en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

牙甫礼,E-mail:yafuli@yeah.net

中图分类号:R329.26

文献标识码:A

文章编号:1007-4368(2023)05-684-07

DOI:10.7655/NYDXBNS20230514

参考文献 1
JANKOWSKI J,FLOEGE J,FLISER D,et al.Cardiovas⁃ cular disease in chronic kidney disease:pathophysiologi⁃ cal insights and therapeutic options[J].Circulation,2021,143(11):1157-1172
参考文献 2
胡盛寿,高润霖,刘力生,等.《中国心血管病报告2018》 概要[J].中国循环杂志,2019,34(3):209-220
参考文献 3
STEVEN S,DIB M,HAUSDING M,et al.CD40L con⁃ trols obesity ⁃ associated vascular inflammation,oxidative stress and endothelial dysfunction in mice ⁃ translational aspects for man[J].Cardiovasc Res,2018,114(2):312-323
参考文献 4
KATTOOR A J,GOEL A,MEHTA J L.LOX ⁃1:regula⁃ tion,signaling and its role in atherosclerosis[J].Antioxi⁃ dants(Basel),2019,8(7):218
参考文献 5
XUE Y,CHEN,H L,ZHANG,S H,et al.Resveratrol confers vascular protection by suppressing TLR4/Syk/NL⁃ RP3 signaling in oxidized low⁃density lipoprotein⁃ activated platelets[J].Oxid Med Cell Longev,2021,2021:8819231
参考文献 6
MAGWENZI S,WOODWARD C,WRAITH K S,et al.Ox⁃ idized LDL activates blood platelets through CD36/NOX2⁃ mediated inhibition of the cGMP/protein kinase G signal⁃ ing cascade[J].Blood,2015,125(17):2693-2703
参考文献 7
LI L,ZHOU J W,WANG S,et al.Critical role of peroxi⁃ some proliferator ⁃ activated receptor alpha in promoting platelet hyperreactivity and thrombosis under hyperlipid⁃ emia[J].Haematologica,2022,107(6):1358-1373
参考文献 8
YA F L,XU X R,SHI Y l,et al.Coenzyme Q10 UPREG⁃ ULATES PLatelet cAMP/PKA pathway and attenuates in⁃ tegrin αⅡbβ3 signaling and thrombus growth[J].Mol Nu⁃ tr Food Res,2019,63(23):e1900662
参考文献 9
MARTINEZ⁃GONZALEZ M A,GEA A,RUIZ⁃CANELA M.The mediterranean diet and cardiovascular health[J].Circ Res,2019,124(5):779-798
参考文献 10
MJZ A,PO B,SHMC D,et al.Almond oil for patients with hyperlipidemia:a randomized open ⁃label controlled clinical trial[J].Complement Ther Med,2019,42:33-36
参考文献 11
ANAGNOSTIS P,PASCHOU S A,GOULIS D G,et al.Di⁃ etary management of dyslipidaemias.Is there any evi⁃ dence for cardiovascular benefit?[J].Maturitas,2018,108:45-52
参考文献 12
FAHEY J W,ZALCMANN A T,TALALAY P.The chemi⁃ cal diversity and distribution of glucosinolates and isothio⁃ cyanates among plants[J].Phytochemistry,2001,56(1):5-51
参考文献 13
BRIONES⁃HERRERA A,EUGENIO⁃PEREZ D,REYES⁃ OCAMPO J G,et al.New highlights on the health⁃improv⁃ ing effects of sulforaphane[J].Food Funct,2018,9(5):2589-2606
参考文献 14
MANGLA B,JAVED S,SULTAN M H,et al.Sulfora⁃ phane:a review of its therapeutic potentials,advances in its nanodelivery,recent patents,and clinical trials[J].Phytother Res,2021,35(10):5440-5458
参考文献 15
SHEHATOU G S,SUDDEK G M.Sulforaphane attenuates the development of atherosclerosis and improves endothe⁃ lial dysfunction in hypercholesterolemic rabbits[J].Exp Biol Med(Maywood),2016,241(4):426-436
参考文献 16
BAI Y,WANG X L,ZHAO S,et al.Sulforaphane protects against cardiovascular disease via Nrf2 activation[J].Ox⁃ id Med Cell Longev,2015,2015:407580
参考文献 17
LIU H,TALALAY P.Relevance of anti⁃inflammatory and antioxidant activities of exemestane and synergism with sulforaphane for disease prevention[J].Proc Natl Acad⁃ Sci U S A,2013,110(47):19065-19070
参考文献 18
KU S K,BAE J S.Antithrombotic activities of sulfora⁃ phane via inhibiting platelet aggregation and FIIa/FXa [J].Arch Pharm Res,2014,37(11):1454-1463
参考文献 19
CHUANG W Y,KUNG P H,KUO C Y,et al.Sulfora⁃ phane prevents human platelet aggregation through inhib⁃ iting the phosphatidylinositol 3 ⁃ kinase/Akt pathway[J].Thromb Haemost,2013,109(6):1120-1130
参考文献 20
OH C H,SHIN J I,MO S J,et al.Antiplatelet activity of L ⁃ sulforaphane by regulation of platelet activation factors,glycoprotein IIb/IIIa and thromboxane A2[J].Blood Co⁃ agul Fibrinolysis,2013,24(5):498-504
参考文献 21
GILLESPIE S,HOLLOWAY P M,BECKER F,et al.The isothiocyanate sulforaphane modulates platelet function and protects against cerebral thrombotic dysfunction[J].Br J Pharmacol,2018,175(16):3333-3346
参考文献 22
牙甫礼,XIN YU,张春梅,等.姜黄素对H2O2诱导血小板凋亡的抑制作用及分子机制[J].食品科学,2021,42(13):151-157
参考文献 23
牙甫礼,张春梅,陈彬林,等.辅酶Q10经蛋白激酶A/胞浆型磷脂酶A2信号通路抑制血小板血栓素A2的生成 [J].食品科学,2021,42(9):130-136
参考文献 24
PAN G X,CHANG L,ZHANG J J,et al.GSK669,a NOD2 receptor antagonist,inhibits thrombosis and oxidative stress via targeting platelet GPVI[J].Biochem Pharma⁃ col,2021,183:114315
参考文献 25
ZHANG S,LIU Y Y,WANG X f,et al.SARS ⁃ CoV ⁃ 2 binds platelet ACE2 to enhance thrombosis in COVID⁃19 [J].J Hematol Oncol,2020,13(1):120
参考文献 26
OH R C,TRIVETTE E T,WESTERFIELD K L.Manage⁃ ment of hypertriglyceridemia:common questions and an⁃ swers[J].Am Fam Physician,2020,102(6):347-354
参考文献 27
JOSHI S,BANERJEE M,ZHANG J,et al.Alterations in platelet secretion differentially affect thrombosis and he⁃ mostasis[J].Blood Adv,2018,2(17):2187-2198
参考文献 28
BAKOGIANNIS C,SACHSE M,STAMATELOPOULOS K,et al.Platelet⁃derived chemokines in inflammation and atherosclerosis[J].Cytokine,2019,122:154157
参考文献 29
QIN S,YANG C,HUANG W,et al.Sulforaphane attenu⁃ ates microglia ⁃ mediated neuronal necroptosis through down ⁃ regulation of MAPK/NF ⁃ κB signaling pathways in LPS⁃activated BV⁃2 microglia[J].Pharmacol Res,2018,133:218-235
参考文献 30
YANG M,COOLEY B C,LI W,et al.Platelet CD36 pro⁃ motes thrombosis by activating redox sensor ERK5 in hy⁃ perlipidemic conditions[J].Blood,2017,129(21):2917-2927
参考文献 31
YANG M A,KHOLMUKHAMEDOV A,SCHULTE M L,et al.Platelet CD36 signaling through ERK5 promotes caspase⁃dependent procoagulant activity and fibrin depo⁃ sition in vivo[J].Blood Adv,2018,2(21):2848-2861
参考文献 32
CAMMISOTTO V,BARATTA F,CASTELLANI V,et al.Proprotein convertase subtilisin kexin type 9 inhibitors re⁃ duce platelet activation modulating ox⁃LDL pathways[J].Int J Mol Sci,2021,22(13):7193
参考文献 33
BERGER M,RASLAN Z,ABURIMA A,et al.Atherogen⁃ ic lipid stress induces platelet hyperactivity through CD36 ⁃mediated hyposensitivity to prostacyclin:the role of phos⁃ phodiesterase 3A[J].Haematologica,2020,105(3):808-819
参考文献 34
JAYAKUMAR T,CHEN W F,LU W J,et al.A novel anti⁃ thrombotic effect of sulforaphane via activation of platelet adenylate cyclase:ex vivo and in vivo studies[J].J Nutr Biochem,2013,24(6):1086-1095
参考文献 35
GASPER A V,AL⁃JANOBI A,SMITH J A,et al.Glutathi⁃ one S ⁃ transferase M1 polymorphism and metabolism of sulforaphane from standard and high⁃glucosinolate brocco⁃ li[J].Am J Clin Nutr,2005,82(6):1283-1291
参考文献 36
YE L,DINKOVA ⁃ KOSTOVA A T,WADE K L,et al.Quantitative determination of dithiocarbamates in human plasma,serum,erythrocytes and urine:pharmacokinetics of broccoli sprout isothiocyanates in humans[J].Clin Chim Acta,2002,316(1⁃2):43-53
参考文献 37
GILLESPIE S,HOLLOWAY P M,BECKER F,et al.The isothiocyanate sulforaphane modulates platelet function and protects against cerebral thrombotic dysfunction[J].Br J Pharmacol,2018,175(16):3333-3346
目录contents

