en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

郭兴,E-mail:guox@njmu.edu.cn

中图分类号:R393

文献标识码:A

文章编号:1007-4368(2023)06-772-08

DOI:10.7655/NYDXBNS20230604

参考文献 1
ZHOU B,FANG L,DONG Y,et al.Mitochondrial quality control protects photoreceptors against oxidative stress in the H2O2⁃induced models of retinal degeneration diseases [J].Cell Death Dis,2021,12(5):413
参考文献 2
TOMOHISA H,HOOGENRAAD NICHOLAS J.The chop gene contains an element for the positive regulation of the mitochondrial unfolded protein response[J].PLoS One,2007,2(9):835
参考文献 3
JI T,ZHANG X,XIN Z,et al.Does perturbation in the mi⁃ tochondrial protein folding pave the way for neurodegenera⁃ tion diseases?[J].Ageing Res Rev,2020,57:100997
参考文献 4
CHAN D C.Mitochondrial dynamics and its involvement in disease[J].Annu Rev Pathol,2020,15:235-259
参考文献 5
NG M Y W,WAI T,SIMONSEN A.Quality control of the mitochondrion[J].Dev Cell,2021,56(7):881-905
参考文献 6
SIDARALA V,ZHU J,LEVI⁃D’ANCONA E,et al.Mito⁃ fusin 1 and 2 regulation of mitochondrial DNA content is a critical determinant of glucose homeostasis[J].Nat Commun,2022,13(1):2340
参考文献 7
NISHIKAWA K,TAKEGAMI H,SESAKI H.Opa1⁃medi⁃ ated mitochondrial dynamics is important for osteoclast differentiation[J/OL].MicroPubl Biol,2022[2022 ⁃ 10 ⁃ 20].DOI:10.17912/micropub.biology.000650
参考文献 8
GIACOMELLO M,PYAKUREL A,GLYTSOU C,et al.The cell biology of mitochondrial membrane dynamics [J].Nat Rev Mol Cell Biol,2020,21(4):204⁃224
参考文献 9
HAILESELASSIE B,MUKHERJEE R,JOSHI A U,et al.Drp1/Fis1 interaction mediates mitochondrial dysfunction in septic cardiomyopathy[J].J Mol Cell Cardiol,2019,130:160-169
参考文献 10
TATJANA K,TIMO R,JULIUS W,et al.Distinct fission signatures predict mitochondrial degradation or biogenesis [J].Nature,2021,593(7859):435-439
参考文献 11
JIN J Y,WEI X X,ZHI X L,et al.Drp1⁃dependent mito⁃ chondrial fission in cardiovascular disease[J].Acta Pra⁃ macol Sin,2021(5):655-664
参考文献 12
ZHAO Y,SUN X,HU D,et al.ATAD3A oligomerization causes neurodegeneration by coupling mitochondrial frag⁃ mentation and bioenergetics defects[J].Nat Commun,2019,10(1):1371
参考文献 13
VAILLANT ⁃ BEUCHOT L,MARY A,PARDOSSIP P,et al.Accumulation ofamyloid precursor protein C ⁃terminal fragments triggers mitochondrial structure,function,and mitophagy defects in Alzheimer’s disease models and hu⁃ man brains[J].Acta Neuropathol,2020,141(1):1-27
参考文献 14
BOLAND B,YU W H,CORTI O,et al.Promoting the clearance of neurotoxic proteins in neurodegenerative dis⁃ orders of ageing[J].Nat Rev Drug Discov,2018,17(9):660-688
参考文献 15
LIU W,SU C,QI Y,et al.Brain ⁃targeted heptapeptide ⁃ loaded exosomes attenuated ischemia ⁃ reperfusion injury by promoting the transfer of healthy mitochondria from as⁃ trocytes to neurons[J].J Nanobiotechnology,2022,20(1):242
参考文献 16
AISHWARYA R,ALAM S,ABDULLAH C S,et al.Pleio⁃ tropic effects of mdivi ⁃ 1 in altering mitochondrial dyna ⁃ mics,respiration,and autophagy in cardiomyocytes[J].Redox Biol,2020,36:101660
参考文献 17
WANG W Z,YIN J,MA X P,et al.Inhibition of mitochon⁃ drial fragmentation protects against Alzheimer’s disease in rodent model[J].Hum Mol Genet,2017,26(21):4118-4131
参考文献 18
GUO X,DISATNIK M H,MONBUREAU M,et al.Inhibi⁃ tion of mitochondrial fragmentation diminishes Hunting⁃ ton’s disease ⁃associated neurodegeneration[J].J Clin Investig,2013,123(12):5371-5388
参考文献 19
FU Z X,LIU F,LIU C Y,et al.Mutant huntingtin inhibits the mitochondrial unfolded protein response by impairing ABCB10 mRNA stability[J].Biochim Biophys Acta Mol Basis Dis,2019,1865(6):1428-1435
参考文献 20
SHARMA M,RAMIREZ J U N,RIVERA O,et al.Rhes,a striatal ⁃ enriched protein,promotes mitophagy via Nix [J].Proc Natl Acad Sci U S A,2019,116(47):23760-23771
参考文献 21
KARBOWSKI M,OSHIMA Y,VERHOEVEN N.Mito⁃ chondrial proteotoxicity:implications and ubiquitin ⁃ de⁃ pendent quality control mechanisms[J].Cell Mol Life Sci,2022,79(11):574
参考文献 22
DE I,DOGRA N,SINGH S.The mitochondrial unfolded protein response:role in cellular homeostasis and disease [J].Curr Mol Med,2017,17(9):587-597
参考文献 23
TOMER S,HAYNES COLE M.The mitochondrial UPR:mechanisms,physiological functions and implications in ageing[J].Nat Rev Mol Cell Biol,2018,19(2):109-120
参考文献 24
KHANAM H,ALI A,ASIF M,et al.Neurodegenerative diseases linked to misfolded proteins and their therapeu⁃ tic approaches:a review[J].Eur J Med Chem,2016,124:1121-1141
参考文献 25
LIU C,FU Z,WU S,et al.Mitochondrial HSF1 triggers mitochondrial dysfunction and neurodegeneration in Hun⁃ tington’s disease[J].EMBO Mol Med,2022,14(7):e15851
参考文献 26
JOSÉ P M,DINA I,VASILIKI P,et al.Loss of function of the mitochondrial peptidase PITRM1 induces proteotoxic stress and Alzheimer’s disease ⁃like pathology in human cerebral organoids[J].Mol Psychiatry,2020,26(10):5733-5750
参考文献 27
GUO B,HUANG Y,GAO Q,et al.Stabilization of micro⁃ tubules improves cognitive functions and axonal transport of mitochondria in Alzheimer’s disease model mice[J].Neurobiol Aging,2020,96:223-232
参考文献 28
HARLAND M,TORRES S,LIU J,et al.Neuronal mito⁃ chondria modulation of LPS ⁃ induced neuroinflammation [J].J Neurosci,2020,40(8):1756-1765
参考文献 29
JOSHI AMIT U,MINHAS P S,LIDDELOW S A,et al.Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neuro⁃ degeneration[J].Nat Neurosci,2019,22(10):1635-1648
参考文献 30
MENZIESUDERAM J M,JIGAR M,HONGYAUN X,et al.Granulocyte ⁃colony stimulating factor gene therapy as a novel therapeutics for stroke in a mouse model[J].J Biomed Sci,2020,27(1):99
目录contents

