en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

胡仔仲,E-mail:huzizhong@njmu.edu.cn;

谢平,xieping9@126.com

中图分类号:R778.1

文献标识码:A

文章编号:1007-4368(2023)06-828-08

DOI:10.7655/NYDXBNS20230612

参考文献 1
BOURNE R R A,STEVENS G A,WHITE R A,et al.Causes of vision loss worldwide,1990⁃2010:a systematic analysis[J].Lancet Glob Health,2013,1(6):339-349
参考文献 2
LIANG Y B,WONG T Y,SUN L P,et al.Refractive errors in a rural Chinese adult population the Handan eye study[J].Ophthalmology,2009,116(11):2119-2127
参考文献 3
AZEMIN M Z C,DAUD N M,HAMID F A,et al.Influ⁃ ence of refractive condition on retinal vasculature com⁃ plexity in younger subjects[J].Sci World J,2014,2014:783525
参考文献 4
LA SPINA C,CORVI F,BANDELLO F,et al.Static chara⁃ cteristics and dynamic functionality of retinal vessels in longer eyes with or without pathologic myopia[J].Graefes Arch Clin Exp Ophthalmol,2016,254(5):827-834
参考文献 5
SUN Y,LI F,LI H,et al.Performance of topological per⁃ ception in the myopic population[J].Curr Eye Res,2020,45(11):1458-1465
参考文献 6
ILKAY S A B,ONAL G B,ESRA K,et al.Evaluation of the ganglion cell complex and retinal nerve fiber layer in low,moderate,and high myopia:a study by RTVue spec⁃ tral domain optical coherence tomography[J].Semin Oph⁃ thalmol,2017,32(6):682-688
参考文献 7
LI M,YANG Y,JIANG H,et al.Retinal microvascular network and microcirculation assessments in high myopia [J].Am J Ophthalmol,2017,174:56-67
参考文献 8
NAGIEL A,SADDA S R,SARRAF D.A promising future for optical coherence tomography angiography[J].JAMA Ophthalmol,2015,133(6):629-630
参考文献 9
SPAIDE R F,KLANCNIK J M,COONEY M J.Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography[J].JAMA Ophthalmol,2015,133(1):45-50
参考文献 10
葛坚,王宁利.眼科学[M].3版.北京:人民卫生出版社,2015
参考文献 11
中华医学会眼科学分会眼视光学组.重视高度近视防控的专家共识(2017)[J].中华眼视光学与视觉科学杂志,2017,19(7):385-389
参考文献 12
KIM S,KIM Y,LEE D,et al.Active contour segmentation using level set function with enhanced image from prior intensity[J].Annu Int Conf IEEE Eng Med Biol Soc,2015,2015:3069-3072
参考文献 13
CHENG D,CHEN Q,WU Y F,et al.Deep perifoveal ves⁃ sel density as an indicator of capillary loss in high myopia [J].Eye Lond Engl,2019,33(12):1961-1968
参考文献 14
FAN H,CHEN H Y,MA H J,et al.Reduced macular vas⁃ cular density in myopic eyes[J].Chin Med J(Engl),2017,130(4):445-451
参考文献 15
YANG Y,WANG J H,JIANG H,et al.Retinal microvas⁃ culature alteration in high myopia[J].Investig Ophthal⁃ mol Vis Sci,2016,57(14):6020-6030
参考文献 16
BAIRD P N,SAW S M,LANCA C,et al.Myopia[J].Nat Rev Dis Primers,2020,6(1):99
参考文献 17
IKUNO Y.Overview of the complications of high myopia [J].Retina,2017,37(12):2347-2351
参考文献 18
YAPRAK A C,YAPRAK L.Retinal microvasculature and optic disc alterations in non ⁃ pathological high myopia with optical coherence tomography angiography[J].Graefes Arch Clin Exp Ophthalmol,2021,259(11):3221-3227
参考文献 19
LIU X T,ZHANG F,WANG Y L,et al.Associations between optic disc characteristics and macular choroidal microvasculature in young patients with high myopia[J].Clin Exp Ophthalmol,2021,49(6):560-569
参考文献 20
HE J N,CHEN Q Y,YIN Y,et al.Association between retinal microvasculature and optic disc alterations in high myopia[J].Eye(Lond),2019,33(9):1494-1503
参考文献 21
TURGAY U,EREL I,HAYATI Y,et al.Alterations in optical coherence tomography angiography findings in patients with high myopia[J].Eye Lond Engl,2020,34(6):1129-1135
参考文献 22
AMIN S M,ALI N,MAHDI G,et al.Associations of refractive errors and retinal changes measured by optical coherence tomography:a systematic review and meta⁃analy⁃ sis[J].Surv Ophthalmol,2021,67(2):591-607
参考文献 23
KANG S H,HONG S W,IM S K,et al.Effect of myopia on the thickness of the retinal nerve fiber layer measured by cirrus HD optical coherence tomography[J].Investig Ophthalmol Vis Sci,2010,51(8):4075-4083
参考文献 24
YAMASHITA T,ASAOKA R,TANAKA M,et al.Rela⁃ tionship between position of peak retinal nerve fiber layer thickness and retinal arteries on sectoral retinal nerve fiber layer thickness[J].Investig Ophthalmol Vis Sci,2013,54(8):5481-5488
参考文献 25
SHI Y,YE L,CHEN Q,et al.Macular vessel density changes in young adults with high myopia:a longitudinal study[J].Front Med(Lausanne),2021,8:648644
参考文献 26
KARCZEWICZ D,MODRZEJEWSKA M.Assessment of blood flow in eye arteries in patients with myopia and glaucoma[J].Klinika Oczna,2004,106():214-216
参考文献 27
ZHENG Q,ZONG Y,LI L,et al.Retinal vessel oxygen satu⁃ ration and vessel diameter in high myopia[J].Ophthal⁃ mic Physiol Opt,2015,35(5):562-569
参考文献 28
HOLLÓ G,GREVE E L,VAN DEN BERG T J,et al.Eva⁃ luation of the peripapillary circulation in healthy and glau⁃ coma eyes with scanning laser Doppler flowmetry[J].Int Ophthalmol,1996,20(1/2/3):71-77
参考文献 29
SHIN Y J,NAM W H,PARK S E,et al.Aqueous humor concentrations of vascular endothelial growth factor and pigment epithelium⁃derived factor in high myopic patients [J].Mol Vis,2012,18:2265-2270
参考文献 30
CHEN W,SONG H,XIE S Y,et al.Correlation of macu⁃ lar choroidal thickness with concentrations of aqueous vascular endothelial growth factor in high myopia[J].Curr Eye Res,2015,40(3):307-313
参考文献 31
SHIMADA N,OHNO ⁃ MATSUI K,YOSHIDA T,et al.Characteristics of peripapillary detachment in pathologic myopia[J].Arch Ophthalmol,2006,124(1):46-52
参考文献 32
CHEN Q Y,HE J N,HUA Y H,et al.Exploration of peri⁃ papillary vessel density in highly myopic eyes with peri⁃ papillary intrachoroidal cavitation and its relationship with ocular parameters using optical coherence tomogra⁃ phy angiography[J].Clin Exp Ophthalmol,2017,45(9):884-893
参考文献 33
LI Y J,MIARA H,OUYANG P B,et al.The comparison of regional RNFL and fundus vasculature by OCTA in Chinese myopia population[J].J Ophthalmol,2018,2018:3490962
参考文献 34
SUN J,WANG J L,YOU R,et al.Is the retinal vascula⁃ ture related to β⁃peripapillary atrophy in nonpathological high myopia?An optical coherence tomography angiogra⁃ phy study in Chinese adults[J].J Ophthalmol,2018,2018:7895238
目录contents