    摘要

    目的:探讨莱菔硫烷(sulforaphane,SFN)对氧化低密度脂蛋白(oxidized low-density lipoprotein,ox-LDL)诱导血小板活化的影响及其可能的分子机制。方法:在体外实验中,将健康人纯化血小板与不同浓度的SFN(1.0、2.5、5.0 μmol/L)共同孵育40 min,然后用ox-LDL激活血小板20 min,并检测血小板活化的指标,包括CD62P的表达、胞内血小板因子4(platelet factor 4,PF4)和趋化因子配体5(chemokine ligand 5,CCL5)的释放水平。机制上,用Western blot蛋白免疫印迹法检测血小板肉瘤酪氨酸激酶(sarcoma tyrosine kinase,Src)及其下游的脾酪氨酸激酶(spleen tyrosine kinase,Syk)磷酸化水平;用活性氧(reactive ox- ygen species,ROS)检测试剂盒测定胞内总ROS水平。结果:ox-LDL诱导的血小板CD62P的表达以及PF4和CCL5的释放水平均可被 SFN 显著抑制(P < 0.05);SFN 显著下调 ox-LDL 诱导的血小板 Src 和 Syk 的磷酸化水平以及胞内总 ROS 水平(P < 0.05)。此外,ox-LDL诱导的血小板CD62P的表达、PF4和CCL5的释放可被Src家族激酶抑制剂PP2所抑制(P < 0.05),但PP2 与SFN联合使用时,无协同抑制效果(P > 0.05);Src家族激酶激活剂MLR-1023可逆转SFN对ox-LDL诱导的血小板活化的抑制作用(P < 0.05)。结论:SFN可显著抑制ox-LDL诱导的血小板活化,其机制可能是下调Src/Syk/ROS介导的信号通路。

    Abstract

    Objective:The current study aims to determine the effects of sulforaphane(SFN)on oxidized low-density lipoprotein(ox- LDL)-induced platelet activation and its possible mechanism. Methods:Purified human platelets were treated with SFN(1.0,2.5,5.0 μmol/L)for 40 minutes in vitro,and then stimulated by ox-LDL for additional 20 minutes. The levels of platelet CD62P expression and intracellular PF4 and CCL5 release were measured to determine the effects of SFN on platelet activation. Moreover,the phosphorylation of sarcoma tyrosine kinase(Src)and its downstream spleen tyrosine kinase(Syk)were measured by Western blot. Reactive oxygen species(ROS)assay kit was used to measure the levels of total intracellular ROS generation. Results:The ox-LDL- increased platelet CD62P expression and PF4 and CCL5 release were significantly inhibited by SFN when compared with the control group(P < 0.05). SFN treatment greatly down-regulated Src and Syk phosphorylation and ROS generation stimulated by ox-LDL(P < 0.05). Furthermore,the ox-LDL-increased the expression of CD62P and release of PF4 and CCL5 were significantly abolished by PP2, a specific inhibitor of Src family kinases,which,nevertheless,showed no synergistic effects when combined with SFN(P > 0.05). In addition,the inhibitory effects of SFN on platelet activation induced by ox-LDL were reversed by an activator of Src family kinases MLR-1023. Conclusions:SFN attenuates platelet activation induced by ox-LDL possibly by down-regulating Src/Syk/ROS pathway.