    摘要

    目的:在小鼠胚胎成纤维细胞(mouse embryonic fibroblast,MEF)中探讨动力相关蛋白1(dynamin related protein 1,Drp1)基因缺失激活线粒体未折叠蛋白反应(mitochondrial unfolded protein reaction,mtUPR)的分子机制。方法:采用不同浓度 (0、2.5、5.0、10.0mmol/L)3-硝基丙酸(3-nitropropionic acid,3-NP)处理Drp1敲除或敲低的MEF细胞、Drp1抑制剂Mdivi-1或选择性阻断Drp1与下游蛋白相互作用的小分子多肽P110处理的MEF细胞以及相应对照,随后进行Western blot检测CCAAT/增强子结合蛋白同源蛋白(CCAAT/enhancer-binding protein homologous protein,CHOP)、ATP 结合盒 B 亚家族成员 10(ATP binding cassette subfamily B member 10,ABCB10)、Lon肽酶1(Lon peptidase 1,LONP1)以及热休克蛋白60(heat shock protein 60,Hsp60) 的表达。RT-qPCR 检测Drp1敲低或Mdivi-1处理后MEF细胞的ABCB10的mRNA水平。同时敲低Drp1和ABCB10,Western blot检测CHOP蛋白的表达,试剂盒检测培养液中乳酸脱氢酶(lactate dehydrogenase,LDH)含量,流式细胞术检测线粒体活性氧和线粒体膜电位水平。结果:3-NP处理后,Drp1敲除或敲低的MEF细胞以及Mdivi-1或P110处理的MEF细胞中CHOP表达呈现倍数上调。Drp1敲除或敲低的MEF细胞以及Mdivi-1或P110处理的MEF细胞中ABCB10蛋白表达上调,mtUPR效应蛋白LONP1和 Hsp60表达上调。Drp1敲低的MEF细胞和Mdivi-1处理的MEF细胞中ABCB10 mRNA水平上调。同时敲低Drp1和ABCB10后,与Drp1敲低组相比,CHOP表达下调,LDH含量降低,线粒体活性氧水平降低,线粒体膜电位水平增加。结论:在MEF细胞中, Drp1表达下调可引起ABCB10表达量增加,导致mtUPR关键蛋白CHOP、LONP1和Hsp60蛋白表达上调,进而激活mtUPR。

    Abstract

    Objective:The current study aims to investigate the molecular mechanism of mitochondrial unfolded protein reaction (mtUPR)induced by down - regulation of dynamin related protein 1(Drp1)expression in mouse embryonic fibroblast(MEF)cells. Methods:The expression levels of CCAAT/enhancer-binding protein homologous protein(CHOP),ATP binding cassette subfamily B member 10(ABCB10),Lon peptidase 1(LONP1)and heat shock protein 60(Hsp60)were detected by Western blot in Drp1 KO/KD cells,MEF cells treated with Drp1 inhibitors Mdivi1 or P110 and control cells after administration of 3-nitropropionic acid(3-NP)at different concentrations(0,2.5,5.0,10.0 mol/L). RT-qPCR was used to detect ABCB10 mRNA levels in Drp1 KD or Mdivi-1 treated MEF cells. After Drp1/ABCB10 double knocking down,the expression levels of CHOP protein was detected by Western blot,lactate dehydrogenase(LDH)release assay kit was used to detect the content of LDH in culture medium,and the levels of mitochondrial reactive oxygen and membrane potential were detected by flow cytometry. Results:The expression levels of CHOP were upregulated in Drp1 KO/KD cells or MEF cells treated with Drp1 inhibitors Mdivi-1 or P110. The expression levels of ABCB10 and mtUPR related proteins LONP1 and Hsp60 were upregulated in Drp1 KO/KD cells or MEF cells treated with Drp1 inhibitors Mdivi - 1 or P110. Compared with control groups,the mRNA levels of ABCB10 were upregulated in Drp1 KD or Mdivi -1 treated MEF cells. After both Drp1 and ABCB10 knocking down,the expression levels CHOP was down - regulated,LDH content was decreased,mitochondrial reactive oxygen level was decreased,and mitochondrial membrane potential level was increased. Conclusion:Deficiency of Drp1 activates the mtUPR through ABCB10,which causes the upregulation of the mtUPR proteins CHOP,LONP1 and Hsp60.