    摘要

    目的:基于新的血管密度量化方法探讨近视人群盘周放射状毛细血管(radial peripapillary capillary,RPC)血流密度与盘周视网膜神经纤维层(retinal nerve fiber layer,RNFL)厚度、脉络膜血流参数的相关性。方法:2019年4月—2020年1月于南京医科大学第一附属医院眼科行眼底筛查的高度近视(high myopia,HM)人群100只眼(HM组)和中低度近视(low-to-moder- ate myopia,LMM)人群82只眼(LMM组)纳入研究。测量所有受检者最佳矫正视力(best corrected visual acuity,BCVA)、眼压、眼轴(axial length,AL)、等效球镜(spherical equivalent,SE),行裂隙灯显微镜和散瞳后眼底、眼底彩色及无赤光照相、光学相干断层扫描血管成像(optical coherence tomography angiography,OCTA)检查。采用OCTA仪对受检眼视盘区4.5 mm×4.5 mm范围进行扫描,软件自动获取视盘多色超广域激光扫描眼底镜(scanning laser ophthalmoscope,SLO)图像,分别有两条放射线将其分为以视盘为中心的上方、下方、鼻侧、颞侧4个区。所有SLO和血流图像由同一名眼科医生绘制盘周β区萎缩弧(peripapillary atrophy-β,PPA-β),经另一名高年资眼科专家审核后使用PyCharm软件计算PPA-β区面积及相应的脉络膜层血流密度。将 AL、SE、PPA-β区面积及血流密度、盘周RNFL厚度与RPC血流密度进行Spearman相关性分析和多元线性回归分析。结果:HM 组与LMM组受检眼对比,平均盘周RNFL厚度及除颞侧以外的分区RNFL厚度、RPC平均血流密度及除颞侧以外的分区血流密度、PPA-β区面积及其内脉络膜层血流密度比较,差异均有统计学意义(P < 0.05)。SE、平均盘周RNFL厚度、PPA-β区相应的脉络膜血流密度与 RPC 平均血流密度呈正相关(P < 0.001);AL、PPA-β区面积与 RPC 平均血流密度呈负相关性(P < 0.001)。多元线性回归分析发现仅平均RNFL厚度(P < 0.001)和PPA-β区面积(P=0.014)为RPC平均血流密度的独立影响因素。对同一区域的RNFL厚度和RPC血流进行亚组分析,上方、下方、鼻侧、颞侧都表现出正相关关系(P < 0.001)。结论:盘周 RNFL厚度和PPA-β区面积是RPC血流变化的重要原因,提示眼底结构和血流之间存在关联,需重视近视相关视神经病变。

    Abstract

    Objective:The current study aims to analyze the correlation between retinal nerve fiber layer(RNFL)thickness, choroidal microcirculation and radial peripapillary capillary(RPC)in myopes based on a new quantitative method. Methods:Between April 2019 and January 2020,100 eyes with high myopia(HM group)and 82 eyes with low -to -moderate myopia(LMM group)were enrolled in the First Affiliated Hospital of Nanjing Medical University. All subjects underwent measurements of the best corrected visual acuity(BCVA),intraocular pressure,axial length(AL)and spherical equivalent(SE)before anterior segment examination via slip - lamp biomicroscopy,dilated fundus examination,color and red - free fundus photographs and optical coherence tomography angiography(OCTA). A 4.5 mm × 4.5 mm scanning area centered on the optic disc was scanned using a frequency domain OCTA instrument,which was divided into four quadrants centered on the optic disc by the software automatically. On the scanning laser ophthalmoscope(SLO)and choroidal vasculature images,one ophthalmologist contoured the peripapillary atrophy - β(PPA -β)zones under the supervision of another veteran ophthalmologist before calculating the area and choroidal vessel density of PPA-β zone using PyCharm software. The correlation between AL,SE,the area and vessel density of PPA-β zone,peripapillary RNFL thickness and RPC vessel density was analyzed by Spearman correlation analysis and multivariate linear regression model. Results:The average RNFL thickness,RNFL thickness of nasal,superior and inferior,and RPC vessel density,as well as the area and choroid·al vessel density of PPA-β zone was statistically significant between HM and LMM groups(P < 0.05). SE,average peripapillary RNFL thickness and the choroidal vessel density of PPA-β zone were positively correlated with the average blood flow density of RPC(P < 0.001),while AL and the area of PPA -β zone were negatively correlated with RPC vessel density(P < 0.001). The multivariable model revealed that only average RNFL thickness(P < 0.001)and the area of PPA -β zone(P=0.014)were associated with average RPC vessel density. The results of Spearman correlation analysis for four quadrantile subgroups indicated that RNFL thickness remained positively correlated with RPC vessel density(P < 0.001). Conclusion:Peripapillary RNFL thickness and the area of PPA - β zone were two crucial causes of RPC vessel density changes,which may indicate the close relationship between retinal constructure and microvascular changes and emphasize the importance of myopia-related optic neuropathy.