  • 近年来,心血管疾病(cardiovascular disease,CVD) 已经成为威胁我国人民健康的主要问题和突出的公共卫生问题[1-2]。诱发 CVD 的危险因素很多,其中高脂血症一直受到高度认可与关注,被普遍认为是引起CVD 最重要的危险因素之一。高脂血症的发生发展涉及错综复杂的病理机制,大量报道证明了血小板在高脂血症中起着重要的作用,由高脂血症导致的血小板活化是高脂血症引起各种心脑血管并发症(如血栓等)的重要病理生理基础[3]。在高脂血症患者的循环血液中,氧化低密度脂蛋白 (oxidized low⁃density lipoprotein,ox⁃LDL)异常增高是诱导血小板高度活化的主要因素[3-4]。ox⁃LDL通过与血小板表面清道夫受体 CD36 分子结合,可触发一系列胞内信号转导事件,促进血小板活化,如可使血小板表面表达大量的分子标志物(包括 CD62P和CD63 等)以及释放PF4和CCL5等可溶性蛋白,最终导致血小板连接在一起形成聚集体,参与动脉粥样硬化和血栓的形成和发展[35]

  • ox⁃LDL 诱导高脂血症中血小板活化的分子机制是错综复杂的,其中酪氨酸家族蛋白酶的活化是重要的机制之一[5-6]。ox⁃LDL可通过CD36激活胞内酪氨酸蛋白酶,其中肉瘤酪氨酸激酶(sarcoma tyro⁃ sine kinase,Src)是受ox⁃LDL调控的最重要的酪氨酸激酶,ox⁃LDL 可使其发生磷酸化,进而促使其下游的脾酪氨酸激酶(spleen tyrosine kinase,Syk)和蛋白激酶 C(protein kinase C,PKC)等蛋白发生磷酸化,使得胞内总ROS增加,最终诱发血小板发生活化和血栓的形成发展[6]。抑制高脂血症中血小板活化已经成为防治血栓形成的重要途径之一[7]

  • 大量的研究证实,营养干预是预防心血管疾病的重要途径之一[8-10]。莱菔硫烷(sulforaphane,SFN),又被称为萝卜硫素,属于异硫氰酸盐类植物化学物,在十字花科蔬菜如西兰花、白花菜、卷心菜、甘蓝和萝卜等中含量十分丰富[11-12]。SFN具有多种生物活性作用,包括抗肿瘤、抗氧化、抗炎、代谢解毒以及免疫调节等[13-14]。近年来,SFN 在防治心血管疾病领域也越来越受关注,大量的流行病学、临床试验和动物实验研究表明,SFN通过抗炎、抗氧化、改善内皮细胞功能以及改善糖脂代谢紊乱等机制发挥保护心血管的作用[15-17]。在调控血小板功能方面,有研究发现SFN可以有效抑制生理性激动剂(如胶原、二磷酸腺苷)诱导的健康人血小板聚集反应[18-19];SFN 还可以抑制胶原诱导的血小板整合素αⅡbβ3 的活化和血栓素A2的释放[20]。另外,Gillespie 等[21] 在体内动物实验中发现,SFN可以显著抑制脂多糖诱导的小鼠血小板聚集反应以及脑微循环血栓的形成。但是,SFN 对ox⁃LDL诱导血小板活化的作用及其可能的分子机制尚不清楚,本研究旨在体外实验中探讨SFN对ox⁃LDL 诱导血小板活化的影响及其可能的分子机制,为 SFN防治高脂血症中血栓形成提供新靶点和重要理论依据。

  • 1 材料和方法

  • 1.1 材料

  • FITC 标记抗人 CD62P 抗体、PF4 和 CCL5 检测试剂盒(eBioscience 公司,美国);SFN、N⁃乙酰半胱氨酸(NAC)(Sigma⁃Aldrich 公司,美国);oxLDL(广州奕源生物科技有限公司);一抗 phospho ⁃ Src (Tyr416)(武汉爱博泰克生物科技有限公司);phospho⁃ Syk(Tyr323)、GAPDH 以及二抗羊抗兔(Affinity Bioscience 公司,美国);Src的家族激酶抑制剂PP2、 Src 的家族激酶激动剂 MLR⁃1023(Selleck Chemical 公司,美国);活性氧(reactive oxygen species,ROS) 检测试剂盒(Abcam公司,英国)。

  • CytoFlex 流式细胞仪(Beckman Coulter 公司,美国);低温高速离心机(H1650R)、低速离心机(L400) (湖南湘仪实验仪器开发有限公司);低温冰箱(BCD⁃ 4.8.5WGHTDD9DYU1,青岛海尔有限公司)。

  • 1.2 方法

  • 1.2.1 研究对象的招募

  • 12例符合条件的健康志愿者(年龄25~40岁)在大理大学校内招募。所有志愿者均自愿参与该项目,并均已签署书面知情同意书。志愿者若出现以下至少一种情况将给予排除:滥用药物(如头孢菌素类和青霉素类抗菌药和核苷类抗病毒药物等)、酗酒、吸烟半年以上;现在或曾经患有恶性肿瘤、CVD、免疫缺陷病等病史;近半年内服用辅酶Q10、维生素等具有显著改善血小板功能的膳食营养补充剂;在2周内服用抗血小板的药物(如αⅡbβ3 受体抑制剂、磷酸二酯酶抑制剂、阿司匹林和 P2Y12受体拮抗剂等)[22-23]。本研究完全按照《赫尔辛基宣言》相关准则进行,并已通过大理大学伦理委员会的批准。

  • 1.2.2 健康人血样及纯化血小板的制备过程

  • 将抽取的 15 mL 肘静脉全血注入含 3.2% 的枸橼酸钠真空抗凝管中(1/9,V/V),静置10 min后,在 22℃、150 g全血离心20 min,小心吸取最上层3/4的血浆,即为富血小板血浆(platelet⁃rich plasma,PRP)。用枸橼酸葡萄糖溶液(含 75 mmol/L 柠檬酸钠、39 mmol/L柠檬酸和135 mmol/L 葡糖糖,pH 6.5)对 PRP 进行 3 倍稀释,同时加入 0.1 U/mL 的三磷酸腺苷双磷酸酶,防止血小板在离心过程中发生活化,对血小板PRP进行离心(22℃、800 g、10 min),弃上清后用台式缓冲液(137 mmol/L 氯化钠、12 mmol/L 碳酸氢钠、2 mmol/L 氯化钾、0.34 mmol/L 磷酸氢二钠、1 mmol/L氯化镁、5.5 mmol/L葡萄糖、5 mmol/L乙磺酸,pH 7.4)重悬血小板,可得到纯化血小板(血小板纯度>98%),置于37℃恒温箱中备用[24-25]。以下实验中的样本均来自单独志愿者的纯化血小板。