  • 线粒体未折叠蛋白反应(mitochondrial unfolded protein response,mtUPR)是指当未折叠和错误折叠的蛋白质继续积累时,线粒体逆转信号到细胞核以保持线粒体蛋白稳态的反应。蛋白质稳态对细胞至关重要。在线粒体中,mtUPR感知并响应于异常蛋白负荷,控制 400 多个基因的表达。其中, CCAAT/增强子结合蛋白同源蛋白(CCAAT/enhancer ⁃binding protein homologous protein,CHOP)是mtUPR 的一个关键转录因子,它与线粒体应激反应(mito⁃ chondrial stress responses,MSR)元件结合,CHOP 的表达与二聚体的形成可以与相关基因的启动子相结合。在哺乳动物中,CHOP 可以激活热休克蛋白 60(heat shock protein,Hsp60)和 Lon 肽酶 1(Lon peptidase1,LONP1)的表达[1-2]。mtUPR 所诱导的下游基因表达改变可促进蛋白质的准确折叠,限制蛋白质转运到线粒体,并阻碍线粒体蛋白翻译以降低线粒体蛋白负荷,影响线粒体代谢和动力学,以利于细胞存活[1]。研究证明,蛋白质失衡是神经变性的基础,蛋白稳态异常与多种神经退行性疾病有关,包括阿尔茨海默病(Alzheimer’s disease,AD)、帕金森病(Parkinson’s disease,PD)、亨廷顿舞蹈症 (Huntington’s disease,HD)和家族性肌萎缩侧索硬化症(family⁃amyotrophic lateral sclerosis,f⁃ALS)[3]

  • 线粒体作为细胞的能量工厂,参与信号传导及一系列重要的细胞过程,如通过氧化磷酸化(oxida⁃ tive phosphorylation,OXPHOS)产生维持正常细胞功能所需的ATP、脂肪酸氧化、钙稳态、磷脂合成等,是细胞存活或死亡的关键因素[4]。线粒体作为高度动态细胞器,其分裂与融合过程由动力学相关蛋白中的GTP酶结构域调节保持动态平衡,控制着线粒体的数量、形状和大小[5]

  • 在哺乳动物细胞中,线粒体的融合由位于线粒体外膜的 MFN1、MFN2 和位于线粒体内膜的 OPA1 (编码基因突变与显性视神经萎缩有关)调节[6-7]。线粒体的分裂主要由线粒体外膜蛋白MFF、MID49、 MID51和FIS1招募动力相关蛋白1(dynamin related protein 1,Drp1)从细胞质转移到线粒体,与线粒体外膜动力学分裂蛋白结合,自组装成螺旋结构,包裹和收缩线粒体小管以促进裂变[8-10]。Drp1在线粒体的分裂中起核心作用,其活性受到严格调节。研究证明,Drp1 存在各种翻译后修饰(protein transla⁃ tional modification,PTM),包括磷酸化、小泛素化 (small ubiquitin⁃like modifier,SUMO)、泛素化、S⁃亚硝基化等。以Drp1为核心的线粒体分裂是线粒体运输到突触、线粒体质量控制和大脑发育所必需的[11]

  • 在神经退行性疾病的细胞模型中,线粒体通常会响应错误折叠蛋白的表达而断裂[12-14]。一种特异性的小分子多肽P110,可以在病理条件下选择性阻断Drp1⁃FIS1间的相互作用,而不干扰Drp1与其他线粒体接头蛋白之间的相互作用[15]。化合物Mdivi⁃1 被广泛报道可抑制 Drp1 依赖的线粒体裂变、延长线粒体并减轻脑损伤。Mdivi⁃1通过阻断Drp1自组装和抑制Drp1组装结构募集到线粒体来减弱细胞凋亡过程中的线粒体分裂[16]。虽然线粒体断裂的致病性和继发性影响尚未可知,但抑制线粒体分裂延缓改善了多种神经退行性疾病模型中的疾病相关表型[17-18]

  • 前期研究发现,在HD的细胞和动物模型中,线粒体内膜蛋白 ATP 结合盒 B 亚家族成员 10(ATP binding cassette subfamily B member 10,ABCB10)是线粒体应激时 mtUPR 激活所必需的关键蛋白。ABCB10 的基因缺失会导致 mtUPR 失调,进而导致线粒体功能障碍和细胞死亡[19]。本研究通过下调线粒体分裂相关蛋白Drp1的表达探究线粒体分裂异常激活mtUPR的分子机制,旨在为治疗神经退行性疾病提供新的思路。

  • 1 材料和方法

  • 1.1 材料

  • 小鼠胚胎成纤维细胞(mouse embryonic fibro⁃ blast,MEF)、HEK293T细胞购于美国模式培养物集存库(ATCC)机构。Drp1敲除的Drp1⁃KO和野生型 Drp1⁃WT的 MEF细胞系由约翰霍普金斯大学Hiromi Sesaki 博士赠送。DMEM 细胞培养基(Hyclone 公司,美国),胎牛血清(ExCell Bio公司,乌拉圭),青霉素⁃链霉素、胰蛋白酶(上海生工公司),蛋白酶抑制剂(苏州新赛美公司);BCA 蛋白浓度检测试剂盒、乳酸脱氢酶细胞毒性检测试剂盒(上海碧云天公司);抗 Drp1 抗体(BD Biosciences 公司,美国),抗 CHOP、LONP1 抗体(Proteintech 公司,美国),抗 ABCB10、Hsp60抗体(Santa Cruz公司,美国);3⁃硝基丙酸(3⁃nitropropionic acid,3⁃NP)、Drp1抑制剂Mdivi1 (Sigma⁃Aldrich 公司,美国),Drp1 抑制剂 P110 及对照蛋白穿膜肽反式转录激活因子(trans⁃activate of transcription,TAT)(南京金斯瑞公司),DMSO (Biofroxx 公司,德国);AceQ qPCR SYBR Green Master Mix、FastPure Cell/Tissue Total RNA Isolation Kit V2、HiScript ⅢRT SuperMix for qPCR(+ gDNAwiper)(南京诺唯赞公司),转染试剂 GenEscortTM I(南京慧基生物公司),线粒体超氧化物(mitochon⁃ drial superoxide,mitoSOX)指示剂溴化乙锭衍生物、线粒体膜电位(mitochondrial membrane potential, MMP)指示剂四甲基罗丹明甲酯(Invitrogen Life Sci⁃ ence公司,美国)。

  • 1.2 方法

  • 1.2.1 细胞培养

  • MEF和HEK293T细胞均培养于含有10%胎牛血清和1%青霉素⁃链霉素的DMEM完全培养基,置于37℃、5%CO2的培养箱孵育。

  • 1.2.2 慢病毒沉默体系构建敲低稳转细胞系

  • 病毒包装:待10 cm细胞培养皿中的HEK293T 细胞融合度大致为 50% 时更换细胞培养液。 pLKO.1⁃ shDrp1/pLKO.1⁃ shABCB10/pLKO.1 5.0 μg、 pMDL g/p RRE 2.5 μg、pRSV ⁃Rev 1.25 μg、pCMV ⁃ VSVG 1.5 μg与20 μL转染试剂于200 μL不含血清与抗生素的DMEM中混合均匀,室温孵育15 min后加入 HEK293T细胞中摇匀。24 h后弃旧培液,加入10 mL 完全培养基,48 h 后再次加入 10 mL 完全培养基。 72 h后将20 mL培养液用0.45 μm滤膜过滤细胞碎片后,加入 5 mL 5×PEG8000 于 4℃混悬过夜浓缩病毒,次日 4℃ 12 000 r/min 离心 30 min,PBS 混悬沉淀分装。

