附异常现象,且 FAK 信号通路受到了抑制,而 FAK 正位于 Rho GTPase 信号通路的上游[9]。以上研究表明OSBPL2在听觉细胞肌动蛋白细胞骨架的调节中可能发挥着重要作用,并且可能是通过Rho GTPase信号通路来实现的。

  • 图3 ADF/CFL⁃1在HEI⁃OC1细胞中的定位和表达

  • Figure3 Expression and localization of ADF/ CFL⁃1 in HEI⁃OC1 cells

  • 图4 OSBPL2介导RhoA/ROCK2信号通路影响小鼠耳蜗内毛细胞静纤毛形态

  • Figure4 OSBPL2 affected stereociliary morphology on mouse cochlear inner hair cells via the mediation of RhoA/ROCK2 signaling pathway

  • Rho GTPase 家族成员参与了多种以肌动蛋白为基础的生物学过程[16],包括细胞骨架重排,细胞生长、分化、黏附、迁移等。RhoA 是 Rho GTPase 家族重要成员之一,在细胞微环境以及各种生长因子的作用下,以GTP结合的活性形式与GDP结合的非活性形式发挥其分子开关的调控作用。RhoA的下游主要效应物Rho激酶是一种丝氨酸/苏氨酸激酶,有ROCK1和ROCK2两种亚型,在细胞骨架重组、细胞迁移和应力纤维形成等发面具有重要的调控作用[17]。当RhoA的活性形式与ROCK结合后,ROCK 进入激活状态,调控LIM基序的LIMK的磷酸化[18]。 LIMK 又能磷酸化 F⁃actin 并使其解聚活性失活,从而导致肌动蛋白丝的稳定[19]。RhoA/ROCK 信号通路及其效应因子在听力的发育和形成中也发挥着重要作用[20]。有研究表明ROCK2是小鼠耳蜗内表达的主要亚型,噪音暴露可引起耳蜗中ROCK2的表达下调,引起耳蜗毛细胞肌动蛋白解聚,从而导致听力下降[21]。此外,ADF/CFL⁃1作为LIMK1下游磷酸化的靶分子,定位于耳蜗毛细胞静纤毛的顶端,参与调控毛细胞细胞骨架中肌动蛋白的解聚和聚合。其定位、表达和磷酸化水平的异常会影响肌动蛋白骨架的重塑和机械信号的传导,导致听觉器官发育异常和听力障碍[22]。本研究表明,在 Osbpl2⁃ KO小鼠耳蜗和HEI⁃OC1细胞中均发现了肌动蛋白骨架形态异常,RhoA/ROCK2信号通路的活性均受到抑制,下游LIMK1表达水平和磷酸化水平显著降低,并且导致LIMK1下游效应蛋白ADF/CFL⁃1表达水平明显下降,其在细胞微丝骨架中F⁃actin末端的定位明显减少。

  • 参考文献

    • [1] DICKSON E J.Phosphoinositide transport and metabo⁃ lism at membrane contact sites[J].Biochim Biophys Acta Mol Cell Biol Lipids,2022,1867(3):159107

    • [2] XING G,YAO J,WU B,et al.Identification of OSBPL2 as a novel candidate gene for progressive nonsyndromic hearing loss by whole⁃exome sequencing[J].Genet Med,2015,17(3):210-218

    • [3] YAO J,ZENG H,ZHANG M,et al.OSBPL2 ⁃ disrupted pigs recapitulate dual features of human hearing loss and hypercholesterolaemia[J].J Genet Genomics,2019,46(8):379-387

    • [4] SHI H,WANG H,ZHANG C,et al.Mutations in OSBPL2 cause hearing loss associated with primary cilia defects via sonic hedgehog signaling[J].JCI Insight,2022,7(4):e149626

    • [5] THOENES M,ZIMMERMANN U,EBERMANN I,et al.OSBPL2 encodes a protein of inner and outer hair cell ste⁃ reocilia and is mutated in autosomal dominant hearing loss(DFNA67)[J].Orphanet J Rare Dis,2015,10:15

    • [6] TAKAHASHI K,KANERVA K,VANHARANTA L,et al.ORP2 couples LDL ⁃ cholesterol transport to FAK activa⁃ tion by endosomal cholesterol/PI(4,5)P(2)exchange[J].Embo J,2021,40(14):e106871

    • [7] KENTALA H,KOPONEN A,KIVELÄ A M,et al.Analy⁃ sis of ORP2⁃knockout hepatocytes uncovers a novel func⁃ tion in actin cytoskeletal regulation[J].Faseb J,2018,32(3):1281-1295

