en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

孙凯,E-mail:sunkai@njmu.edu.cn

中图分类号:R544.16

文章编号:1007-4368(2023)06-802-05

DOI:10.7655/NYDXBNS20230608

参考文献 1
MCLOUGHLIN P.Hypoxic pulmonary vasoconstriction:building a solid base[J].Exp Physiol,2018,103(9):1181-1182
参考文献 2
HUETSCH J C,SURESH K,SHIMODA L A.Regulation of smooth muscle cell proliferation by NADPH oxidases in pulmonary hypertension[J].Antioxidants(Basel).2019,8(3):56
参考文献 3
TAJSIC T,MORRELL N W.Smooth muscle cell hypertro⁃ phy,proliferation,migration and apoptosis in pulmonary hypertension[J].Compr Physiol,2011,1(1):295-317
参考文献 4
AZZAM S K,ALSAFAR H,SAJINI A A.FTO m6A de⁃ methylase in obesity and cancer:implications and under⁃ lying molecular mechanisms[J].Int J Mol Sci,2022,23(7):3800
参考文献 5
JIA G,FU Y,ZHAO X,et al.N6⁃methyladenosine in nu⁃ clear RNA is a major substrate of the obesity ⁃ associated FTO[J].Nat Chem Biol,2011,7(12):885-887
参考文献 6
MÜLLER S,GLAß M,SINGH A K,et al.IGF2BP1 pro⁃ motes SRF ⁃ dependent transcription in cancer in a m6A ⁃ and miRNA ⁃ dependent manner[J].Nucleic Acids Res,2019,47(1):375-390
参考文献 7
LI Q,NI Y,ZHANG L R,et al.HIF⁃1α⁃induced expres⁃ sion of m6A reader YTHDF1 drives hypoxia ⁃induced au⁃ tophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation[J].Signal Transduct Target Ther,2021(3):988-1000
参考文献 8
ZENG Y,HUANG T,ZUO W,et al.Integrated analysis of m6A mRNA methylation in rats with monocrotaline ⁃ in⁃ duced pulmonary arterial hypertension[J].Aging(Albany NY),2021,13(14):18238-18256
参考文献 9
XU S,XU X,ZHANG Z,et al.The role of RNA m6A methy⁃ lation in the regulation of postnatal hypoxia⁃induced pul⁃ monary hypertension[J].Respir Res,2021,22(1):121
参考文献 10
XIAO Y,CHEN P P,ZHOU R L,et al.Pathological mecha⁃ nisms and potential therapeutic targets of pulmonary arte⁃ rial hypertension:a review[J].Aging Dis,2020,11(6):1623-1639
参考文献 11
STENMARK K R,FAGAN K A,FRID M G.Hypoxia⁃in⁃ duced pulmonary vascular remodeling:cellular and mo⁃lecular mechanisms[J].Circ Res,2006,99(7):675-691
参考文献 12
TUDER R M.Pulmonary vascular remodeling in pulmo⁃ nary hypertension[J].Cell Tissue Res,2017,367(3):643-649
参考文献 13
WANG Y,HUANG X X,LENG D,et al.Effect of EZH2 on pulmonary artery smooth muscle cell migration in pul⁃ monary hypertension[J].Mol Med Rep,2021,23(2):129
参考文献 14
XU K,YANG Y,FENG G H,et al.Mettl3⁃mediated m6A regulates spermatogonial differentiation and meiosis initia⁃ tion[J].Cell Res,2017,27(9):1100-1114
参考文献 15
CHEN Y,ZHAO Y,CHEN J,et al.ALKBH5 suppresses malignancy of hepatocellular carcinoma via m6A ⁃ guided epigenetic inhibition of LYPD1[J].Mol Cancer,2020,19(1):123
参考文献 16
DENG X,SU R,FENG X,et al.Role of N6 ⁃ methyl⁃ adenosine modification in cancer[J].Curr Opin Genet Dev,2018,48:1-7
参考文献 17
LIU J,REN D,DU Z,et al.m6A demethylase FTO facili⁃ tates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression[J].Biochem Biophys Res Commun,2018,502(4):456-464
参考文献 18
SUN J,MA X,YING Y,et al.SMAD3 and FTO are in⁃ volved in miR⁃5581⁃3p⁃mediated inhibition of cell migra⁃ tion and proliferation in bladder cancer[J].Cell Death Discov,2022,8(1):199
参考文献 19
XU Y Y,YE S,ZHANG N,et al.The FTO/miR⁃181b⁃3p/ARL5B signaling pathway regulates cell migration and invasion in breast cancer[J].Cancer Commun(Lond),2020(10):484-500
参考文献 20
MA D,LIU X,ZHANG J J,et al.Vascular smooth muscle FTO promotes aortic dissecting aneurysms via m6A modi⁃ fication of Klf5[J].Front Cardiovasc Med,2020,7:592550
参考文献 21
HAN X J,ZHANG W F,WANG Q,et al.HIF ⁃ 1α pro⁃ motes the proliferation and migration of pulmonary arterial smooth muscle cells via activation of Cx43[J].J Cell Mol Med,2021,25(22):10663⁃10673
参考文献 22
GUO M,ZHANG M,CAO X,et al.Notch4 mediates vas⁃ cular remodeling via ERK/JNK/P38 MAPK signaling pathways in hypoxic pulmonary hypertension[J].Respir Res,2022,23(1):6
参考文献 23
SAMSON S C,KHAN A M,MENDOZA M C.ERK signal⁃ ing for cell migration and invasion[J].Front Mol Biosci,2022,9:998475
目录contents