  • 病毒感染以及稳转系筛选:6孔板MEF细胞融合度为 50%时加入病毒和聚凝胺(10 μg/mL)感染 48 h后,加入含2 μg/mL 嘌呤霉素的DMEM 完全培养基筛选至未感染细胞全部死亡后进行正常传代。

  • 1.2.3 药物及小分子多肽处理

  • 不同浓度(0、2.5、5.0、10.0 mmol/L)3⁃NP 处理 Drp1⁃KO、Drp1 敲低(sh⁃Drp1)以及对照细胞 24 h。1 μmol/L 的小分子多肽 TAT 和 P110 分别加入 MEF 细胞处理 24 h。40 nmol/L 的 DMSO 和 Drp1 抑制剂 Mdivi⁃1分别加入MEF细胞处理16 h。

  • 1.2.4 Western blot实验

  • 提取处理后的细胞总蛋白,加入蛋白酶抑制剂后进行蛋白定量,取30 μg蛋白进行Western blot实验。用制备好的5%浓缩胶和10%分离胶进行80 V 恒压电泳15 min后,调电压至160 V;待蛋白分子分离,360 mA恒流100 min电转,5%脱脂牛奶封闭NC 膜 1 h。一抗(CHOP 1:1000,ABCB10 1∶500,Drp1 1∶1 000,LONP1 1∶1 000,Hsp60 1∶1 000)4℃孵育过夜,TBST洗膜10 min×3,二抗(HRP标记1∶5 000) 2 h,TBST 洗膜 10 min×3。SageBrightness ECL 化学发光液进行检测。

  • 1.2.5 qRT⁃PCR

  • 试剂盒提取 Drp1 敲低和其对照稳转系、以及 DMSO和Mdivi⁃1分别处理的MEF细胞的RNA,将其逆转录为cDNA,稀释10倍后待用。将SYBR Green 10 μL,cDNA 4 μL,上、下游引物(母液10 μmol/L)各 0.2 μL(表1),ddH2O 5.6 μL混合进行qRT⁃PCR实验。

  • 表1 实时定量PCR相关引物

  • Table1 Relative primers of real⁃time quantitative PCR

  • 1.2.6 乳酸脱氢酶(lactate dehydrogenase,LDH)细胞毒性检测

  • 待96孔板中细胞融合度大致为80%时,多孔板离心机400 g离心5 min,取上清120 μL到新的96孔板中。加入60 μL LDH工作液,混匀,室温避光孵育 30 min,490 nm测定吸光度值。

  • 1.2.7 线粒体活性氧和MMP检测

  • 待6孔板细胞融合度大致为80%时,弃掉培养液,PBS 清洗 1 遍,胰酶消化后用培养液终止。 3 000 r/min离心3 min,PBS清洗后再次离心。每组按照染料母液与培养液1∶1 000的比例加入200 μL 染料,混匀,37℃孵育 30 min。PBS 清洗 3 次,混悬后通过流式细胞仪检测。

  • 1.3 统计学方法

  • 以上实验结果分析均采用 GraphPad Prism 8.3.0。两组间比较使用student’s t test,单因素多组间比较使用one⁃way ANOVA,双因素多组间比较使用two⁃way ANOVA。所有数据均以均数±标准差(x- ± s)表示。P<0.05为差异有统计学意义。

  • 2 结果

  • 2.1 敲除或敲低Drp1可激活mtUPR

  • 不同浓度(0、2.5、5.0、10.0 mmol/L)3⁃NP 处理 WT 组、Drp1⁃KO、pLKO 组和 sh ⁃Drp1 组细胞 24 h。 Western blot 结果显示,与对照相比,mtUPR 激活的转录因子 CHOP 的蛋白表达水平显著上升(P< 0.05,图1),Drp1⁃KO和sh⁃Drp1分别与WT和pLKO 各浓度对照组相比,CHOP蛋白的表达水平上升(图1)。提示Drp1表达水平下降可显著增强3⁃NP诱导的mtUPR。

  • 2.2 Drp1抑制剂小分子多肽处理可激活mtUPR

  • 不同浓度(0、2.5、5.0、10.0 mmol/L)3⁃NP 处理 DMSO 组、Mdivi1 组、TAT 组和 P110 组细胞 24 h。 Western blot结果显示,与对照相比,CHOP蛋白的表达水平显著上升(P<0.05,图2),Mdivi⁃1和P110处理均显著增强3⁃NP诱导的mtUPR。

  • 2.3 敲低或抑制Drp1对mtUPR相关蛋白的影响

  • 为进一步探讨抑制Drp1表达与mtUPR的相关性,检测反映mtUPR活化的线粒体伴侣蛋白Hsp60 和线粒体蛋白酶 LONP1 蛋白表达水平的变化。 Western blot结果显示,sh⁃Drp1组、P110组及Mdivi⁃1 组细胞中,Hsp60和LONP1蛋白表达水平显著上升(P 均<0.05,图3)。提示Drp1表达下降可激活mtUPR。

  • 2.4 敲除、敲低或抑制Drp1对ABCB10蛋白表达水平的影响

  • 本实验室前期研究表明,线粒体内膜蛋白 ABCB10 是 HD 细胞和动物模型中 mtUPR 激活 CHOP 所必需的蛋白[19]。猜测 Drp1 可能通过调控 ABCB10进而激活mtUPR。Western blot结果显示,敲除Drp1(Drp1⁃KO组)、敲低Drp1(sh⁃Drp1组)以及抑制Drp1(小分子多肽Mdivi1和P110处理)后,与对照组相比,ABCB10蛋白水平显著升高(P均<0.01,图4)。提示ABCB10参与Drp1缺失激活mtUPR的过程。