  • 近视是造成视力损伤的最主要原因,高度近视是世界上第二大致盲性眼病[1]。我国近视问题尤为严峻,30岁以上人群中近视患病率达26.7%,其中高度近视的患病率为 1.8%[2]。“十四五全国眼健康规划”已将提升近视防控水平和视网膜病变早诊早治能力列为重点内容。眼轴(axial length,AL)延长是近视最主要的病理机制,随着近视程度的加深,特别是高度近视时,视网膜和脉络膜受到拉伸、薄变、血流灌注减少[3]。研究表明,血流与结构的病理性改变往往早于功能异常的发生[4-5],高度近视眼中盘周血流和视网膜厚度都显著减少[6-7],但两者之间的关联性仍有待进一步探索。光学相干断层扫描血管成像(optical coherence tomography angiography, OCTA)是一种新型无创检查手段,可以快速重建视网膜和脉络膜毛细血管层的三维结构,更好地揭示不同层次毛细血管的形态并对其进行定量分析[8-9]。本研究采用OCTA观察近视人群盘周视网膜放射状毛细血管(radial peripapillary capillary,RPC)和盘周萎缩区的微血管体系,同时将视网膜神经纤维层(retinal nerve fiber layer,RNFL)厚度作为近视早期结构损伤的重要指标,分析 RPC 血流密度的影响因素,探讨近视人群眼底结构与血流病变之间的关联,现将结果报道如下。

  • 1 对象和方法

  • 1.1 对象

  • 本研究经南京医科大学第一附属医院伦理委员会审批通过,并在临床试验注册库 ClinicalTrials. gov 注册(注册号:NCT04255524)。本研究遵循《赫尔辛基宣言》原则,所有受检者均知情并签署书面知情同意书。

  • 2019年4月—2020年1月于南京医科大学第一附属医院眼科行眼底筛查的近视人群 98 例 196 只眼纳入本研究,依据入选及排除标准筛选后,将98例 182只眼列为研究对象,含单眼入组者14例。受试者眼球的屈光度由等效球镜(spherical equivalent refraction,SE)表示,以此分为高度近视(high myopia, HM)组 100 只眼(SE-10.0D~-6.0D)和中低度近视 (low⁃to⁃moderate myopia,LMM)组82只眼(SE-6.0D~-0.5D)。受检者纳入标准:①符合轴性近视诊断标准[10];②年龄≥18岁;③最佳矫正视力(best corrected visual acuity,BCVA)≥1.0;④ 等效球镜-10.0 D~-0.5 D 之间,且双眼屈光参差<200 D;⑤眼压 <21 mmHg且双眼差值<5 mmHg,无高眼压病史; ⑥视盘杯盘比(C/D)<0.5且双眼差值<0.2,无盘沿变窄、出血及RNFL缺损等青光眼表现。受检者排除标准:①患有角膜白斑、白内障、玻璃体积血等导致屈光间质不清影响成像;②患有青光眼、葡萄膜炎、视网膜脉络膜疾病以及视神经疾病等潜在影响眼底血流,或其他眼底疾病,包括糖尿病性视网膜病变、高血压性视网膜病变、年龄相关性黄斑变性等;③眼部外伤、手术史、长期局部用药史、长期佩戴角膜接触镜(硬性或软性);④散光<-4.0D或>+4.0D;⑤不能配合完成全部检查。

  • 1.2 方法

  • 所有受检者均行BCVA、眼压、AL、屈光度、裂隙灯显微镜和散瞳后眼底、眼底彩色照相、OCTA 检查。以SE表示屈光度,SE=球镜+1/2柱镜。使用日本 Canon公司CR⁃2 AF半自动免扩瞳平面彩色眼底照相机以黄斑和视盘分别为拍摄视野的中心,成像至少涵盖45°视网膜区域行双视野眼底照相。图像采集后由两名资深眼底病医师对图片结果进行判读,对结果不一致的图像,由第3名医师判读并决定结果[11]

  • 采用美国OptoVue公司RTVue XR Avanti OCTA 仪对受检眼视盘区行OCTA检查。检查由同一名操作熟练的眼科医师完成。扫描模式HDAngio⁃disc,扫描范围 4.5 mm×4.5 mm,采用分频幅去相干模块进行 7 kHz 轴向扫描血流图像,受检眼注视目镜中蓝色指示灯3 s以上,进行X轴、Y轴扫描。图像扫描质量<6或分层定位错误、残余运动伪影予以排除。系统测量软件自动获取视盘多色超广域激光扫描眼底镜(scanning laser ophthalmoscope,SLO)图像,将视盘及周围区域分成全区、视盘区和盘周区,其中视盘区对应视盘;盘周区对应视盘周围0.75 mm宽的环状视网膜区域。依据仪器内置参数将每个区域分为3个层次:玻璃体/视网膜层是指内界膜至外丛状层以上10 μm的范围;盘周放射状毛细血管网层是指内界膜至神经纤维层底端的范围;脉络膜层是指视网膜色素上皮层(retinal pigment epithelium, RPE)下75 μm至底部的范围(图1A~D)。由两条相互垂直的放射线将盘周区域分为以视盘为中心的上方、下方、鼻侧、颞侧(以左眼为例假设12点钟方向为 0°,3 点钟方向为 90°,径向扫描范围分别为 315°~45°、135°~225°、45°~135°、225°~315°)4 个区。采用设备自带软件(Optovue Angio VueTM OCTA)测量整体和不同分区的RNFL厚度和去掉大血管后的 RPC 血管密度。考虑到高度近视眼盘周近视弧等结构可能影响软件自动划定视盘边界的准确性,所有测量结果由同一名眼科医生对软件圈定的视盘区域和SLO图像进行人工核对,并排除视盘边界线规划错误的图像。所有 SLO 图像和脉络膜血流图由同一名眼科医生绘制盘周β区萎缩弧(peripapi⁃ llary atrophy⁃β,PPA⁃β),并经由另一名高年资眼科专家审核。根据水平算法[12],PyCharm 软件将低于阈值的视盘和大血管区域与周围图像自动分隔,将其排除于盘周萎缩弧的计算。在视盘旁的 PPA⁃β区,一方面 OCT 成像技术原因导致血流检测有限,另一方面 RPE、脉络膜毛细血管萎缩,该区血管量本就少,血流密度定量具有挑战性。既往研究通常将脉络膜血流图像基于系统的阈值划分转化为黑白的二制影像,随后框架化、骨骼化处理计算血管密度[13-15]。但是此种方法仅仅通过血管粗细或所占面积定量血流密度,忽略了不同微血管网络之间可能存在的血流强弱不等。本研究去除大血管的影响后,在血流图上把PPA⁃β区内的像素点(像素点为图像的最小计量单位,1像素点=126.562 5 μm2,每个像素点有相应的灰度值)转换为平方毫米得到PPA⁃β 区面积,再使用PyCharm软件计算区域内像素点灰度值得到区域内的脉络膜血流信号值,计算血流密度(平均血流密度=信号值/PPA⁃β区面积),用作HM 组和LMM组间的相对比较(图1E~G)。