  • 1.2.3 流式细胞术检测血小板表面CD62P的表达

  • 用不同浓度的SFN(1.0、2.5、5.0 μmol/L)或溶剂对照(0.05%DMSO)与纯化血小板(5×106 个/mL)孵育 40 min 后,用 50 μg/mL 的 ox⁃LDL 刺激血小板 20 min,然后加入 FITC 偶联的 CD62P 抗体,避光孵育 20 min 后用 1%的多聚甲醛固定,最后用流式细胞仪检测血小板 CD62P 的表达[8]。SFN 和 ox⁃LDL 干预浓度和干预时间的选择依据已发表文献[620]

  • 1.2.4 血小板PF4和CCL5释放水平的测定

  • 分别用不同浓度的SFN(1.0、2.5、5.0 μmol/L)或溶剂对照以及 ox⁃LDL(50 μg/mL)处理纯化血小板 (1×108 个/mL)后,在 4℃、12 000 g 的条件下离心 5 min,弃沉淀,用酶联免疫吸附法测定上清液中 PF4和CCL5水平,具体方法参照制造商提供的说明书。当探讨Src/Syk/ROS信号通路在SFN调控PF4和 CCL5 释放中的作用时,Src 家族激酶抑制剂 PP2 (20 μmol/L)或激动剂MLR⁃1023(1 μmol/L)与血小板预孵育20 min,然后加入 SFN(5 μmol/L)和血小板继续孵育 40 min,ox⁃LDL 激活血小板 20 min 后进行PF4和CCL5释放水平的测定。

  • 1.2.5 血小板总ROS生成水平的测定

  • 分别用不同浓度的 SFN(1.0、2.5、5.0 μmol/L) 或溶剂对照以及 ox⁃LDL(50 μg/mL)处理纯化血小板(1×106 个/mL)后,在各组血小板悬液中加入 20 μmol/L 荧光探针 DCFH⁃DA,避光孵育 20 min,离心(12 000 g、4℃、5 min)后用酶标仪在发射波长 525 nm和激发波长490 nm的条件下读取荧光值,用来反映血小板内总ROS水平[22]

  • 1.2.6 Western blot蛋白免疫印迹分析

  • 健康人纯化血小板(2.5×108 个/mL)经不同浓度的SFN(1.0、2.5、5.0 μmol/L)和ox⁃LDL(50 μg/mL)处理后,在4℃、12 000 g的条件下离心10 min,弃上清得到血小板沉淀,对血小板进行裂解后,常规提取血小板蛋白,经蛋白浓度测定后,对样本进行十二烷基硫酸钠⁃聚丙烯酰胺凝胶(SDS⁃PAGE)电泳,将蛋白转到聚偏二氟乙烯膜(PVDF)后,用5%的脱脂奶粉溶液封闭1.5 h,TBST洗膜3次后于4℃避光孵育一抗 phospho ⁃Src(1∶1 000)、phospho ⁃Syk(1∶1 000)和 GAPDH(1∶10 000)过夜,洗膜后室温避光孵育二抗羊抗兔(1∶20 000)1.5 h,最后用自动化学发光图像分析系统对条带进行曝光,以检测血小板 Src、Syk 的磷酸化水平。条带灰度用Quantity One分析软件进行分析[822-23]。实验重复3次,每次实验的样本均来自独立的志愿者。

  • 1.3 统计学方法

  • 采用SPSS 20.0统计软件进行数据分析,多组间比较采用单因素方差分析,差异显著后采用 Tukey 法进行组间两两比较,双侧P <0.05为差异有统计学意义。实验数据用平均值±标准误(x-±Sx-)表示,统计数据至少来自3个独立的志愿者样本。

  • 2 结果

  • 2.1 SFN对ox⁃LDL诱导的血小板活化的影响

  • 通过检测血小板表面 CD62P 的表达和 PF4 与 CCL5 的释放水平来评价 SFN 对血小板活化的影响。流式细胞术结果表明,与对照组相比,仅高浓度的SFN(5.0 μmol/L)可显著降低ox⁃LDL诱导的血小板表面 CD62P 的表达水平,差异具有统计学意义 (P <0.01,图1A);而更低浓度的SFN(1.0 μmol/L和 2.5 μmol/L)虽有抑制CD62P表达的趋势,但是与对照组相比,差异无统计学意义(P >0.05);此外,各浓度 SFN 间的比较结果发现,5.0 μmol/L 浓度的抑制作用要比1.0 μmol/L的更为显著(P <0.05,图1A)。同时,酶联免疫吸附实验结果表明,与对照组相比, 2.5 μmol/L 和 5.0 μmol/L 浓度的 SFN 均可显著抑制 ox⁃LDL诱导的血小板PF4和CCL5的释放(P <0.05,图1B、C);相对于 1.0 μmol/L 浓度,2.5 μmol/L 和 5.0 μmol/L浓度的SFN作用更加显著(P <0.05)。以上结果说明,SFN可抑制ox⁃LDL诱导的血小板活化。

  • 2.2 SFN对ox⁃LDL诱导的血小板Src/Syk/ROS信号通路活化的影响

  • 已有研究证实,Src/Syk/ROS信号通路在ox⁃LDL 诱导血小板活化过程中发挥重要作用[6]。与对照组相比,2.5 μmol/L和5.0 μmol/L的SFN均可显著下调 ox⁃LDL 诱导的血小板 Src(Tyr416)和 Syk(Tyr323)发生磷酸化和ROS生成,差异具有统计学意义(P <0.05,图2A~C),然而更低浓度的SFN(1.0 μmol/L)干预后无显著效果(P >0.05)。2.5 μmol/L和5.0 μmol/L 浓度的 SFN 比 1.0 μmol/L 浓度对 Src 和 Syk 磷酸化水平和 ROS 生成的抑制作用更加显著(P <0.05),但 2.5 μmol/L和 5.0 μmol/L两浓度间差异无统计学意义(P >0.05)。ROS 的清除剂 N ⁃乙酰半胱氨酸 (NAC)对 ox⁃LDL 诱导 ROS 生成的抑制作用比 SFN (5.0 μmol/L)更为显著(P <0.05,图2D),但两者联合使用时未见协同效果(P >0.05)。此外,Src家族激酶激活剂MLR⁃1023(1.0 μmol/L)可完全逆转 SFN 对 ox ⁃LDL 诱导的血小板总 ROS 生成的抑制作用 (P <0.001,图2E),说明SFN抑制总ROS生成受Src/ Syk 信号通路的调控作用。以上结果说明 SFN 可抑制 ox⁃LDL 诱导的血小板 Src/Syk/ROS 信号通路的活化。