  • 2.5 敲低 Drp1 或 Mdivi1 处理对 ABCB10 mRNA 水平的影响

  • 为检测 ABCB10 蛋白水平的升高是否与其 mRNA 水平的变化有关,qRT⁃PCR 检测 pLKO 和sh⁃Drp1 组以及 DMSO 对照和 Mdivi1 处理组 mRNA 水平,以确定 Drp1 是否影响 ABCB10 的 mRNA 水平。与对照组相比,sh⁃Drp1和Mdivi1组的ABCB10的mRNA水平显著上升(P均<0.01,图5)。

  • A:3⁃NP处理后,WT组和Drp1⁃KO组细胞CHOP蛋白的表达;B:3⁃NP处理后,sh⁃Drp1组与pLKO组细胞CHOP蛋白的表达。与0 mmol/L 3⁃NP组比较,* P <0.05(n=3);Drp1⁃KO组/sh⁃Drp1组与对应WT组/pLKO组比较,# P <0.05(n=3)。

  • 图1 在MEF细胞中敲除或敲低Drp1后CHOP蛋白的表达情况

  • Figure1 Expression of CHOP protein after Drp1 knocking out/knocking down in MEF cells

  • A:3⁃NP 处理后,Mdivi⁃1组和DMSO 组MEF 细胞CHOP 蛋白的表达;B:3⁃NP 处理后,P110组和TAT 组MEF 细胞CHOP 蛋白的表达。与 0 mmol/L 3⁃NP组比较,*P <0.05(n=3);Mdivi1组/P110组与对应DMSO/TAT组比较,#P <0.05(n=3)。

  • 图2 在MEF细胞用Drp1抑制剂处理后CHOP蛋白的表达情况

  • Figure2 Expression of CHOP protein after Drp1 inhibitors treatment in MEF cells

  • A~C:sh⁃Drp1组及对照pLKO组细胞中检测LONP1、Hsp60蛋白表达(A)及LONP1蛋白(B)、Hsp60蛋白(C)表达灰度分析;D~F:在P110组及对照TAT组细胞中检测LONP1、Hsp60蛋白表达(D)及LONP1蛋白(E)、Hsp60蛋白(F)表达灰度分析:G~I:在Mdivi⁃1组及对照DMSO组细胞中检测LONP1、Hsp60蛋白表达(G)及LONP1蛋白(H)、Hsp60蛋白(I)表达灰度分析。两组比较,*P <0.05,**P <0.01(n=3)。

  • 图3 敲低或抑制Drp1对mtUPR相关蛋白的影响

  • Figure3 Effects of knocking down or inhibiting Drp1 on mtUPR⁃related proteins

  • A、B:在Drp1⁃KO组及对照WT组中检测ABCB10蛋白表达(A)及半定量分析(B);C、D:在sh⁃Drp1组及对照pLKO组中检测ABCB10蛋白表达(C)及半定量分析(D);E、F:在Mdivi⁃1组及对照DMSO组细胞中检测ABCB10蛋白表达(E)及半定量分析(F);G、H:在P110组及对照TAT 组细胞中检测ABCB10蛋白表达(G)及半定量分析(H),两组比较,**P <0.01,***P <0.001(n=3)。

  • 图4 敲除、敲低或抑制Drp1对ABCB10蛋白表达水平的影响

  • Figure4 The effect of knocking out,knocking down or inhibiting Drp1 on the expression level of ABCB10 protein

  • 2.6 Drp1和ABCB10双敲对mtUPR的影响

  • 为进一步验证 Drp1 是否通过 ABCB10 调节mtUPR,对MEF细胞进行Drp1和ABCB10双敲处理 (D ⁃ sh 组)。结果显示,sh ⁃Drp1 组 CHOP 蛋白较 pLKO 组显著上升;sh⁃ABCB10、D⁃sh 组 CHOP 蛋白水平较sh⁃Drp1组显著下调(图6)。表明Drp1下调依赖ABCB10引起mtUPR。

  • A:在 sh⁃Drp1 组及对照 pLKO 组细胞中检测 ABCB10 mRNA 水平;B:在 Mdivi⁃1 组及对照 DMSO 组细胞中检测 ABCB10 mRNA 水平。两组比较,**P <0.01,***P <0.001(n=4)。

  • 图5 敲低Drp1或Mdivi⁃1处理对ABCB10 mRNA 水平的影响

  • Figure5 Effect of Drp1 knockdown or Mdivi ⁃ 1 on ABCB10 mRNA levels

  • 2.7 Drp1 和 ABCB10 双敲对细胞存活和线粒体功能的影响

  • 为观察 Drp1 和 ABCB10 双敲处理后 MEF 细胞存活和线粒体功能的影响,检测培养液中 LDH 含量,并用mitoSOX 指示剂和TMRM指示剂染色检测相应功能指标。结果显示,sh⁃Drp1 组细胞 LDH 释放量较pLKO组增加,mitoSOX含量升高,MMP降低。 D⁃sh组与sh⁃Drp1相比,细胞LDH释放量降低,mito⁃ SOX含量降低,MMP升高,且3项指标与pLKO组差异均无统计学意义(图7)。结果提示 sh⁃Drp1 可引起线粒体功能受损及细胞死亡增加,D⁃sh组可以挽救sh⁃Drp1引起的线粒体功能障碍及细胞死亡。