  • 1.3 统计学方法

  • 采用SPSS 23.0软件进行统计学分析。计量资料以均数±标准差(x-±s)进行统计描述,两组间正态分布资料的比较使用两独立样本 t 检验,两组间非正态分布资料的比较使用 Mann⁃Whitney 检验。分类资料以构成比进行统计描述,两组间分类变量的比较采用卡方检验。采用Pearson相关分析正态分布资料间的相关性,采用Spearman相关分析非正态分布资料间的相关性,采用多元线性回归分析RPC 平均血流密度的影响因素。检验水准α=0.05,双侧检验,P<0.05为差异有统计学意义。

  • 2 结果

  • HM组和LMM组年龄和性别构成比比较,差异无统计学意义(P>0.05);AL 和 SE 比较,差异有统计学意义(P<0.05,表1)。

  • HM组和LMM组受检眼PPA⁃β区面积及其血流密度,差异均有统计学意义(P <0.001);平均及各分区内盘周 RNFL 厚度差异均有统计学意义(P< 0.05),其中,平均 RNFL 厚度以及上方、下方、鼻侧 RNFL厚度在HM组显著降低,但颞侧显著增厚;随着近视程度加深,RPC 平均血流密度以及上方、下方、鼻侧RPC血流密度均显著下降(P <0.05),颞侧虽有减少趋势,但组间差异无统计学意义(表2)。

  • Spearman 相关性分析结果显示,近视人群AL、 PPA ⁃β区的面积与 RPC 平均血流密度呈负相关(P <0.001),SE、PPA⁃β区血流密度、平均盘周RNFL 厚度与 RPC 平均血流密度呈正相关(P <0.001,表3)。由于上述参数 P 值均小于 0.05,除 SE 因与 AL 存在显著共线性关系被排除在外,其余都纳入多元线性回归分析。回归分析发现,仅PPA⁃β区面积和平均盘周RNFL厚度与RPC平均血流存在线性相关性(P<0.05),即平均盘周RNFL厚度和PPA⁃β区面积是平均RPC血流的独立相关因素(表4)。

  • A:视盘SLO图像;B:玻璃体/视网膜层图像;C:盘周RPC层图像;D:脉络膜层图像;E:盘周脉络膜血流图;F:视盘SLO图,蓝线圈出的范围为PPA⁃β区;G:PyCharm去除视盘和大血管影响(黄色部分)后对PPA⁃β区域(绿线圈出的部分)内脉络膜血流图像的像素点灰度值进行计算的图像处理过程。

  • 图1 1例28岁女性左眼的OCTA报告图

  • Figure1 The OCTA report of a 28⁃year⁃old woman

  • 表1 HM组与LMM组基线资料比较

  • Table1 Comparison of baseline information between HM and LMM groups

  • 表2 HM组与LMM组PPA⁃β区面积及相应血流密度、整体及分区盘周RNFL厚度及RPC血流密度比较

  • Table2 Comparison of the area and choroidal vessel density of PPA⁃β zone,average and quadrantile peripapillary RNFL thickness and RPC vessel density between HM and LMM groups

  • 表3 近视人群AL、SE、PPA⁃β区面积及相应的脉络膜血流密度、平均盘周RNFL厚度与RPC平均血流密度的相关性分析

  • Table3 Correlation analysis between AL,SE,the area and choroidal vessel density of PPA ⁃ β zone, average peripapillary RNFL thickness and aver⁃ age vessel density of RPC in myopes

  • 进一步分析各分区内RNFL厚度与RPC血流的关系,结果表明所有分区内两者皆呈正相关关系(P <0.001,图2)。

  • 3 讨论

  • 全球近视患病率呈上升趋势。在亚洲人群中,近10年来高度近视的患病率已超过10%[16]。近距离工作的增加、户外活动的减少使得许多青少年出现早发性近视,在屈光系统发育稳定前更易由低度近视向中度乃至高度近视发展[16]。高度近视眼底病变的发病风险高,一旦并发后巩膜葡萄肿、黄斑病变、视网膜脱离、脉络膜新生血管、青光眼等将给家庭和社会造成极大的经济负担[17]。近视防控一直是近视诊治指南推荐的主要内容,指南中提出高度近视人群一旦确诊即推荐行常规眼底检查,以便指导治疗、监测病情变化[11]。研究提示,眼底微血管和结构参数在不同程度近视人群中差异明显,可以作为诊断近视进展的指标[6],但两者之间的关联并不明确。我国 HM 近视诊疗指南将屈光度超过-6.0D作为HM诊断标准[11],但这之前视网膜脉络膜可能已经出现结构紊乱和微循环灌注不足,而盘周血流变化受到AL、屈光系统、脉络膜萎缩等多重因素的影响,仅通过OCTA监测到的血流密度和形态变化不能作为明确的早期预测指标。如果能发现近视进展过程中血流和结构病变之间的关联,阐明盘周血流的独立相关因素,将有助于理解近视发生发展的病理机制并制定合理的筛查和诊断指标。