    摘要

    目的:探究脂肪质量与肥胖相关蛋白(fat mass and obesity associated protein,FTO)对缺氧小鼠肺动脉平滑肌细胞 (mouse pulmonary artery smooth muscle cell,MPASMC)迁移能力的影响。方法:体外培养 MPASMC,用三气培养箱构建缺氧 MPASMC模型;免疫印迹实验用于检测FTO蛋白表达;FTO过表达以及敲低质粒转染MPASMC以过表达或抑制FTO表达;细胞划痕实验检测细胞迁移能力。结果:缺氧培养后的MPASMC中FTO蛋白表达明显下调,划痕实验提示细胞迁移加快,并在过表达FTO后明显减慢;常氧状态下敲低FTO表达出现了类似缺氧培养的“促迁移”表型。结论:在体外条件下MPASMC缺氧培养后FTO蛋白水平下调,细胞迁移能力增强,并且FTO可能是促进MPASMC迁移的关键调控基因。

    Abstract

    Objective:The current study aims to investigate the effect of fat mass and obesity associated protein(FTO)on the migration of hypoxia-inoluced pulmonary artery smooth muscle cells(PASMC). Methods:MPASMC was cultured in vitro. The hypoxia model of MPASMC was established in a three -gas incubator(37℃,1%O2,5%CO2). The expression of FTO protein was detected by Western blot. FTO overexpression and knockdown plasmids were transfected into MPASMC to over-express or inhibit FTO expression, respectively. Cell wound healing assay was used to detect cell migration ability. Results:The expression of FTO protein in MPASMC after hypoxia culture was significantly down-regulated. Wound healing assay indicated that MPASMC migration was accelerated after hypoxia culture and was significantly slowed down after FTO overexpression in MPASMC. Knockdown FTO expression in MPASMC in normoxia showed a“pro-migration”phenotype similar to hypoxic culture. Conclusion:Under hypoxic conditions,the expression of FTO protein is down-regulated in MPASMC and the cells migration ability is enhanced. FTO may be a key regulator of MPASMC migration.

  • 肺高压(pulmonary hypertension,PH)是一类由多种病因和发病机制引起肺血管结构和功能障碍,进而导致肺循环阻力和肺动脉压力升高的临床综合征。缺氧是 PH 最常见的原因之一,能促进肺血管持续收缩,增加肺循环阻力[1]。肺血管重构(pul⁃monary vascular remodeling,PVR)是 PH 发展过程中的关键环节,包括肺动脉平滑肌细胞(pulmonary artery smooth muscle cell,PASMC)的异常增殖和迁移[2],其中PASMC向内膜的迁移往往预示着肺动脉的不可逆增厚和肌化,PVR过程难以逆转[3]。脂肪质量和肥胖相关蛋白(fat mass and obesity associated protein,FTO)与机体能量摄入以及代谢调节相关[4],也是最早被发现的 m6A(N6⁃methyladenosine)去甲基化修饰酶[5]。FTO能够通过氧化作用移除m6A修饰,广泛参与mRNA的翻译、剪切、核输出及降解等影响mRNA命运的过程[6-7]。研究表明,FTO参与了 PH 的发生[8-9],FTO 在 PH 中的具体作用目前仍未知。本研究拟在缺氧环境下培养小鼠肺动脉平滑肌细胞(mouse pulmonary artery smooth muscle cell, MPASMC),构建体外模型以探究 FTO 是否对缺氧 MPASMC的迁移发挥作用。