  • A:Western blot检测各组细胞中CHOP蛋白表达;B:各组CHOP 蛋白表达的半定量分析。两组比较,*P <0.05(n=3)。

  • 图6 Drp1和ABCB10双敲对mtUPR的影响

  • Figure6 The effect of Drp1 and ABCB10 double knock⁃ ing down on mtUPR

  • 3 讨论

  • mtUPR通过感知线粒体蛋白质的状态,依赖伴侣蛋白促进未折叠蛋白质折叠,增强错误折叠蛋白质降解,防止蛋白质聚集,是线粒体⁃核通讯的重要方式。为研究线粒体断裂抑制是否会引起mtUPR,本研究通过敲除或敲低 Drp1 或使用 Drp1 抑制剂 Mdivi⁃1和P110处理下调线粒体分裂关键蛋白Drp1的表达,结果表明,Drp1缺失激活CHOP蛋白的表达增加,暗示线粒体分裂蛋白Drp1表达下调引起线粒体应激,激活一系mtUPR信号事件,包括CHOP上调和Hsp60、LONP1激活,从而减少过度的线粒体蛋白毒性应激。研究表明,3⁃NP 引起线粒体不可逆损伤,加剧线粒体自噬,并促进细胞凋亡[20]。当Drp1 缺失时,促凋亡蛋白CHOP表达量与3⁃NP处理对照组相比显著上升,说明细胞凋亡加剧,可能存在线粒体自噬与 mtUPR 共同调节蛋白质稳态。线粒体质量控制包括线粒体自噬和mtUPR,两者对维持线粒体蛋白质平衡和细胞生理功能非常重要。细胞一方面通过mtUPR维持线粒体蛋白质稳态,另一方面通过自噬⁃溶酶体途径清除受损线粒体,利用线粒体自噬产物再生正常的线粒体,共同保证线粒体生理功能[21]。已有研究证明,线粒体自噬和mtUPR通过增强线粒体蛋白质平衡和减少β⁃淀粉样蛋白在大脑中的沉积来延缓AD的进展[1]。研究表明,ABCB10 是维持线粒体伴侣和蛋白酶表达所必需的,在控制 mtUPR中发挥了关键作用[22-23]。本实验室前期研究发现,在HD疾病细胞和动物模型中,线粒体外膜蛋白ABCB10是线粒体应激诱导的转录因子CHOP激活所必需的[19]。本研究探讨了Drp1表达下调是否通过ABCB10引起mtUPR,检测敲除或敲低Drp1以及 Drp1 抑制剂 Mdivi1 和 P110 处理的 MEF 细胞中 ABCB10的表达,并对Drp1和ABCB10进行双敲,检测CHOP表达是否受影响。结果表明,Drp1表达通过ABCB10影响mtUPR。这个结果将线粒体动力学与 mtUPR 联系起来,而线粒体动力学异常,尤其是 Drp1蛋白异常,是神经退行性疾病的常见表型。

  • 检测各组细胞中LDH(A)、mitoSOX(B)、MMP(C)水平。两组比较,*P <0.05,**P <0.01,***P <0.001(n=3)。

  • 图7 Drp1和ABCB10双敲对细胞存活和线粒体功能的影响

  • Figure7 The effect of Drp1 and ABCB10 double knocking down on cell survival and mitochondrial function

  • 神经退行性疾病是一种衰老相关的疾病,其特征在于相关神经元进行性、选择性丢失,典型的神经退行性疾病包括AD、PD、f⁃ALS和HD等[24]。研究表明,线粒体功能障碍是神经退行性疾病的主要病理机制之一[25-27]。神经元具有很高的能量需求和有限的再生能力,因此破坏线粒体的完整性会对神经元功能产生不利影响,特别是线粒体融合和分裂过程动态失衡、生物发生异常或氧化磷酸化效率低均可能导致神经元树突和轴突缩短、神经递质周转下调以及炎症反应,最终导致神经元丢失[11228-29]

  • 在神经退行性疾病中,线粒体通常响应于错误折叠蛋白质引起的mtUPR,抑制线粒体分裂可改善疾病相关表型[12-1417-18]。在HD疾病模型中,Drp1线粒体易位增加,线粒体裂变蛋白Drp1的选择性抑制剂P110处理HD小鼠纹状体细胞系和HD患者来源的 iPS 细胞系,可以改善线粒体功能,提高细胞活力。用P110治疗HD转基因小鼠可减少线粒体功能障碍、运动障碍和死亡率[18]。另外,在HD细胞模型中Drp1招募HSF1易位到线粒体,通过小分子化合物DH1干扰Drp1/HSF1的结合,可以抑制线粒体断裂,改善线粒体功能[25]。本研究通过检测 Drp1 和 ABCB10双敲细胞(D⁃sh)的细胞存活率以及线粒体功能,发现 D⁃sh 组细胞存活率较 sh⁃Drp1 组升高, mitoSOX水平下降,MMP升高。结合先前的数据分析,本研究中Drp1缺失是在生理水平的改变,与疾病模型相比,可能对细胞存活和线粒体功能有不同影响。此外,CHOP是一种促凋亡蛋白,Drp1缺失激活CHOP可能通过其他途径引起线粒体功能障碍,导致细胞死亡[30]。ABCB10是CHOP激活所必需的蛋白,当ABCB10缺失后,CHOP降低,引起细胞功能改善,细胞存活率增加。mtUPR 相关蛋白 Hsp60、LONP1的变化暗示Drp1缺失激活mtUPR,但可能存在一条新的途径引起细胞死亡。本研究为线粒体动力学相关蛋白与 mtUPR 之间的分子机制研究提供了一条新思路。

  • 综上所述,Drp1 表达下调通过 ABCB10 激活 mtUPR,引起mtUPR蛋白CHOP、LONP1和Hsp60的上调。研究为神经退行性疾病治疗靶点研究提供了新思路,但抑制线粒体分裂使其作为神经变性治疗手段的潜力需要在相关疾病的细胞和动物模型中进一步探索。

  • 参考文献

    • [1] ZHOU B,FANG L,DONG Y,et al.Mitochondrial quality control protects photoreceptors against oxidative stress in the H2O2⁃induced models of retinal degeneration diseases [J].Cell Death Dis,2021,12(5):413

    • [2] TOMOHISA H,HOOGENRAAD NICHOLAS J.The chop gene contains an element for the positive regulation of the mitochondrial unfolded protein response[J].PLoS One,2007,2(9):835

    • [3] JI T,ZHANG X,XIN Z,et al.Does perturbation in the mi⁃ tochondrial protein folding pave the way for neurodegenera⁃ tion diseases?[J].Ageing Res Rev,2020,57:100997

    • [4] CHAN D C.Mitochondrial dynamics and its involvement in disease[J].Annu Rev Pathol,2020,15:235-259

    • [5] NG M Y W,WAI T,SIMONSEN A.Quality control of the mitochondrion[J].Dev Cell,2021,56(7):881-905

    • [6] SIDARALA V,ZHU J,LEVI⁃D’ANCONA E,et al.Mito⁃ fusin 1 and 2 regulation of mitochondrial DNA content is a critical determinant of glucose homeostasis[J].Nat Commun,2022,13(1):2340

    • [7] NISHIKAWA K,TAKEGAMI H,SESAKI H.Opa1⁃medi⁃ ated mitochondrial dynamics is important for osteoclast differentiation[J/OL].MicroPubl Biol,2022[2022 ⁃ 10 ⁃ 20].DOI:10.17912/micropub.biology.000650