  • 表4 近视患者AL、PPA⁃β区面积及相应的血流密度、平均盘周RNFL厚度与RPC平均血流密度的多元线性回归分析

  • Table4 Multilinear regression analysis between AL,the area and choroidal vessel density of PPA⁃β zone,average peri⁃ papillary RNFL thickness and average vessel density of RPC in myopes

  • 因变量:平均RPC血流;D⁃W值:1.929。R2 =0.425,调整R2 =0.412,F=32.731,P <0.001。

  • 本研究结果显示,HM组和LMM组间受检眼的 PPA⁃β区面积及其内脉络膜血流密度、盘周RNFL厚度、RPC血流密度比较,差异有统计学意义,此4项因素是HM的危险因素,与前人的研究结论一致[18-20]。但是,HM组颞侧RNFL厚度变化趋势与整体及其他分区并不一致,与LMM组相比显著增加。He等[20]、Turgay 等[21]、Amin 等[22]研究也有相似的发现,这可能归因于 RNFL厚度顶峰值随近视程度加深有向颞侧偏移的趋势[23]。Yamashita 等[24]则认为盘周视网膜动脉之间的夹角直接影响了RNFL 的分布特征,颞侧增厚的表现源于 AL 延长导致的眼底解剖变化。Shi等[25]也发现视乳头黄斑神经束是黄斑和盘周区唯一不随年龄增加而血流递减的区域,也许与颞上方和颞下方作为RNFL束汇集处抵抗拉伸的能力较强有关。

  • 相关分析表明,AL、PPA⁃β区面积与 RPC 平均血流密度呈负相关。可能是因为随着 AL 的延长,视网膜受到牵拉变薄,血管微环境被破坏,血管直径减少[26-27];也可能是由于轴向伸长的眼球视网膜周边部无灌注区扩大,引发周边部血管流失、退化[28]。此外,高度近视眼中血管内皮生长因子(vascular endothelial growth factor,VEGF)浓度降低[29],VEGF与 AL 存在负相关关系[30],AL 的延长致 VEGF 分泌减少可能导致血管网格的丢失,引发RPC血管的退化。PPA⁃β区指盘缘RPE⁃玻璃膜⁃脉络膜毛细血管复合体由于牵拉导致RPE完全萎缩或断裂,暴露出下方脉络膜的新月形区域。研究报道,近视弧颞下侧边缘和脉络膜空腔处视网膜静脉出现弯折甚至消失,可能影响此处的视网膜血流[31]。本研究将 SLO图像与眼底血管丛重建图一一对应,人工划定和审核PPA⁃β区,结合PyCharm 算法通过图像灰度值反映微血管网络的直径、面积和血流强弱,获得了新的量化研究结果,再一次印证了PPA⁃β区面积与 RPC 平均血流密度的负相关性,与前人结论一致[32]。另外,SE、PPA⁃β区脉络膜血流密度、平均盘周RNFL厚度与RPC平均血流表现为正相关关系,以平均盘周RNFL厚度与RPC平均血流密度的相关性最高(rs= 0.612)。Yaprak 等[18] 研究也发现 RNFL 厚度与 RPC 血管密度间的正相关关系(r= 0.518), He等[20] 则利用多元线性回归分析也得出相似的结论。Fan等[14] 研究结果虽然否认了两者间的相关关系,但其计算RPC血流密度时包含了其表面的大血管,结论很可能受到影响。本研究在计算RPC血流密度时则剔除了大血管的影响,结果仍然为正相关关系。这种相关性可能有两种解释,一是神经节细胞(retinal ganglion cell,RGC)的代谢和营养支持由 RPC提供,RNFL是RGC的轴突,随着RNFL薄变,氧需减少,血管功能下降而顺应性退化;另一种则是AL 延长导致血管变细变直,血流密度降低,RNFL营养代谢障碍而出现萎缩。目前仍然缺少足够的证据验证血流和结构病变的先后顺序,二者或许同时发生。

  • A:盘周颞侧区RPC血流密度与RNFL厚度的相关性;B:盘周鼻侧区RPC血流密度与RNFL厚度的相关性;C:盘周上方区RPC血流密度与 RNFL厚度的相关性;D:盘周下方区RPC血流密度与RNFL厚度的相关性。

  • 图2 盘周各分区RPC血流密度与RNFL厚度的相关性散点图

  • Figure2 Scatter diagram analysis of the correlation between the vessel density of RPC and RNFL thickness in four quar⁃ ters

  • 许多研究将血流密度的变化归因于 AL 和 SE[71833]为了寻找RPC血流的独立相关因素,本研究在前文各研究指标已与 RPC 血流确立线性相关性的基础上,利用多元线性回归进一步分析。本研究所纳入的变量(AL、PPA⁃β面积、PPA⁃β区域血流密度、平均盘周RNFL厚度)VIF值均小于5,D⁃W 值 1.929,指示变量间无多重共线性关系;R2 为 0.425,提示所纳入的变量能够解释RPC血流变化的程度为42.5%;F=32.731,P <0.001,通过模型检验,说明所纳入的变量中至少有1个对RPC血流变化有显著影响。上述指标提示本研究所构建的多元线性回归模型良好,而其结果提示 PPA⁃β面积、平均 RNFL 厚度是解释和预测 RPC 血流变化的显著成因。PPA⁃β是 RPE⁃玻璃膜⁃脉络膜复合体结构破坏、脉络膜毛细血管网微灌注损伤的重要表现,Sun 等[34]提出PPA⁃β面积每增加1 mm2,RPC血流平均降低1.472%。视网膜由两套血管系统供给,内层视网膜主要由视网膜中央动脉供血,而外层则主要由睫状动脉供血,表面上PPA区所代表的视网膜外侧和脉络膜结构与视网膜浅层结构的血液供给来源似乎相互独立。但本研究和Sun等[34]研究均提示 PPA⁃β区对RPC血流存在直接影响,这可能与PPA⁃β 区血管内皮细胞退化有关,血管的薄变、血管网络变直变疏会引起眼内VEGF水平下降,导致RPC血流系统功能不足。盘周RNFL厚度下降往往先于RGC的损伤退化,提示神经的早期损伤。一方面,引起神经损伤的因素(如眼压升高)可能同样刺激了RPC血流的变化;另一方面,RGC的退化意味着氧需减少,RPC 血流出现适应性减弱。因而,在眼科门诊检查并观测 RPC血流时,需同时关注盘周RNFL厚度和近视弧相关参数,加强对于近视人群眼压的定期监测,有利于近视人群相关视神经病变的早期发现和干预。