    • [8] CHINCHOLE A N,LONE K A,TYAGI S.MLL regulates actin cytoskeleton and cell migration by stabilizing Rho GTPases via the transcription of RhoGDI1[J].J Cell Sci,2022,135(20):jcs260042

    • [9] SHI H,WANG H,YAO J,et al.Comparative transcrip⁃ tome analysis of auditory OC ⁃ 1 cells and zebrafish inner ear tissues in the absence of human OSBPL2 orthologues [J].Biochem Biophys Res Commun,2020,521(1):42-49

    • [10] 张洪都,王红顺,王天明,等.USP14调控OSBPL2蛋白去泛素化作用的实验研究[J].南京医科大学学报(自然科学版),2022,42(6):759-767

    • [11] ARORA A,TASKINEN J H,OLKKONEN V M.Coordina⁃ tion of inter ⁃organelle communication and lipid fluxes by OSBP ⁃ related proteins[J].Prog Lipid Res,2022,86:101146

    • [12] CORBEIL D,SANTOS M F,KARBANOVÁ J,et al.Up⁃ take and fate of extracellular membrane vesicles:nucleo⁃ plasmic reticulum ⁃ associated late endosomes as a new gate to intercellular communication[J].Cells,2020,9(9):1931

    • [13] WEBER⁃BOYVAT M,KENTALA H,LILJA J,et al.OSBP ⁃ related protein 3(ORP3)coupling with VAMP ⁃associat⁃ ed protein A regulates R ⁃Ras activity[J].Exp Cell Res,2015,331(2):278-291

    • [14] WYLES J P,PERRY R J,RIDGWAY N D.Characteriza⁃ tion of the sterol⁃binding domain of oxysterol⁃binding pro⁃ tein(OSBP)⁃ related protein 4 reveals a novel role in vi⁃ mentin organization[J].Exp Cell Res,2007,313(7):1426-1437

    • [15] KOPONEN A,PAN G,KIVELÄ A M,et al.ORP2,a cho⁃ lesterol transporter,regulates angiogenic signaling in en⁃ dothelial cells[J].Faseb J,2020,34(11):14671-14694

    • [16] DING B,YANG S,SCHAKS M,et al.Structures reveal a key mechanism of WAVE regulatory complex activation by Rac1 GTPase[J].Nat Commun,2022,13(1):5444

    • [17] ZHAO H,KONG H,WANG W,et al.High glucose aggra⁃ vates retinal endothelial cell dysfunction by activating the RhoA/ROCK1/pMLC/Connexin43 signaling pathway[J].Invest Ophthalmol Vis Sci,2022,63(8):22

    • [18] SAWMA T,SHAITO A,NAJM N,et al.Role of RhoA and Rho ⁃ associated kinase in phenotypic switching of vascu⁃ lar smooth muscle cells:Implications for vascular function [J].Atherosclerosis,2022,358:12-28

    • [19] TRIBOLLET V,CERUTTI C,GÉLOËN A,et al.ERRα coordinates actin and focal adhesion dynamics[J].Can⁃ cer Gene Ther,2022,29(10):1429-1438

    • [20] WU Y,MENG W,GUAN M,et al.Pitavastatin protects against neomycin ⁃ induced ototoxicity through inhibition of endoplasmic reticulum stress[J].Front Mol Neurosci,2022,15:963083

    • [21] HAN Y,WANG X,CHEN J,et al.Noise⁃induced cochle⁃ ar F ⁃ actin depolymerization is mediated via ROCK2/p ⁃ ERM signaling[J].J Neurochem,2015,133(5):617-628

    • [22] MCGRATH J,TUNG C Y,LIAO X,et al.Actin at stereo⁃ cilia tips is regulated by mechanotransduction and ADF/cofilin[J].Curr Biol,2021,31(6):1141-1153.e1147

  • 参考文献

    • [1] DICKSON E J.Phosphoinositide transport and metabo⁃ lism at membrane contact sites[J].Biochim Biophys Acta Mol Cell Biol Lipids,2022,1867(3):159107

    • [2] XING G,YAO J,WU B,et al.Identification of OSBPL2 as a novel candidate gene for progressive nonsyndromic hearing loss by whole⁃exome sequencing[J].Genet Med,2015,17(3):210-218

    • [3] YAO J,ZENG H,ZHANG M,et al.OSBPL2 ⁃ disrupted pigs recapitulate dual features of human hearing loss and hypercholesterolaemia[J].J Genet Genomics,2019,46(8):379-387

    • [4] SHI H,WANG H,ZHANG C,et al.Mutations in OSBPL2 cause hearing loss associated with primary cilia defects via sonic hedgehog signaling[J].JCI Insight,2022,7(4):e149626