  • 图1 不同浓度的SFN对50 μg/mL ox⁃LDL诱导的血小板表面CD62P的表达(A)以及PF4和(B)CCL5(C)释放的影响

  • Figure1 Effects of SFN of different levels on platelet CD62P expression(A)and PF4(B)and CCL5 release induced(C)by ox⁃LDL(50 μg/mL)

  • 2.3 SFN经Src/Syk/ROS信号通路调控ox⁃LDL诱导的血小板活化的影响

  • Src家族蛋白激酶抑制剂PP2可显著抑制ox⁃LDL 诱导的血小板CD62P的表达、PF4和CCL5释放(P <0.001,图3A~C),且PP2的抑制效果与5.0 μmol/L 浓度的 SFN 抑制效果相当。SFN 和 PP2 联合使用时,对 ox ⁃ LDL 诱导的血小板 CD62P 的表达、PF4 和 CCL5释放的抑制作用无协同效果(P >0.05)。Src 家族激酶激活剂 MLR ⁃1023(1.0 μmol/L)可逆转 SFN对ox⁃LDL诱导的血小板CD62P的表达、PF4和 CCL5 释放的抑制作用(P <0.01,图3D~F)。以上结果说明SFN 主要通过下调Src/Syk/ROS 信号通路抑制ox⁃LDL诱导的血小板活化。

  • 图2 不同浓度的SFN对50 μg/mL ox⁃LDL诱导的血小板Src/Syk/ROS信号通路活化的影响

  • Figure2 Effects of SFN of different levels on ox⁃LDL(50 μg/mL)induced platelet Src/Syk/ROS signalling pathway

  • 图3 SFN经Src/Syk/ROS信号通路调控50 μg/mL ox⁃LDL诱导的血小板活化的影响

  • Figure3 SFN regulates platelet activation induced by ox⁃LDL(50 μg/mL)via Src/Syk/ROS signalling pathway

  • 3 讨论

  • 高脂血症是心血管疾病的重要危险因素之一,高脂血症诱导的血小板高反应性是导致血栓形成的重要原因[26]。ox⁃LDL 被认为是高脂血症中诱导血小板活化的关键蛋白,本研究体外实验表明,植物化学物SFN经Src/Syk/ROS信号通路抑制ox⁃LDL 诱导的血小板活化,为 SFN 改善脂代谢紊乱,防治心血管疾病提供新的分子机制和重要的实验依据。

  • 在高脂血症患者的循环血液中,ox⁃LDL显著升高,其可通过识别并结合到血小板表面的清道夫受体 CD36 分子,进而引发细胞内一系列的信号转导事件,最终导致血小板异常活化,如诱发血小板表面CD62P的表达和释放多种趋化因子[3-4]。这些分子可介导血小板⁃血小板、血小板⁃白细胞、血小板⁃ 内皮细胞间的炎症反应,在动脉粥样硬化和血栓形成过程中发挥关键作用[27]。例如,血小板可通过其表面表达的 CD62P 与单核细胞表面的 P⁃选择素糖蛋白配体⁃1(PSGL⁃1)结合,形成血小板⁃单核细胞聚集体,加速动脉粥样硬化的形成[4];另外,血小板活化时释放的趋化因子如PF4和CCL5,可募集白细胞到达损伤的血管内皮处,促进白细胞和内皮细胞的活化、分化甚至凋亡以及分泌炎症介质等,加剧血小板⁃白细胞⁃内皮细胞聚集体的形成,促进动脉粥样硬化和血栓形成[28]。之前的研究发现,SFN可抑制生理性激动剂(如胶原)诱导的血小板聚集和其表面CD62P的表达以及抑制脑血栓的形成[1921],在本研究中发现SFN可显著抑制ox⁃LDL 诱导的血小板 CD62P 的表达以及 PF4 和 CCL5 的释放,这提示 SFN可能在高脂血症中抑制血小板高反应性,防治血栓形成中发挥重要作用[14]。此外,SFN还可以直接调控单核细胞的功能,而单核细胞也是ox⁃LDL重要的靶细胞,因此SFN可能通过调控多种细胞的功能共同发挥抗心血管疾病的作用[29]。SFN对血小板 ⁃白细胞⁃内皮细胞间相互作用的调控作用尚不清楚,仍需进一步深入探讨。此外,膳食补充 SFN 对高脂血症中动脉粥样硬化和血栓的调控作用需在今后的动物实验中做深入探讨。

  • 在高脂血症中,ox⁃LDL诱导血小板活化的机制十分复杂,目前尚未研究清楚,但现有研究结果一致认为,Src 家族蛋白激酶在其中扮演重要角色。 ox⁃LDL 结合血小板表面 CD36 分子后,进一步激活 Src家族蛋白激酶(如Src和Fyn等),使得下游的Syk 分子发生磷酸化,随后引起 PLCγ2 和 PKC 的活化; PKC 的磷酸化可导致 NADPH 氧化酶⁃2 发生激活,促进胞内ROS生成,进而激活ERK5,最终导致血小板活化和血栓形成[630-31]。本研究发现,SFN可显著下调 ox⁃LDL 诱导的血小板 Src 和 Syk 磷酸化水平,同时显著降低其诱导的胞内总 ROS 生成水平;Src 家族蛋白激酶的抑制剂PP2可显著抑制ROS生成和血小板活化,SFN与PP2联合使用时,对胞内总ROS 生成和血小板PF4和CCL5释放水平的抑制作用无协同或相加效应;此外,Src家族蛋白激酶的激动剂 MLR⁃1023可完全逆转SFN对ox⁃LDL诱导的血小板 PF4和CCL5释放的抑制作用,说明SFN抑制ox⁃LDL 诱导的血小板活化主要通过下调Src/Syk/ROS 信号通路实现的。此外,研究发现ox⁃LDL通过调控血小板活化的机制还可能包括 cGMP/PKG、cAMP/PKA 和Src/Syk/JNK2等信号通路[632-33]。有研究提示SFN 可通过增加胞内cAMP水平来抑制生理性激动剂如凝血酶等诱导的血小板活化[34]。至于SFN是否通过调控cAMP/PKA等其他信号通路发挥抑制ox⁃LDL诱导血小板活化的作用则需要我们今后进行更多的实验进一步探讨。同时,膳食补充含 SFN 的食物 (如西兰花等)是否对高脂血症动物和人群中ox⁃LDL 浓度和血小板活化等具有抑制作用,则需要体内研究更深入地探讨。