  • 此外,值得注意的是,颞侧RNFL厚度在HM组显著增厚的同时,对应的颞侧RPC血流密度虽然在两组之间差异无统计学意义,但HM组的平均值低于LMM组,也就是说,该区域出现了视网膜结构和血流变化的不一致。为了探索这种现象,本研究进一步将盘周区域分成上、下、颞、鼻4个部分,进行亚组分析。各分区RPC血流与RNFL厚度的相关性分析显示,两者仍然呈显著正相关关系,但以颞侧相关性最低(rs=0.406)。这可能与本研究的纳入人群都有PPA⁃β病变有关,PPA⁃β常出现于视盘颞侧,提示该区RPE薄弱,血管组织破坏较为严重,中和了本应随RNFL厚度增加而增强的RPC血流。

  • OCTA采用三维追踪去投影技术,分层定量测量视网膜和脉络膜血管丛的血流密度和病灶面积,是高度近视眼底病变监测评估的有效辅助检查[8-9]。本研究选取了同一片区域进行 RNFL 厚度、RPC 血流密度和PPA⁃β区的分析,一定程度上规避了近视眼放大效应对结果的影响。现有研究主要聚焦黄斑区血流变化,对于盘周微循环的变化关注尚缺,虽然也有研究指出高度近视眼盘周视网膜结构和血流的正相关关系[141820],但未分区进行亚组分析,特别是未探讨在高度近视患者视盘颞侧 RNFL 厚度增加、RPC平均血流下降的情况下血流如何变化。本研究不但发现四分区下RNFL厚度与RPC血流仍然保持正相关关系,进一步夯实了结构与血流间的密切联系,还通过多元线性回归分析,排除了 AL、SE 对 RPC 血流的直接影响,这提示相比 AL 的延长,RPC血流可能受到结构改变的影响更显著,血流可以被考虑列为高度近视性眼底病变的早期预测指标;而且另一重要优点是揭示了视网膜外层结构损伤对于内层血流的潜在作用,为探讨近视发生发展的病理机制提供思路。

  • 本研究为横断面研究,无法揭示 RNFL 厚度和 RPC血流变化的先后顺序,有待进一步的前瞻性研究以提供更充分的临床依据。同时,因考虑到后巩膜葡萄肿等对于OCTA扫描结果的影响,本研究未纳入高度近视中病理性近视的人群,样本量相对局限,不能很好地反映高度近视各个阶段的病理改变。此外,近视眼常常伴发视盘倾斜,OCTA的象限分区可能出现偏差;血管内血细胞流动伪影也难以避免,还需要检测技术不断地更新迭代,以进行更深入的研究。

  • 参考文献

    • [1] BOURNE R R A,STEVENS G A,WHITE R A,et al.Causes of vision loss worldwide,1990⁃2010:a systematic analysis[J].Lancet Glob Health,2013,1(6):339-349

    • [2] LIANG Y B,WONG T Y,SUN L P,et al.Refractive errors in a rural Chinese adult population the Handan eye study[J].Ophthalmology,2009,116(11):2119-2127

    • [3] AZEMIN M Z C,DAUD N M,HAMID F A,et al.Influ⁃ ence of refractive condition on retinal vasculature com⁃ plexity in younger subjects[J].Sci World J,2014,2014:783525

    • [4] LA SPINA C,CORVI F,BANDELLO F,et al.Static chara⁃ cteristics and dynamic functionality of retinal vessels in longer eyes with or without pathologic myopia[J].Graefes Arch Clin Exp Ophthalmol,2016,254(5):827-834

    • [5] SUN Y,LI F,LI H,et al.Performance of topological per⁃ ception in the myopic population[J].Curr Eye Res,2020,45(11):1458-1465

    • [6] ILKAY S A B,ONAL G B,ESRA K,et al.Evaluation of the ganglion cell complex and retinal nerve fiber layer in low,moderate,and high myopia:a study by RTVue spec⁃ tral domain optical coherence tomography[J].Semin Oph⁃ thalmol,2017,32(6):682-688

    • [7] LI M,YANG Y,JIANG H,et al.Retinal microvascular network and microcirculation assessments in high myopia [J].Am J Ophthalmol,2017,174:56-67

    • [8] NAGIEL A,SADDA S R,SARRAF D.A promising future for optical coherence tomography angiography[J].JAMA Ophthalmol,2015,133(6):629-630

    • [9] SPAIDE R F,KLANCNIK J M,COONEY M J.Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography[J].JAMA Ophthalmol,2015,133(1):45-50

    • [10] 葛坚,王宁利.眼科学[M].3版.北京:人民卫生出版社,2015

    • [11] 中华医学会眼科学分会眼视光学组.重视高度近视防控的专家共识(2017)[J].中华眼视光学与视觉科学杂志,2017,19(7):385-389

    • [12] KIM S,KIM Y,LEE D,et al.Active contour segmentation using level set function with enhanced image from prior intensity[J].Annu Int Conf IEEE Eng Med Biol Soc,2015,2015:3069-3072

    • [13] CHENG D,CHEN Q,WU Y F,et al.Deep perifoveal ves⁃ sel density as an indicator of capillary loss in high myopia [J].Eye Lond Engl,2019,33(12):1961-1968