    • [8] GIACOMELLO M,PYAKUREL A,GLYTSOU C,et al.The cell biology of mitochondrial membrane dynamics [J].Nat Rev Mol Cell Biol,2020,21(4):204⁃224

    • [9] HAILESELASSIE B,MUKHERJEE R,JOSHI A U,et al.Drp1/Fis1 interaction mediates mitochondrial dysfunction in septic cardiomyopathy[J].J Mol Cell Cardiol,2019,130:160-169

    • [10] TATJANA K,TIMO R,JULIUS W,et al.Distinct fission signatures predict mitochondrial degradation or biogenesis [J].Nature,2021,593(7859):435-439

    • [11] JIN J Y,WEI X X,ZHI X L,et al.Drp1⁃dependent mito⁃ chondrial fission in cardiovascular disease[J].Acta Pra⁃ macol Sin,2021(5):655-664

    • [12] ZHAO Y,SUN X,HU D,et al.ATAD3A oligomerization causes neurodegeneration by coupling mitochondrial frag⁃ mentation and bioenergetics defects[J].Nat Commun,2019,10(1):1371

    • [13] VAILLANT ⁃ BEUCHOT L,MARY A,PARDOSSIP P,et al.Accumulation ofamyloid precursor protein C ⁃terminal fragments triggers mitochondrial structure,function,and mitophagy defects in Alzheimer’s disease models and hu⁃ man brains[J].Acta Neuropathol,2020,141(1):1-27

    • [14] BOLAND B,YU W H,CORTI O,et al.Promoting the clearance of neurotoxic proteins in neurodegenerative dis⁃ orders of ageing[J].Nat Rev Drug Discov,2018,17(9):660-688

    • [15] LIU W,SU C,QI Y,et al.Brain ⁃targeted heptapeptide ⁃ loaded exosomes attenuated ischemia ⁃ reperfusion injury by promoting the transfer of healthy mitochondria from as⁃ trocytes to neurons[J].J Nanobiotechnology,2022,20(1):242

    • [16] AISHWARYA R,ALAM S,ABDULLAH C S,et al.Pleio⁃ tropic effects of mdivi ⁃ 1 in altering mitochondrial dyna ⁃ mics,respiration,and autophagy in cardiomyocytes[J].Redox Biol,2020,36:101660

    • [17] WANG W Z,YIN J,MA X P,et al.Inhibition of mitochon⁃ drial fragmentation protects against Alzheimer’s disease in rodent model[J].Hum Mol Genet,2017,26(21):4118-4131

    • [18] GUO X,DISATNIK M H,MONBUREAU M,et al.Inhibi⁃ tion of mitochondrial fragmentation diminishes Hunting⁃ ton’s disease ⁃associated neurodegeneration[J].J Clin Investig,2013,123(12):5371-5388

    • [19] FU Z X,LIU F,LIU C Y,et al.Mutant huntingtin inhibits the mitochondrial unfolded protein response by impairing ABCB10 mRNA stability[J].Biochim Biophys Acta Mol Basis Dis,2019,1865(6):1428-1435

    • [20] SHARMA M,RAMIREZ J U N,RIVERA O,et al.Rhes,a striatal ⁃ enriched protein,promotes mitophagy via Nix [J].Proc Natl Acad Sci U S A,2019,116(47):23760-23771

    • [21] KARBOWSKI M,OSHIMA Y,VERHOEVEN N.Mito⁃ chondrial proteotoxicity:implications and ubiquitin ⁃ de⁃ pendent quality control mechanisms[J].Cell Mol Life Sci,2022,79(11):574

    • [22] DE I,DOGRA N,SINGH S.The mitochondrial unfolded protein response:role in cellular homeostasis and disease [J].Curr Mol Med,2017,17(9):587-597

    • [23] TOMER S,HAYNES COLE M.The mitochondrial UPR:mechanisms,physiological functions and implications in ageing[J].Nat Rev Mol Cell Biol,2018,19(2):109-120

    • [24] KHANAM H,ALI A,ASIF M,et al.Neurodegenerative diseases linked to misfolded proteins and their therapeu⁃ tic approaches:a review[J].Eur J Med Chem,2016,124:1121-1141

    • [25] LIU C,FU Z,WU S,et al.Mitochondrial HSF1 triggers mitochondrial dysfunction and neurodegeneration in Hun⁃ tington’s disease[J].EMBO Mol Med,2022,14(7):e15851

    • [26] JOSÉ P M,DINA I,VASILIKI P,et al.Loss of function of the mitochondrial peptidase PITRM1 induces proteotoxic stress and Alzheimer’s disease ⁃like pathology in human cerebral organoids[J].Mol Psychiatry,2020,26(10):5733-5750

    • [27] GUO B,HUANG Y,GAO Q,et al.Stabilization of micro⁃ tubules improves cognitive functions and axonal transport of mitochondria in Alzheimer’s disease model mice[J].Neurobiol Aging,2020,96:223-232

    • [28] HARLAND M,TORRES S,LIU J,et al.Neuronal mito⁃ chondria modulation of LPS ⁃ induced neuroinflammation [J].J Neurosci,2020,40(8):1756-1765

    • [29] JOSHI AMIT U,MINHAS P S,LIDDELOW S A,et al.Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neuro⁃ degeneration[J].Nat Neurosci,2019,22(10):1635-1648

    • [30] MENZIESUDERAM J M,JIGAR M,HONGYAUN X,et al.Granulocyte ⁃colony stimulating factor gene therapy as a novel therapeutics for stroke in a mouse model[J].J Biomed Sci,2020,27(1):99

  • 参考文献

    • [1] ZHOU B,FANG L,DONG Y,et al.Mitochondrial quality control protects photoreceptors against oxidative stress in the H2O2⁃induced models of retinal degeneration diseases [J].Cell Death Dis,2021,12(5):413

    • [2] TOMOHISA H,HOOGENRAAD NICHOLAS J.The chop gene contains an element for the positive regulation of the mitochondrial unfolded protein response[J].PLoS One,2007,2(9):835

    • [3] JI T,ZHANG X,XIN Z,et al.Does perturbation in the mi⁃ tochondrial protein folding pave the way for neurodegenera⁃ tion diseases?[J].Ageing Res Rev,2020,57:100997

    • [4] CHAN D C.Mitochondrial dynamics and its involvement in disease[J].Annu Rev Pathol,2020,15:235-259