  • SFN在西兰花、白花菜、卷心菜、甘蓝和萝卜等十字花科蔬菜中含量十分丰富,因此在平时的日常生活中也很容易摄取。人群研究发现,健康志愿者服用100 g 的西兰花(含SFN 约61.3 mg)后,血浆中 SFN的浓度最高可达7.4 μmol/L;另外,健康志愿者口服摄入200 μmol/L西兰花芽异硫氰酸酯1 h后,血浆中SFN 的浓度可达0.9~2.3 μmol/L[35]。已有相关研究发现,在体外实验中SFN作用于血小板的剂量高达 200 μmol/L 时未见显著的细胞毒性作用[1937],本体外实验使用的SFN 浓度范围在1.0~5.0 μmol/L 之间,而且对ox⁃LDL诱导血小板活化产生抑制作用的剂量是2.5 μmol/L和5.0 μmol/L,该浓度在生理剂量范围之内。然而,SFN是否有望开发成为安全的抗血小板药物需更多的实验证实。总之,本研究从营养膳食或从功能食品途径为 SFN 防治心血管疾病提供新的分子机制和重要的实验依据。

  • 参考文献

    • [1] JANKOWSKI J,FLOEGE J,FLISER D,et al.Cardiovas⁃ cular disease in chronic kidney disease:pathophysiologi⁃ cal insights and therapeutic options[J].Circulation,2021,143(11):1157-1172

    • [2] 胡盛寿,高润霖,刘力生,等.《中国心血管病报告2018》 概要[J].中国循环杂志,2019,34(3):209-220

    • [3] STEVEN S,DIB M,HAUSDING M,et al.CD40L con⁃ trols obesity ⁃ associated vascular inflammation,oxidative stress and endothelial dysfunction in mice ⁃ translational aspects for man[J].Cardiovasc Res,2018,114(2):312-323

    • [4] KATTOOR A J,GOEL A,MEHTA J L.LOX ⁃1:regula⁃ tion,signaling and its role in atherosclerosis[J].Antioxi⁃ dants(Basel),2019,8(7):218

    • [5] XUE Y,CHEN,H L,ZHANG,S H,et al.Resveratrol confers vascular protection by suppressing TLR4/Syk/NL⁃ RP3 signaling in oxidized low⁃density lipoprotein⁃ activated platelets[J].Oxid Med Cell Longev,2021,2021:8819231

    • [6] MAGWENZI S,WOODWARD C,WRAITH K S,et al.Ox⁃ idized LDL activates blood platelets through CD36/NOX2⁃ mediated inhibition of the cGMP/protein kinase G signal⁃ ing cascade[J].Blood,2015,125(17):2693-2703

    • [7] LI L,ZHOU J W,WANG S,et al.Critical role of peroxi⁃ some proliferator ⁃ activated receptor alpha in promoting platelet hyperreactivity and thrombosis under hyperlipid⁃ emia[J].Haematologica,2022,107(6):1358-1373

    • [8] YA F L,XU X R,SHI Y l,et al.Coenzyme Q10 UPREG⁃ ULATES PLatelet cAMP/PKA pathway and attenuates in⁃ tegrin αⅡbβ3 signaling and thrombus growth[J].Mol Nu⁃ tr Food Res,2019,63(23):e1900662

    • [9] MARTINEZ⁃GONZALEZ M A,GEA A,RUIZ⁃CANELA M.The mediterranean diet and cardiovascular health[J].Circ Res,2019,124(5):779-798

    • [10] MJZ A,PO B,SHMC D,et al.Almond oil for patients with hyperlipidemia:a randomized open ⁃label controlled clinical trial[J].Complement Ther Med,2019,42:33-36

    • [11] ANAGNOSTIS P,PASCHOU S A,GOULIS D G,et al.Di⁃ etary management of dyslipidaemias.Is there any evi⁃ dence for cardiovascular benefit?[J].Maturitas,2018,108:45-52

    • [12] FAHEY J W,ZALCMANN A T,TALALAY P.The chemi⁃ cal diversity and distribution of glucosinolates and isothio⁃ cyanates among plants[J].Phytochemistry,2001,56(1):5-51

    • [13] BRIONES⁃HERRERA A,EUGENIO⁃PEREZ D,REYES⁃ OCAMPO J G,et al.New highlights on the health⁃improv⁃ ing effects of sulforaphane[J].Food Funct,2018,9(5):2589-2606

    • [14] MANGLA B,JAVED S,SULTAN M H,et al.Sulfora⁃ phane:a review of its therapeutic potentials,advances in its nanodelivery,recent patents,and clinical trials[J].Phytother Res,2021,35(10):5440-5458

    • [15] SHEHATOU G S,SUDDEK G M.Sulforaphane attenuates the development of atherosclerosis and improves endothe⁃ lial dysfunction in hypercholesterolemic rabbits[J].Exp Biol Med(Maywood),2016,241(4):426-436

    • [16] BAI Y,WANG X L,ZHAO S,et al.Sulforaphane protects against cardiovascular disease via Nrf2 activation[J].Ox⁃ id Med Cell Longev,2015,2015:407580

    • [17] LIU H,TALALAY P.Relevance of anti⁃inflammatory and antioxidant activities of exemestane and synergism with sulforaphane for disease prevention[J].Proc Natl Acad⁃ Sci U S A,2013,110(47):19065-19070

    • [18] KU S K,BAE J S.Antithrombotic activities of sulfora⁃ phane via inhibiting platelet aggregation and FIIa/FXa [J].Arch Pharm Res,2014,37(11):1454-1463

    • [19] CHUANG W Y,KUNG P H,KUO C Y,et al.Sulfora⁃ phane prevents human platelet aggregation through inhib⁃ iting the phosphatidylinositol 3 ⁃ kinase/Akt pathway[J].Thromb Haemost,2013,109(6):1120-1130

    • [20] OH C H,SHIN J I,MO S J,et al.Antiplatelet activity of L ⁃ sulforaphane by regulation of platelet activation factors,glycoprotein IIb/IIIa and thromboxane A2[J].Blood Co⁃ agul Fibrinolysis,2013,24(5):498-504

    • [21] GILLESPIE S,HOLLOWAY P M,BECKER F,et al.The isothiocyanate sulforaphane modulates platelet function and protects against cerebral thrombotic dysfunction[J].Br J Pharmacol,2018,175(16):3333-3346

    • [22] 牙甫礼,XIN YU,张春梅,等.姜黄素对H2O2诱导血小板凋亡的抑制作用及分子机制[J].食品科学,2021,42(13):151-157

    • [23] 牙甫礼,张春梅,陈彬林,等.辅酶Q10经蛋白激酶A/胞浆型磷脂酶A2信号通路抑制血小板血栓素A2的生成 [J].食品科学,2021,42(9):130-136