  • 1 材料和方法

  • 1.1 材料

  • MPASMC 购自中国科学院上海细胞库;DMEM 培养基、胎牛血清(Gibco公司,美国);RIPA裂解液 (北京 Solarbio 公司);抗β⁃actin、抗 FTO 抗体、HRP 标记山羊抗兔二抗(Abcam 公司,美国);脂质体Li⁃ pofectamineTM 3000、增强型ECL试剂盒(Invitrogen公司,美国);FTO 过表达质粒(上海吉玛公司);小鼠 FTO siRNA(siFTO,sc⁃75003)及阴性对照 siNC(sc⁃ 36869)(Santa公司,美国)。

  • 1.2 方法

  • 1.2.1 MPASMC缺氧培养

  • MPASMC 在含有 10%胎牛血清、1%双抗的 DMEM培养基中培养,培养条件为37℃、5%CO2,达到70%~80%融合后转入三气培养箱进行缺氧培养,调整培养条件为37℃、1%O2、5%CO2,在缺氧培养后 12 h取出细胞备用。

  • 1.2.2 细胞转染

  • 过表达转染实验:FTO过表达质粒由吉玛公司构建,用 PCR 得到目的基因 FTO 序列片段,然后将其克隆到载体pcDNA3.1(+)中,再进行重组质粒测序,验证成功后抽提。转染按 LipofectamineTM 3000 试剂说明书进行操作,在室温下转染5 μg质粒DNA 到MPASMC中。以空载体pcDNA3.1(+)作为对照。转染48 h后收集细胞,Western blot验证转染效率。

  • 敲低转染实验:将冻干的 siRNA 在 330 μL 无 RNA酶的水中重悬备用,待6孔板中细胞长到70%~80%密度时,按LipofectamineTM 3000试剂说明书,在室温下分别将 5 μg 的 siFTO 及其阴性对照 siNC 转染至MPASMC细胞,转染48 h后收集细胞,Western blot验证转染效率。

  • 1.2.3 Western blot检测β⁃actin、FTO蛋白表达

  • 用细胞刮刀刮下细胞,低温离心机以 4℃、 1 000 r/min条件离心5 min收集细胞;用RIPA裂解液提取细胞总蛋白,BCA 法进行蛋白浓度定量;各组取10 μg总蛋白进行SDS⁃聚丙烯酰胺凝胶电泳、转膜、5%脱脂奶粉溶液封闭1 h,根据蛋白分子量剪出合适的膜条带,分别与相应的一抗在4℃孵育过夜。TBST洗膜10 min×2次后加入HRP 标记的兔二抗(1∶1 000)室温孵育1 h,再次洗膜后加入 ECL 发光剂于暗室中显影、曝光,采用Gel⁃Pro软件对蛋白灰度值进行定量分析。

  • 1.2.4 划痕实验检测细胞迁移

  • 用含2%胎牛血清的培养基替换原培养基以排除细胞本身增殖对实验结果的影响,使用200 μL移液管的尖端在单层融合的 MPASMC 上划出数条划痕。在划痕后0、12 h用荧光显微镜拍摄图像,观察划痕宽度的变化情况。在每条边上共选取3个点,间隔均匀,并测量划痕两边的距离。细胞迁移率的计算公式如下:[划痕宽度(0 h)-划痕宽度(12 h)]/划痕宽度(0 h)×100%。实验重复3次,并计算平均值。

  • 1.3 统计学方法

  • 所有数据均采用GraphPad Prism 8软件进行分析,正态分布的数据采用均数±标准差(x-±s)表示,两组间比较采用独立样本t检验,P <0.05为差异有统计学意义。

  • 2 结果

  • 2.1 缺氧处理后FTO表达变化

  • Western blot 检测常氧和缺氧处理的 MPASMC 中的FTO蛋白表达水平,结果显示,与常氧组相比,缺氧组中 FTO 蛋白相对表达水平明显下降(1.01± 0.06 vs. 0.54±0.04,P<0.05,图1)。