    • [5] THOENES M,ZIMMERMANN U,EBERMANN I,et al.OSBPL2 encodes a protein of inner and outer hair cell ste⁃ reocilia and is mutated in autosomal dominant hearing loss(DFNA67)[J].Orphanet J Rare Dis,2015,10:15

    • [6] TAKAHASHI K,KANERVA K,VANHARANTA L,et al.ORP2 couples LDL ⁃ cholesterol transport to FAK activa⁃ tion by endosomal cholesterol/PI(4,5)P(2)exchange[J].Embo J,2021,40(14):e106871

    • [7] KENTALA H,KOPONEN A,KIVELÄ A M,et al.Analy⁃ sis of ORP2⁃knockout hepatocytes uncovers a novel func⁃ tion in actin cytoskeletal regulation[J].Faseb J,2018,32(3):1281-1295

    • [8] CHINCHOLE A N,LONE K A,TYAGI S.MLL regulates actin cytoskeleton and cell migration by stabilizing Rho GTPases via the transcription of RhoGDI1[J].J Cell Sci,2022,135(20):jcs260042

    • [9] SHI H,WANG H,YAO J,et al.Comparative transcrip⁃ tome analysis of auditory OC ⁃ 1 cells and zebrafish inner ear tissues in the absence of human OSBPL2 orthologues [J].Biochem Biophys Res Commun,2020,521(1):42-49

    • [10] 张洪都,王红顺,王天明,等.USP14调控OSBPL2蛋白去泛素化作用的实验研究[J].南京医科大学学报(自然科学版),2022,42(6):759-767

    • [11] ARORA A,TASKINEN J H,OLKKONEN V M.Coordina⁃ tion of inter ⁃organelle communication and lipid fluxes by OSBP ⁃ related proteins[J].Prog Lipid Res,2022,86:101146

    • [12] CORBEIL D,SANTOS M F,KARBANOVÁ J,et al.Up⁃ take and fate of extracellular membrane vesicles:nucleo⁃ plasmic reticulum ⁃ associated late endosomes as a new gate to intercellular communication[J].Cells,2020,9(9):1931

    • [13] WEBER⁃BOYVAT M,KENTALA H,LILJA J,et al.OSBP ⁃ related protein 3(ORP3)coupling with VAMP ⁃associat⁃ ed protein A regulates R ⁃Ras activity[J].Exp Cell Res,2015,331(2):278-291

    • [14] WYLES J P,PERRY R J,RIDGWAY N D.Characteriza⁃ tion of the sterol⁃binding domain of oxysterol⁃binding pro⁃ tein(OSBP)⁃ related protein 4 reveals a novel role in vi⁃ mentin organization[J].Exp Cell Res,2007,313(7):1426-1437

    • [15] KOPONEN A,PAN G,KIVELÄ A M,et al.ORP2,a cho⁃ lesterol transporter,regulates angiogenic signaling in en⁃ dothelial cells[J].Faseb J,2020,34(11):14671-14694

    • [16] DING B,YANG S,SCHAKS M,et al.Structures reveal a key mechanism of WAVE regulatory complex activation by Rac1 GTPase[J].Nat Commun,2022,13(1):5444

    • [17] ZHAO H,KONG H,WANG W,et al.High glucose aggra⁃ vates retinal endothelial cell dysfunction by activating the RhoA/ROCK1/pMLC/Connexin43 signaling pathway[J].Invest Ophthalmol Vis Sci,2022,63(8):22

    • [18] SAWMA T,SHAITO A,NAJM N,et al.Role of RhoA and Rho ⁃ associated kinase in phenotypic switching of vascu⁃ lar smooth muscle cells:Implications for vascular function [J].Atherosclerosis,2022,358:12-28

    • [19] TRIBOLLET V,CERUTTI C,GÉLOËN A,et al.ERRα coordinates actin and focal adhesion dynamics[J].Can⁃ cer Gene Ther,2022,29(10):1429-1438

    • [20] WU Y,MENG W,GUAN M,et al.Pitavastatin protects against neomycin ⁃ induced ototoxicity through inhibition of endoplasmic reticulum stress[J].Front Mol Neurosci,2022,15:963083

    • [21] HAN Y,WANG X,CHEN J,et al.Noise⁃induced cochle⁃ ar F ⁃ actin depolymerization is mediated via ROCK2/p ⁃ ERM signaling[J].J Neurochem,2015,133(5):617-628

    • [22] MCGRATH J,TUNG C Y,LIAO X,et al.Actin at stereo⁃ cilia tips is regulated by mechanotransduction and ADF/cofilin[J].Curr Biol,2021,31(6):1141-1153.e1147