    • [24] PAN G X,CHANG L,ZHANG J J,et al.GSK669,a NOD2 receptor antagonist,inhibits thrombosis and oxidative stress via targeting platelet GPVI[J].Biochem Pharma⁃ col,2021,183:114315

    • [25] ZHANG S,LIU Y Y,WANG X f,et al.SARS ⁃ CoV ⁃ 2 binds platelet ACE2 to enhance thrombosis in COVID⁃19 [J].J Hematol Oncol,2020,13(1):120

    • [26] OH R C,TRIVETTE E T,WESTERFIELD K L.Manage⁃ ment of hypertriglyceridemia:common questions and an⁃ swers[J].Am Fam Physician,2020,102(6):347-354

    • [27] JOSHI S,BANERJEE M,ZHANG J,et al.Alterations in platelet secretion differentially affect thrombosis and he⁃ mostasis[J].Blood Adv,2018,2(17):2187-2198

    • [28] BAKOGIANNIS C,SACHSE M,STAMATELOPOULOS K,et al.Platelet⁃derived chemokines in inflammation and atherosclerosis[J].Cytokine,2019,122:154157

    • [29] QIN S,YANG C,HUANG W,et al.Sulforaphane attenu⁃ ates microglia ⁃ mediated neuronal necroptosis through down ⁃ regulation of MAPK/NF ⁃ κB signaling pathways in LPS⁃activated BV⁃2 microglia[J].Pharmacol Res,2018,133:218-235

    • [30] YANG M,COOLEY B C,LI W,et al.Platelet CD36 pro⁃ motes thrombosis by activating redox sensor ERK5 in hy⁃ perlipidemic conditions[J].Blood,2017,129(21):2917-2927

    • [31] YANG M A,KHOLMUKHAMEDOV A,SCHULTE M L,et al.Platelet CD36 signaling through ERK5 promotes caspase⁃dependent procoagulant activity and fibrin depo⁃ sition in vivo[J].Blood Adv,2018,2(21):2848-2861

    • [32] CAMMISOTTO V,BARATTA F,CASTELLANI V,et al.Proprotein convertase subtilisin kexin type 9 inhibitors re⁃ duce platelet activation modulating ox⁃LDL pathways[J].Int J Mol Sci,2021,22(13):7193

    • [33] BERGER M,RASLAN Z,ABURIMA A,et al.Atherogen⁃ ic lipid stress induces platelet hyperactivity through CD36 ⁃mediated hyposensitivity to prostacyclin:the role of phos⁃ phodiesterase 3A[J].Haematologica,2020,105(3):808-819

    • [34] JAYAKUMAR T,CHEN W F,LU W J,et al.A novel anti⁃ thrombotic effect of sulforaphane via activation of platelet adenylate cyclase:ex vivo and in vivo studies[J].J Nutr Biochem,2013,24(6):1086-1095

    • [35] GASPER A V,AL⁃JANOBI A,SMITH J A,et al.Glutathi⁃ one S ⁃ transferase M1 polymorphism and metabolism of sulforaphane from standard and high⁃glucosinolate brocco⁃ li[J].Am J Clin Nutr,2005,82(6):1283-1291

    • [36] YE L,DINKOVA ⁃ KOSTOVA A T,WADE K L,et al.Quantitative determination of dithiocarbamates in human plasma,serum,erythrocytes and urine:pharmacokinetics of broccoli sprout isothiocyanates in humans[J].Clin Chim Acta,2002,316(1⁃2):43-53

    • [37] GILLESPIE S,HOLLOWAY P M,BECKER F,et al.The isothiocyanate sulforaphane modulates platelet function and protects against cerebral thrombotic dysfunction[J].Br J Pharmacol,2018,175(16):3333-3346

  • 参考文献

    • [1] JANKOWSKI J,FLOEGE J,FLISER D,et al.Cardiovas⁃ cular disease in chronic kidney disease:pathophysiologi⁃ cal insights and therapeutic options[J].Circulation,2021,143(11):1157-1172

    • [2] 胡盛寿,高润霖,刘力生,等.《中国心血管病报告2018》 概要[J].中国循环杂志,2019,34(3):209-220

    • [3] STEVEN S,DIB M,HAUSDING M,et al.CD40L con⁃ trols obesity ⁃ associated vascular inflammation,oxidative stress and endothelial dysfunction in mice ⁃ translational aspects for man[J].Cardiovasc Res,2018,114(2):312-323

    • [4] KATTOOR A J,GOEL A,MEHTA J L.LOX ⁃1:regula⁃ tion,signaling and its role in atherosclerosis[J].Antioxi⁃ dants(Basel),2019,8(7):218

    • [5] XUE Y,CHEN,H L,ZHANG,S H,et al.Resveratrol confers vascular protection by suppressing TLR4/Syk/NL⁃ RP3 signaling in oxidized low⁃density lipoprotein⁃ activated platelets[J].Oxid Med Cell Longev,2021,2021:8819231

    • [6] MAGWENZI S,WOODWARD C,WRAITH K S,et al.Ox⁃ idized LDL activates blood platelets through CD36/NOX2⁃ mediated inhibition of the cGMP/protein kinase G signal⁃ ing cascade[J].Blood,2015,125(17):2693-2703

    • [7] LI L,ZHOU J W,WANG S,et al.Critical role of peroxi⁃ some proliferator ⁃ activated receptor alpha in promoting platelet hyperreactivity and thrombosis under hyperlipid⁃ emia[J].Haematologica,2022,107(6):1358-1373

    • [8] YA F L,XU X R,SHI Y l,et al.Coenzyme Q10 UPREG⁃ ULATES PLatelet cAMP/PKA pathway and attenuates in⁃ tegrin αⅡbβ3 signaling and thrombus growth[J].Mol Nu⁃ tr Food Res,2019,63(23):e1900662

    • [9] MARTINEZ⁃GONZALEZ M A,GEA A,RUIZ⁃CANELA M.The mediterranean diet and cardiovascular health[J].Circ Res,2019,124(5):779-798

    • [10] MJZ A,PO B,SHMC D,et al.Almond oil for patients with hyperlipidemia:a randomized open ⁃label controlled clinical trial[J].Complement Ther Med,2019,42:33-36

    • [11] ANAGNOSTIS P,PASCHOU S A,GOULIS D G,et al.Di⁃ etary management of dyslipidaemias.Is there any evi⁃ dence for cardiovascular benefit?[J].Maturitas,2018,108:45-52