  • 2.2 缺氧引起MPASMC迁移能力上调,过表达FTO 预处理能显著减缓该过程

  • 划痕实验显示,缺氧处理后MPASMC迁移速度显著加快[(74.63±2.70)% vs.(54.17±3.92)%,P< 0.05,图2],用 FTO 过表达质粒转染细胞,Western blot检测转染后FTO蛋白表达较转染空载体组明显上调(1.60±0.03 vs. 0.99±0.01,P<0.05,图3A),提示转染成功。而在过表达FTO后再进行缺氧培养,相比转染空载体组,MPASMC迁移速率显著减慢[(75.10± 1.19)% vs.(51.87±2.57)%,P<0.05,图4]。

  • 2.3 常氧状态下敲低FTO促进MPASMC迁移

  • 为进一步证明 FTO 对于 MPASMC 迁移能力的影响,在常氧培养条件下敲低 FTO 表达,再次检测 MPASMC迁移能力。Western blot结果显示,敲低组 (siFTO组)FTO蛋白表达较阴性对照组(siNC组)显著下调,提示敲低成功(0.29±0.04 vs.1.10±0.02,P<0.05,图3B)。划痕实验显示,siFTO组相比siNC组,迁移速率显著加快[(85.00 ± 1.98)% vs.(53.20 ± 1.96)%,P<0.05,图5]。

  • 图1 MPASMC常氧及缺氧培养条件下FTO蛋白表达水平

  • Figure1 FTO protein expression levels in MPASMC cul⁃ tured under normoxic and hypoxic conditions

  • 3 讨论

  • PH中PVR包括一系列血管结构和功能的复杂变化,对其机制的研究是研发 PH 靶向药物的重要依据[10]。生理状态下,肺动脉内膜为肺循环血流提供了巨大而通畅的接触表面,能够维持肺循环较低的灌注压力,有利于气体交换[11]。肺动脉中膜主要由肺动脉平滑肌细胞构成,是诱发PVR的基础。研究表明,在缺氧、炎症等外界因素刺激下,肺动脉平滑肌细胞异常增殖,引起肺血管增厚以及管腔狭窄,并向内膜迁移,使得肺血管结构和功能异常,肺血管灌注压不可逆上升,最终导致 PH 发生[12]。本研究发现,MPASMC 迁移能力增强是缺氧性 PH 模型的显著表型特征。Wang等[13]研究得出了相似结果,并且表明PASMC的迁移能力改变受到表观遗传调控,有着复杂的分子机制。因此,结合进一步的动物实验深入探究肺动脉平滑肌细胞迁移的过程,以寻找PH潜在的治疗靶点,具有重要意义。

  • 两组比较,*P<0.05(n=3)。

  • 图2 划痕实验检测MPASMC在常氧和缺氧条件下的迁移能力(×200)

  • Figure2 Wound healing assay was used to detect the migration ability of MPASMC under normoxic and hypoxic conditions(×200)

  • FTO是最早被确定的m6A去甲基化酶,它的发现使研究者认识到 m6A 修饰是一个动态可逆的过程[5]。m6A修饰属于表观遗传学的范畴,是真核生物 mRNA中最常见的内部修饰,广泛参与了组织发育、性别产生、肿瘤发生等重要的生物学过程[14-16]。FTO 介导的 m6A 去甲基化过程对于肿瘤细胞的迁移调控已经在多项研究中得到证实[17-19]。Zeng等[8] 在野百合碱致肺动脉高压大鼠 m6A mRNA 甲基化的综合分析中发现,大鼠 PH 模型中 FTO 表达明显减低。作者的另一项基于缺氧性PH模型的m6A表观转录组芯片(https://www.ncbi.nlm.nih.gov/geo/query/ acc.cgi?acc=GSE218412)结果也显示,缺氧下调了 MPASMC中FTO的表达水平,进一步验证了FTO在 PH 模型中的表达改变。本研究探讨了 FTO 对 MPASMC迁移能力的影响,发现缺氧引起的FTO水平下调是导致 MPASMC 迁移能力增强的关键调控因素。值得注意的是,Ma等[20] 发现,主动脉夹层动脉瘤患者动脉平滑肌细胞中,FTO表达上调,并能促进主动脉平滑肌细胞增殖和迁移,分析该研究与本研究的异同,认为这种差异是由主动脉和肺动脉病变原因不同导致的。主动脉夹层动脉瘤的一大危险因素是血脂异常升高,这与FTO促进脂肪增长的作用相关,而在本研究构建 PH 模型的过程中, MPASMC缺氧抑制了FTO表达,这可能是其m6A修饰水平上调的重要原因。此外,m6A修饰的变化所产生的下游效应取决于特定的 m6A 阅读蛋白识别靶基因的功能,并且缺氧诱导因子⁃ 1α通路[21]、MAPK/ERK通路[22-23]等PH 发病过程中发挥重要作用的信号通路已被证明能够调控细胞病理性迁移,相关通路及基因是否能够作为 FTO 介导的 m6A下游靶点调控PASMC迁移将是一个值得后续研究的方向。