    • [14] FAN H,CHEN H Y,MA H J,et al.Reduced macular vas⁃ cular density in myopic eyes[J].Chin Med J(Engl),2017,130(4):445-451

    • [15] YANG Y,WANG J H,JIANG H,et al.Retinal microvas⁃ culature alteration in high myopia[J].Investig Ophthal⁃ mol Vis Sci,2016,57(14):6020-6030

    • [16] BAIRD P N,SAW S M,LANCA C,et al.Myopia[J].Nat Rev Dis Primers,2020,6(1):99

    • [17] IKUNO Y.Overview of the complications of high myopia [J].Retina,2017,37(12):2347-2351

    • [18] YAPRAK A C,YAPRAK L.Retinal microvasculature and optic disc alterations in non ⁃ pathological high myopia with optical coherence tomography angiography[J].Graefes Arch Clin Exp Ophthalmol,2021,259(11):3221-3227

    • [19] LIU X T,ZHANG F,WANG Y L,et al.Associations between optic disc characteristics and macular choroidal microvasculature in young patients with high myopia[J].Clin Exp Ophthalmol,2021,49(6):560-569

    • [20] HE J N,CHEN Q Y,YIN Y,et al.Association between retinal microvasculature and optic disc alterations in high myopia[J].Eye(Lond),2019,33(9):1494-1503

    • [21] TURGAY U,EREL I,HAYATI Y,et al.Alterations in optical coherence tomography angiography findings in patients with high myopia[J].Eye Lond Engl,2020,34(6):1129-1135

    • [22] AMIN S M,ALI N,MAHDI G,et al.Associations of refractive errors and retinal changes measured by optical coherence tomography:a systematic review and meta⁃analy⁃ sis[J].Surv Ophthalmol,2021,67(2):591-607

    • [23] KANG S H,HONG S W,IM S K,et al.Effect of myopia on the thickness of the retinal nerve fiber layer measured by cirrus HD optical coherence tomography[J].Investig Ophthalmol Vis Sci,2010,51(8):4075-4083

    • [24] YAMASHITA T,ASAOKA R,TANAKA M,et al.Rela⁃ tionship between position of peak retinal nerve fiber layer thickness and retinal arteries on sectoral retinal nerve fiber layer thickness[J].Investig Ophthalmol Vis Sci,2013,54(8):5481-5488

    • [25] SHI Y,YE L,CHEN Q,et al.Macular vessel density changes in young adults with high myopia:a longitudinal study[J].Front Med(Lausanne),2021,8:648644

    • [26] KARCZEWICZ D,MODRZEJEWSKA M.Assessment of blood flow in eye arteries in patients with myopia and glaucoma[J].Klinika Oczna,2004,106():214-216

    • [27] ZHENG Q,ZONG Y,LI L,et al.Retinal vessel oxygen satu⁃ ration and vessel diameter in high myopia[J].Ophthal⁃ mic Physiol Opt,2015,35(5):562-569

    • [28] HOLLÓ G,GREVE E L,VAN DEN BERG T J,et al.Eva⁃ luation of the peripapillary circulation in healthy and glau⁃ coma eyes with scanning laser Doppler flowmetry[J].Int Ophthalmol,1996,20(1/2/3):71-77

    • [29] SHIN Y J,NAM W H,PARK S E,et al.Aqueous humor concentrations of vascular endothelial growth factor and pigment epithelium⁃derived factor in high myopic patients [J].Mol Vis,2012,18:2265-2270

    • [30] CHEN W,SONG H,XIE S Y,et al.Correlation of macu⁃ lar choroidal thickness with concentrations of aqueous vascular endothelial growth factor in high myopia[J].Curr Eye Res,2015,40(3):307-313

    • [31] SHIMADA N,OHNO ⁃ MATSUI K,YOSHIDA T,et al.Characteristics of peripapillary detachment in pathologic myopia[J].Arch Ophthalmol,2006,124(1):46-52

    • [32] CHEN Q Y,HE J N,HUA Y H,et al.Exploration of peri⁃ papillary vessel density in highly myopic eyes with peri⁃ papillary intrachoroidal cavitation and its relationship with ocular parameters using optical coherence tomogra⁃ phy angiography[J].Clin Exp Ophthalmol,2017,45(9):884-893

    • [33] LI Y J,MIARA H,OUYANG P B,et al.The comparison of regional RNFL and fundus vasculature by OCTA in Chinese myopia population[J].J Ophthalmol,2018,2018:3490962

    • [34] SUN J,WANG J L,YOU R,et al.Is the retinal vascula⁃ ture related to β⁃peripapillary atrophy in nonpathological high myopia?An optical coherence tomography angiogra⁃ phy study in Chinese adults[J].J Ophthalmol,2018,2018:7895238

  • 参考文献

    • [1] BOURNE R R A,STEVENS G A,WHITE R A,et al.Causes of vision loss worldwide,1990⁃2010:a systematic analysis[J].Lancet Glob Health,2013,1(6):339-349

    • [2] LIANG Y B,WONG T Y,SUN L P,et al.Refractive errors in a rural Chinese adult population the Handan eye study[J].Ophthalmology,2009,116(11):2119-2127

    • [3] AZEMIN M Z C,DAUD N M,HAMID F A,et al.Influ⁃ ence of refractive condition on retinal vasculature com⁃ plexity in younger subjects[J].Sci World J,2014,2014:783525

    • [4] LA SPINA C,CORVI F,BANDELLO F,et al.Static chara⁃ cteristics and dynamic functionality of retinal vessels in longer eyes with or without pathologic myopia[J].Graefes Arch Clin Exp Ophthalmol,2016,254(5):827-834

    • [5] SUN Y,LI F,LI H,et al.Performance of topological per⁃ ception in the myopic population[J].Curr Eye Res,2020,45(11):1458-1465

    • [6] ILKAY S A B,ONAL G B,ESRA K,et al.Evaluation of the ganglion cell complex and retinal nerve fiber layer in low,moderate,and high myopia:a study by RTVue spec⁃ tral domain optical coherence tomography[J].Semin Oph⁃ thalmol,2017,32(6):682-688