    • [12] FAHEY J W,ZALCMANN A T,TALALAY P.The chemi⁃ cal diversity and distribution of glucosinolates and isothio⁃ cyanates among plants[J].Phytochemistry,2001,56(1):5-51

    • [13] BRIONES⁃HERRERA A,EUGENIO⁃PEREZ D,REYES⁃ OCAMPO J G,et al.New highlights on the health⁃improv⁃ ing effects of sulforaphane[J].Food Funct,2018,9(5):2589-2606

    • [14] MANGLA B,JAVED S,SULTAN M H,et al.Sulfora⁃ phane:a review of its therapeutic potentials,advances in its nanodelivery,recent patents,and clinical trials[J].Phytother Res,2021,35(10):5440-5458

    • [15] SHEHATOU G S,SUDDEK G M.Sulforaphane attenuates the development of atherosclerosis and improves endothe⁃ lial dysfunction in hypercholesterolemic rabbits[J].Exp Biol Med(Maywood),2016,241(4):426-436

    • [16] BAI Y,WANG X L,ZHAO S,et al.Sulforaphane protects against cardiovascular disease via Nrf2 activation[J].Ox⁃ id Med Cell Longev,2015,2015:407580

    • [17] LIU H,TALALAY P.Relevance of anti⁃inflammatory and antioxidant activities of exemestane and synergism with sulforaphane for disease prevention[J].Proc Natl Acad⁃ Sci U S A,2013,110(47):19065-19070

    • [18] KU S K,BAE J S.Antithrombotic activities of sulfora⁃ phane via inhibiting platelet aggregation and FIIa/FXa [J].Arch Pharm Res,2014,37(11):1454-1463

    • [19] CHUANG W Y,KUNG P H,KUO C Y,et al.Sulfora⁃ phane prevents human platelet aggregation through inhib⁃ iting the phosphatidylinositol 3 ⁃ kinase/Akt pathway[J].Thromb Haemost,2013,109(6):1120-1130

    • [20] OH C H,SHIN J I,MO S J,et al.Antiplatelet activity of L ⁃ sulforaphane by regulation of platelet activation factors,glycoprotein IIb/IIIa and thromboxane A2[J].Blood Co⁃ agul Fibrinolysis,2013,24(5):498-504

    • [21] GILLESPIE S,HOLLOWAY P M,BECKER F,et al.The isothiocyanate sulforaphane modulates platelet function and protects against cerebral thrombotic dysfunction[J].Br J Pharmacol,2018,175(16):3333-3346

    • [22] 牙甫礼,XIN YU,张春梅,等.姜黄素对H2O2诱导血小板凋亡的抑制作用及分子机制[J].食品科学,2021,42(13):151-157

    • [23] 牙甫礼,张春梅,陈彬林,等.辅酶Q10经蛋白激酶A/胞浆型磷脂酶A2信号通路抑制血小板血栓素A2的生成 [J].食品科学,2021,42(9):130-136

    • [24] PAN G X,CHANG L,ZHANG J J,et al.GSK669,a NOD2 receptor antagonist,inhibits thrombosis and oxidative stress via targeting platelet GPVI[J].Biochem Pharma⁃ col,2021,183:114315

    • [25] ZHANG S,LIU Y Y,WANG X f,et al.SARS ⁃ CoV ⁃ 2 binds platelet ACE2 to enhance thrombosis in COVID⁃19 [J].J Hematol Oncol,2020,13(1):120

    • [26] OH R C,TRIVETTE E T,WESTERFIELD K L.Manage⁃ ment of hypertriglyceridemia:common questions and an⁃ swers[J].Am Fam Physician,2020,102(6):347-354

    • [27] JOSHI S,BANERJEE M,ZHANG J,et al.Alterations in platelet secretion differentially affect thrombosis and he⁃ mostasis[J].Blood Adv,2018,2(17):2187-2198

    • [28] BAKOGIANNIS C,SACHSE M,STAMATELOPOULOS K,et al.Platelet⁃derived chemokines in inflammation and atherosclerosis[J].Cytokine,2019,122:154157

    • [29] QIN S,YANG C,HUANG W,et al.Sulforaphane attenu⁃ ates microglia ⁃ mediated neuronal necroptosis through down ⁃ regulation of MAPK/NF ⁃ κB signaling pathways in LPS⁃activated BV⁃2 microglia[J].Pharmacol Res,2018,133:218-235

    • [30] YANG M,COOLEY B C,LI W,et al.Platelet CD36 pro⁃ motes thrombosis by activating redox sensor ERK5 in hy⁃ perlipidemic conditions[J].Blood,2017,129(21):2917-2927

    • [31] YANG M A,KHOLMUKHAMEDOV A,SCHULTE M L,et al.Platelet CD36 signaling through ERK5 promotes caspase⁃dependent procoagulant activity and fibrin depo⁃ sition in vivo[J].Blood Adv,2018,2(21):2848-2861

    • [32] CAMMISOTTO V,BARATTA F,CASTELLANI V,et al.Proprotein convertase subtilisin kexin type 9 inhibitors re⁃ duce platelet activation modulating ox⁃LDL pathways[J].Int J Mol Sci,2021,22(13):7193

    • [33] BERGER M,RASLAN Z,ABURIMA A,et al.Atherogen⁃ ic lipid stress induces platelet hyperactivity through CD36 ⁃mediated hyposensitivity to prostacyclin:the role of phos⁃ phodiesterase 3A[J].Haematologica,2020,105(3):808-819

    • [34] JAYAKUMAR T,CHEN W F,LU W J,et al.A novel anti⁃ thrombotic effect of sulforaphane via activation of platelet adenylate cyclase:ex vivo and in vivo studies[J].J Nutr Biochem,2013,24(6):1086-1095

    • [35] GASPER A V,AL⁃JANOBI A,SMITH J A,et al.Glutathi⁃ one S ⁃ transferase M1 polymorphism and metabolism of sulforaphane from standard and high⁃glucosinolate brocco⁃ li[J].Am J Clin Nutr,2005,82(6):1283-1291

    • [36] YE L,DINKOVA ⁃ KOSTOVA A T,WADE K L,et al.Quantitative determination of dithiocarbamates in human plasma,serum,erythrocytes and urine:pharmacokinetics of broccoli sprout isothiocyanates in humans[J].Clin Chim Acta,2002,316(1⁃2):43-53

    • [37] GILLESPIE S,HOLLOWAY P M,BECKER F,et al.The isothiocyanate sulforaphane modulates platelet function and protects against cerebral thrombotic dysfunction[J].Br J Pharmacol,2018,175(16):3333-3346