  • A:MPASMC转染空载体与FTO过表达载体,Western blot检测FTO蛋白表达(两组比较,**P<0.01,n=3);B:MPASMC转染阴性对照siRNA (siNC)与转染FTO敲低质粒(siFTO),Western blot检测FTO蛋白表达(两组比较,**P<0.01,n=3)。

  • 图3 FTO过表达及敲低转染效率验证

  • Figure3 Validation of transfection efficiency after FTO overexpression or knockdown

  • 两组比较,**P<0.01(n=3)。

  • 图4 缺氧条件下过表达FTO的MPASMC迁移能力的变化(×200)

  • Figure4 Changes in migration ability of MPASMC with FTO overexpression under hypoxic conditions(×200)

  • 两组比较,***P<0.001(n=3)。

  • 图5 常氧状态下敲低FTO表达后MPASMC迁移能力的变化(×200)

  • Figure5 Changes in migration ability of MPASMC after FTO knockdown under normoxia conditions(×200)

  • 综上所述,本研究通过构建MPASMC细胞体外 PH 模型,证实了 FTO 对缺氧所引起的 MPASMC 迁移的影响,在本研究的基础上,进一步探究FTO所介导的m6A去甲基化过程调控PASMC迁移的确切分子机制,可为PH机制和治疗靶点研究提供新思路。

  • 参考文献

    • [1] MCLOUGHLIN P.Hypoxic pulmonary vasoconstriction:building a solid base[J].Exp Physiol,2018,103(9):1181-1182

    • [2] HUETSCH J C,SURESH K,SHIMODA L A.Regulation of smooth muscle cell proliferation by NADPH oxidases in pulmonary hypertension[J].Antioxidants(Basel).2019,8(3):56

    • [3] TAJSIC T,MORRELL N W.Smooth muscle cell hypertro⁃ phy,proliferation,migration and apoptosis in pulmonary hypertension[J].Compr Physiol,2011,1(1):295-317

    • [4] AZZAM S K,ALSAFAR H,SAJINI A A.FTO m6A de⁃ methylase in obesity and cancer:implications and under⁃ lying molecular mechanisms[J].Int J Mol Sci,2022,23(7):3800

    • [5] JIA G,FU Y,ZHAO X,et al.N6⁃methyladenosine in nu⁃ clear RNA is a major substrate of the obesity ⁃ associated FTO[J].Nat Chem Biol,2011,7(12):885-887

    • [6] MÜLLER S,GLAß M,SINGH A K,et al.IGF2BP1 pro⁃ motes SRF ⁃ dependent transcription in cancer in a m6A ⁃ and miRNA ⁃ dependent manner[J].Nucleic Acids Res,2019,47(1):375-390

    • [7] LI Q,NI Y,ZHANG L R,et al.HIF⁃1α⁃induced expres⁃ sion of m6A reader YTHDF1 drives hypoxia ⁃induced au⁃ tophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation[J].Signal Transduct Target Ther,2021(3):988-1000

    • [8] ZENG Y,HUANG T,ZUO W,et al.Integrated analysis of m6A mRNA methylation in rats with monocrotaline ⁃ in⁃ duced pulmonary arterial hypertension[J].Aging(Albany NY),2021,13(14):18238-18256