    • [7] LI M,YANG Y,JIANG H,et al.Retinal microvascular network and microcirculation assessments in high myopia [J].Am J Ophthalmol,2017,174:56-67

    • [8] NAGIEL A,SADDA S R,SARRAF D.A promising future for optical coherence tomography angiography[J].JAMA Ophthalmol,2015,133(6):629-630

    • [9] SPAIDE R F,KLANCNIK J M,COONEY M J.Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography[J].JAMA Ophthalmol,2015,133(1):45-50

    • [10] 葛坚,王宁利.眼科学[M].3版.北京:人民卫生出版社,2015

    • [11] 中华医学会眼科学分会眼视光学组.重视高度近视防控的专家共识(2017)[J].中华眼视光学与视觉科学杂志,2017,19(7):385-389

    • [12] KIM S,KIM Y,LEE D,et al.Active contour segmentation using level set function with enhanced image from prior intensity[J].Annu Int Conf IEEE Eng Med Biol Soc,2015,2015:3069-3072

    • [13] CHENG D,CHEN Q,WU Y F,et al.Deep perifoveal ves⁃ sel density as an indicator of capillary loss in high myopia [J].Eye Lond Engl,2019,33(12):1961-1968

    • [14] FAN H,CHEN H Y,MA H J,et al.Reduced macular vas⁃ cular density in myopic eyes[J].Chin Med J(Engl),2017,130(4):445-451

    • [15] YANG Y,WANG J H,JIANG H,et al.Retinal microvas⁃ culature alteration in high myopia[J].Investig Ophthal⁃ mol Vis Sci,2016,57(14):6020-6030

    • [16] BAIRD P N,SAW S M,LANCA C,et al.Myopia[J].Nat Rev Dis Primers,2020,6(1):99

    • [17] IKUNO Y.Overview of the complications of high myopia [J].Retina,2017,37(12):2347-2351

    • [18] YAPRAK A C,YAPRAK L.Retinal microvasculature and optic disc alterations in non ⁃ pathological high myopia with optical coherence tomography angiography[J].Graefes Arch Clin Exp Ophthalmol,2021,259(11):3221-3227

    • [19] LIU X T,ZHANG F,WANG Y L,et al.Associations between optic disc characteristics and macular choroidal microvasculature in young patients with high myopia[J].Clin Exp Ophthalmol,2021,49(6):560-569

    • [20] HE J N,CHEN Q Y,YIN Y,et al.Association between retinal microvasculature and optic disc alterations in high myopia[J].Eye(Lond),2019,33(9):1494-1503

    • [21] TURGAY U,EREL I,HAYATI Y,et al.Alterations in optical coherence tomography angiography findings in patients with high myopia[J].Eye Lond Engl,2020,34(6):1129-1135

    • [22] AMIN S M,ALI N,MAHDI G,et al.Associations of refractive errors and retinal changes measured by optical coherence tomography:a systematic review and meta⁃analy⁃ sis[J].Surv Ophthalmol,2021,67(2):591-607

    • [23] KANG S H,HONG S W,IM S K,et al.Effect of myopia on the thickness of the retinal nerve fiber layer measured by cirrus HD optical coherence tomography[J].Investig Ophthalmol Vis Sci,2010,51(8):4075-4083

    • [24] YAMASHITA T,ASAOKA R,TANAKA M,et al.Rela⁃ tionship between position of peak retinal nerve fiber layer thickness and retinal arteries on sectoral retinal nerve fiber layer thickness[J].Investig Ophthalmol Vis Sci,2013,54(8):5481-5488

    • [25] SHI Y,YE L,CHEN Q,et al.Macular vessel density changes in young adults with high myopia:a longitudinal study[J].Front Med(Lausanne),2021,8:648644

    • [26] KARCZEWICZ D,MODRZEJEWSKA M.Assessment of blood flow in eye arteries in patients with myopia and glaucoma[J].Klinika Oczna,2004,106():214-216

    • [27] ZHENG Q,ZONG Y,LI L,et al.Retinal vessel oxygen satu⁃ ration and vessel diameter in high myopia[J].Ophthal⁃ mic Physiol Opt,2015,35(5):562-569

    • [28] HOLLÓ G,GREVE E L,VAN DEN BERG T J,et al.Eva⁃ luation of the peripapillary circulation in healthy and glau⁃ coma eyes with scanning laser Doppler flowmetry[J].Int Ophthalmol,1996,20(1/2/3):71-77

    • [29] SHIN Y J,NAM W H,PARK S E,et al.Aqueous humor concentrations of vascular endothelial growth factor and pigment epithelium⁃derived factor in high myopic patients [J].Mol Vis,2012,18:2265-2270

    • [30] CHEN W,SONG H,XIE S Y,et al.Correlation of macu⁃ lar choroidal thickness with concentrations of aqueous vascular endothelial growth factor in high myopia[J].Curr Eye Res,2015,40(3):307-313

    • [31] SHIMADA N,OHNO ⁃ MATSUI K,YOSHIDA T,et al.Characteristics of peripapillary detachment in pathologic myopia[J].Arch Ophthalmol,2006,124(1):46-52

    • [32] CHEN Q Y,HE J N,HUA Y H,et al.Exploration of peri⁃ papillary vessel density in highly myopic eyes with peri⁃ papillary intrachoroidal cavitation and its relationship with ocular parameters using optical coherence tomogra⁃ phy angiography[J].Clin Exp Ophthalmol,2017,45(9):884-893

    • [33] LI Y J,MIARA H,OUYANG P B,et al.The comparison of regional RNFL and fundus vasculature by OCTA in Chinese myopia population[J].J Ophthalmol,2018,2018:3490962

    • [34] SUN J,WANG J L,YOU R,et al.Is the retinal vascula⁃ ture related to β⁃peripapillary atrophy in nonpathological high myopia?An optical coherence tomography angiogra⁃ phy study in Chinese adults[J].J Ophthalmol,2018,2018:7895238