    • [5] NG M Y W,WAI T,SIMONSEN A.Quality control of the mitochondrion[J].Dev Cell,2021,56(7):881-905

    • [6] SIDARALA V,ZHU J,LEVI⁃D’ANCONA E,et al.Mito⁃ fusin 1 and 2 regulation of mitochondrial DNA content is a critical determinant of glucose homeostasis[J].Nat Commun,2022,13(1):2340

    • [7] NISHIKAWA K,TAKEGAMI H,SESAKI H.Opa1⁃medi⁃ ated mitochondrial dynamics is important for osteoclast differentiation[J/OL].MicroPubl Biol,2022[2022 ⁃ 10 ⁃ 20].DOI:10.17912/micropub.biology.000650

    • [8] GIACOMELLO M,PYAKUREL A,GLYTSOU C,et al.The cell biology of mitochondrial membrane dynamics [J].Nat Rev Mol Cell Biol,2020,21(4):204⁃224

    • [9] HAILESELASSIE B,MUKHERJEE R,JOSHI A U,et al.Drp1/Fis1 interaction mediates mitochondrial dysfunction in septic cardiomyopathy[J].J Mol Cell Cardiol,2019,130:160-169

    • [10] TATJANA K,TIMO R,JULIUS W,et al.Distinct fission signatures predict mitochondrial degradation or biogenesis [J].Nature,2021,593(7859):435-439

    • [11] JIN J Y,WEI X X,ZHI X L,et al.Drp1⁃dependent mito⁃ chondrial fission in cardiovascular disease[J].Acta Pra⁃ macol Sin,2021(5):655-664

    • [12] ZHAO Y,SUN X,HU D,et al.ATAD3A oligomerization causes neurodegeneration by coupling mitochondrial frag⁃ mentation and bioenergetics defects[J].Nat Commun,2019,10(1):1371

    • [13] VAILLANT ⁃ BEUCHOT L,MARY A,PARDOSSIP P,et al.Accumulation ofamyloid precursor protein C ⁃terminal fragments triggers mitochondrial structure,function,and mitophagy defects in Alzheimer’s disease models and hu⁃ man brains[J].Acta Neuropathol,2020,141(1):1-27

    • [14] BOLAND B,YU W H,CORTI O,et al.Promoting the clearance of neurotoxic proteins in neurodegenerative dis⁃ orders of ageing[J].Nat Rev Drug Discov,2018,17(9):660-688

    • [15] LIU W,SU C,QI Y,et al.Brain ⁃targeted heptapeptide ⁃ loaded exosomes attenuated ischemia ⁃ reperfusion injury by promoting the transfer of healthy mitochondria from as⁃ trocytes to neurons[J].J Nanobiotechnology,2022,20(1):242

    • [16] AISHWARYA R,ALAM S,ABDULLAH C S,et al.Pleio⁃ tropic effects of mdivi ⁃ 1 in altering mitochondrial dyna ⁃ mics,respiration,and autophagy in cardiomyocytes[J].Redox Biol,2020,36:101660

    • [17] WANG W Z,YIN J,MA X P,et al.Inhibition of mitochon⁃ drial fragmentation protects against Alzheimer’s disease in rodent model[J].Hum Mol Genet,2017,26(21):4118-4131

    • [18] GUO X,DISATNIK M H,MONBUREAU M,et al.Inhibi⁃ tion of mitochondrial fragmentation diminishes Hunting⁃ ton’s disease ⁃associated neurodegeneration[J].J Clin Investig,2013,123(12):5371-5388

    • [19] FU Z X,LIU F,LIU C Y,et al.Mutant huntingtin inhibits the mitochondrial unfolded protein response by impairing ABCB10 mRNA stability[J].Biochim Biophys Acta Mol Basis Dis,2019,1865(6):1428-1435

    • [20] SHARMA M,RAMIREZ J U N,RIVERA O,et al.Rhes,a striatal ⁃ enriched protein,promotes mitophagy via Nix [J].Proc Natl Acad Sci U S A,2019,116(47):23760-23771

    • [21] KARBOWSKI M,OSHIMA Y,VERHOEVEN N.Mito⁃ chondrial proteotoxicity:implications and ubiquitin ⁃ de⁃ pendent quality control mechanisms[J].Cell Mol Life Sci,2022,79(11):574

    • [22] DE I,DOGRA N,SINGH S.The mitochondrial unfolded protein response:role in cellular homeostasis and disease [J].Curr Mol Med,2017,17(9):587-597

    • [23] TOMER S,HAYNES COLE M.The mitochondrial UPR:mechanisms,physiological functions and implications in ageing[J].Nat Rev Mol Cell Biol,2018,19(2):109-120

    • [24] KHANAM H,ALI A,ASIF M,et al.Neurodegenerative diseases linked to misfolded proteins and their therapeu⁃ tic approaches:a review[J].Eur J Med Chem,2016,124:1121-1141

    • [25] LIU C,FU Z,WU S,et al.Mitochondrial HSF1 triggers mitochondrial dysfunction and neurodegeneration in Hun⁃ tington’s disease[J].EMBO Mol Med,2022,14(7):e15851

    • [26] JOSÉ P M,DINA I,VASILIKI P,et al.Loss of function of the mitochondrial peptidase PITRM1 induces proteotoxic stress and Alzheimer’s disease ⁃like pathology in human cerebral organoids[J].Mol Psychiatry,2020,26(10):5733-5750

    • [27] GUO B,HUANG Y,GAO Q,et al.Stabilization of micro⁃ tubules improves cognitive functions and axonal transport of mitochondria in Alzheimer’s disease model mice[J].Neurobiol Aging,2020,96:223-232

    • [28] HARLAND M,TORRES S,LIU J,et al.Neuronal mito⁃ chondria modulation of LPS ⁃ induced neuroinflammation [J].J Neurosci,2020,40(8):1756-1765

    • [29] JOSHI AMIT U,MINHAS P S,LIDDELOW S A,et al.Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neuro⁃ degeneration[J].Nat Neurosci,2019,22(10):1635-1648

    • [30] MENZIESUDERAM J M,JIGAR M,HONGYAUN X,et al.Granulocyte ⁃colony stimulating factor gene therapy as a novel therapeutics for stroke in a mouse model[J].J Biomed Sci,2020,27(1):99