    • [9] XU S,XU X,ZHANG Z,et al.The role of RNA m6A methy⁃ lation in the regulation of postnatal hypoxia⁃induced pul⁃ monary hypertension[J].Respir Res,2021,22(1):121

    • [10] XIAO Y,CHEN P P,ZHOU R L,et al.Pathological mecha⁃ nisms and potential therapeutic targets of pulmonary arte⁃ rial hypertension:a review[J].Aging Dis,2020,11(6):1623-1639

    • [11] STENMARK K R,FAGAN K A,FRID M G.Hypoxia⁃in⁃ duced pulmonary vascular remodeling:cellular and mo⁃lecular mechanisms[J].Circ Res,2006,99(7):675-691

    • [12] TUDER R M.Pulmonary vascular remodeling in pulmo⁃ nary hypertension[J].Cell Tissue Res,2017,367(3):643-649

    • [13] WANG Y,HUANG X X,LENG D,et al.Effect of EZH2 on pulmonary artery smooth muscle cell migration in pul⁃ monary hypertension[J].Mol Med Rep,2021,23(2):129

    • [14] XU K,YANG Y,FENG G H,et al.Mettl3⁃mediated m6A regulates spermatogonial differentiation and meiosis initia⁃ tion[J].Cell Res,2017,27(9):1100-1114

    • [15] CHEN Y,ZHAO Y,CHEN J,et al.ALKBH5 suppresses malignancy of hepatocellular carcinoma via m6A ⁃ guided epigenetic inhibition of LYPD1[J].Mol Cancer,2020,19(1):123

    • [16] DENG X,SU R,FENG X,et al.Role of N6 ⁃ methyl⁃ adenosine modification in cancer[J].Curr Opin Genet Dev,2018,48:1-7

    • [17] LIU J,REN D,DU Z,et al.m6A demethylase FTO facili⁃ tates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression[J].Biochem Biophys Res Commun,2018,502(4):456-464

    • [18] SUN J,MA X,YING Y,et al.SMAD3 and FTO are in⁃ volved in miR⁃5581⁃3p⁃mediated inhibition of cell migra⁃ tion and proliferation in bladder cancer[J].Cell Death Discov,2022,8(1):199

    • [19] XU Y Y,YE S,ZHANG N,et al.The FTO/miR⁃181b⁃3p/ARL5B signaling pathway regulates cell migration and invasion in breast cancer[J].Cancer Commun(Lond),2020(10):484-500

    • [20] MA D,LIU X,ZHANG J J,et al.Vascular smooth muscle FTO promotes aortic dissecting aneurysms via m6A modi⁃ fication of Klf5[J].Front Cardiovasc Med,2020,7:592550

    • [21] HAN X J,ZHANG W F,WANG Q,et al.HIF ⁃ 1α pro⁃ motes the proliferation and migration of pulmonary arterial smooth muscle cells via activation of Cx43[J].J Cell Mol Med,2021,25(22):10663⁃10673

    • [22] GUO M,ZHANG M,CAO X,et al.Notch4 mediates vas⁃ cular remodeling via ERK/JNK/P38 MAPK signaling pathways in hypoxic pulmonary hypertension[J].Respir Res,2022,23(1):6

    • [23] SAMSON S C,KHAN A M,MENDOZA M C.ERK signal⁃ ing for cell migration and invasion[J].Front Mol Biosci,2022,9:998475

  • 参考文献

    • [1] MCLOUGHLIN P.Hypoxic pulmonary vasoconstriction:building a solid base[J].Exp Physiol,2018,103(9):1181-1182

    • [2] HUETSCH J C,SURESH K,SHIMODA L A.Regulation of smooth muscle cell proliferation by NADPH oxidases in pulmonary hypertension[J].Antioxidants(Basel).2019,8(3):56

    • [3] TAJSIC T,MORRELL N W.Smooth muscle cell hypertro⁃ phy,proliferation,migration and apoptosis in pulmonary hypertension[J].Compr Physiol,2011,1(1):295-317

    • [4] AZZAM S K,ALSAFAR H,SAJINI A A.FTO m6A de⁃ methylase in obesity and cancer:implications and under⁃ lying molecular mechanisms[J].Int J Mol Sci,2022,23(7):3800

    • [5] JIA G,FU Y,ZHAO X,et al.N6⁃methyladenosine in nu⁃ clear RNA is a major substrate of the obesity ⁃ associated FTO[J].Nat Chem Biol,2011,7(12):885-887

    • [6] MÜLLER S,GLAß M,SINGH A K,et al.IGF2BP1 pro⁃ motes SRF ⁃ dependent transcription in cancer in a m6A ⁃ and miRNA ⁃ dependent manner[J].Nucleic Acids Res,2019,47(1):375-390

    • [7] LI Q,NI Y,ZHANG L R,et al.HIF⁃1α⁃induced expres⁃ sion of m6A reader YTHDF1 drives hypoxia ⁃induced au⁃ tophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation[J].Signal Transduct Target Ther,2021(3):988-1000

    • [8] ZENG Y,HUANG T,ZUO W,et al.Integrated analysis of m6A mRNA methylation in rats with monocrotaline ⁃ in⁃ duced pulmonary arterial hypertension[J].Aging(Albany NY),2021,13(14):18238-18256

    • [9] XU S,XU X,ZHANG Z,et al.The role of RNA m6A methy⁃ lation in the regulation of postnatal hypoxia⁃induced pul⁃ monary hypertension[J].Respir Res,2021,22(1):121

    • [10] XIAO Y,CHEN P P,ZHOU R L,et al.Pathological mecha⁃ nisms and potential therapeutic targets of pulmonary arte⁃ rial hypertension:a review[J].Aging Dis,2020,11(6):1623-1639

    • [11] STENMARK K R,FAGAN K A,FRID M G.Hypoxia⁃in⁃ duced pulmonary vascular remodeling:cellular and mo⁃lecular mechanisms[J].Circ Res,2006,99(7):675-691

    • [12] TUDER R M.Pulmonary vascular remodeling in pulmo⁃ nary hypertension[J].Cell Tissue Res,2017,367(3):643-649

    • [13] WANG Y,HUANG X X,LENG D,et al.Effect of EZH2 on pulmonary artery smooth muscle cell migration in pul⁃ monary hypertension[J].Mol Med Rep,2021,23(2):129

    • [14] XU K,YANG Y,FENG G H,et al.Mettl3⁃mediated m6A regulates spermatogonial differentiation and meiosis initia⁃ tion[J].Cell Res,2017,27(9):1100-1114

    • [15] CHEN Y,ZHAO Y,CHEN J,et al.ALKBH5 suppresses malignancy of hepatocellular carcinoma via m6A ⁃ guided epigenetic inhibition of LYPD1[J].Mol Cancer,2020,19(1):123

    • [16] DENG X,SU R,FENG X,et al.Role of N6 ⁃ methyl⁃ adenosine modification in cancer[J].Curr Opin Genet Dev,2018,48:1-7

    • [17] LIU J,REN D,DU Z,et al.m6A demethylase FTO facili⁃ tates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression[J].Biochem Biophys Res Commun,2018,502(4):456-464

    • [18] SUN J,MA X,YING Y,et al.SMAD3 and FTO are in⁃ volved in miR⁃5581⁃3p⁃mediated inhibition of cell migra⁃ tion and proliferation in bladder cancer[J].Cell Death Discov,2022,8(1):199

    • [19] XU Y Y,YE S,ZHANG N,et al.The FTO/miR⁃181b⁃3p/ARL5B signaling pathway regulates cell migration and invasion in breast cancer[J].Cancer Commun(Lond),2020(10):484-500

    • [20] MA D,LIU X,ZHANG J J,et al.Vascular smooth muscle FTO promotes aortic dissecting aneurysms via m6A modi⁃ fication of Klf5[J].Front Cardiovasc Med,2020,7:592550

    • [21] HAN X J,ZHANG W F,WANG Q,et al.HIF ⁃ 1α pro⁃ motes the proliferation and migration of pulmonary arterial smooth muscle cells via activation of Cx43[J].J Cell Mol Med,2021,25(22):10663⁃10673

    • [22] GUO M,ZHANG M,CAO X,et al.Notch4 mediates vas⁃ cular remodeling via ERK/JNK/P38 MAPK signaling pathways in hypoxic pulmonary hypertension[J].Respir Res,2022,23(1):6

    • [23] SAMSON S C,KHAN A M,MENDOZA M C.ERK signal⁃ ing for cell migration and invasion[J].Front Mol Biosci,2022,9:998475