en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

朱宏,E-mail:zhuhong@1059@126.com

中图分类号:R571

文献标识码:A

文章编号:1007-4368(2023)07-909-08

DOI:10.7655/NYDXBNS20230703

参考文献 1
MARET⁃OUDA J,MARKAR S R,LAGERGREN J.Gas⁃ troesophageal reflux disease:a review[J].JAMA,2020,324(24):2536-2547
参考文献 2
EUSEBI L H,TELESE A,CIROTA G G,et al.Effect of gastro esophageal reflux symptoms on the risk of Barrett’s esophagus:a systematic review and meta ⁃ analysis[J].J Gastroenterol Hepatol,2022,37(8):1507-1516
参考文献 3
SOUZA R F,HUO X F,MITTAL V,et al.Gastroesopha⁃ geal reflux might cause esophagitis through a cytokine ⁃ mediated mechanism rather than caustic acid injury[J].Gastroenterology,2009,137(5):1776-1784
参考文献 4
KANG D,KIM S H,HAMASAKI N.Mitochondrial tran⁃ scription factor A(TFAM):roles in maintenance of mtD⁃ NA and cellular functions[J].Mitochondrion,2007,7(1/2):39-44
参考文献 5
RILEY J S,TAIT S W.Mitochondrial DNA in inflamma⁃ tion and immunity[J].EMBO Rep,2020,21(4):e49799
参考文献 6
YU C H,DAVIDSON S,HARAPAS C R,et al.TDP ⁃43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS[J].Cell,2020,183(3):636-649
参考文献 7
SHAN J,OSHIMA T,FUKUI H,et al.Acidic deoxycholic acid and chenodeoxycholic acid induce interleukin⁃8 pro⁃ duction through p38 mitogen⁃activated protein kinase and protein kinase A in a squamous epithelial model[J].J Gastroenterol Hepatol,2013,28(5):823-828
参考文献 8
RAFIEE P,NELSON V M,MANLEY S,et al.Effect of curcumin on acidic pH ⁃induced expression of IL ⁃6 and IL⁃8 in human esophageal epithelial cells(HET⁃1A):role of PKC,MAPKs,and NF⁃kappaB[J].Am J Physiol Gas⁃ trointest Liver Physiol,2009,296(2):388-398
参考文献 9
MORI M P,PENJWEINI R,KNUTSON J R,et al.Mito⁃ chondria and oxygen homeostasis[J].Febs J,2022,289(22):6959-6968
参考文献 10
DVORAK K,PAYNE C M,CHAVARRIA M,et al.Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage:relevance to the pathogene⁃ sis of Barrett’s oesophagus[J].Gut,2007,56(6):763-771
参考文献 11
TIWARI V,WILSON D M.DNA damage and associated DNA repair defects in disease and premature aging[J].Am J Hum Genet,2019,105(2):237-257
参考文献 12
BURDAK ⁃ ROTHKAMM S,MANSOUR W Y,ROTH⁃ KAMM K.DNA damage repair deficiency in prostate can⁃ cer[J].Trends Cancer,2020,6(11):974-984
参考文献 13
FANG C J,WEI X W,WEI Y Q.Mitochondrial DNA in the regulation of innate immune responses[J].Protein Cell,2016,7(1):11-16
参考文献 14
SASAKI C T,DOUKAS S G,DOUKAS P G,et al.Weakly acidic bile is a risk factor for hypopharyngeal carcinogene⁃ sis evidenced by DNA damage,antiapoptotic function,and premalignant dysplastic lesions in vivo[J].Cancers,2021,13(4):852
参考文献 15
SIMOVIC M,ERNST A.Chromothripsis,DNA repair and checkpoints defects[J].Semin Cell Dev Biol,2022,123:110-114
参考文献 16
ZHAO M,WANG Y Z,LI L,et al.Mitochondrial ROS pro⁃ mote mitochondrial dysfunction and inflammation in isch⁃ emic acute kidney injury by disrupting TFAM ⁃ mediated mtDNA maintenance[J].Theranostics,2021,11(4):1845-1863
参考文献 17
LI Q,VERMA I M.NF⁃kappaB regulation in the immune system[J].Nat Rev Immunol,2002,2(10):725-734
参考文献 18
WU J,CHEN H,GUO T,et al.Sesamol alleviates manga⁃ nese ⁃ induced neuroinflammation and cognitive impair⁃ ment via regulating the microglial cGAS ⁃ STING/NF ⁃ κB pathway[J].Environ Pollut,2022,319:120988
参考文献 19
WISER C,KIM B,VINCENT J,et al.Small molecule inhi⁃ bition of human cGAS reduces total cGAMP output and cytokine expression in cells[J].Sci Rep,2020,10(1):7604
参考文献 20
DING R,LI H,LIU Y,et al.Activating cGAS⁃STING axis contributes to neuroinflammation in CVST mouse model and induces inflammasome activation and microglia py⁃ roptosis[J].J Neuroinflammation,2022,19(1):137
目录contents

    摘要

    目的:探讨酸性去氧胆酸(deoxycholic acid,DCA)诱导人正常食管上皮细胞(human esophageal epithelial cell,HEEC) 线粒体DNA(mitochondrial DNA,mtDNA)损伤及释放与环岛苷酸-腺苷酸合酶-干扰素基因刺激蛋白(cyclic GMP-AMP synthase- stimulation of interferon gene,cGAS-STING)通路在食管上皮炎症发生发展中的关联。方法:将HEEC分为对照组和酸性DCA处理组。CCK-8法检测细胞存活率;荧光显微镜及流式细胞术检测活性氧(reactive oxygen species,ROS)、线粒体活性氧(mito- chondrial reactive oxygen species,mtROS)及线粒体膜电位(mitochondrial membrane potential,MMP)的变化;化学发光法检测三磷酸腺苷(adenosine triphosphate,ATP)水平;透射电镜观察线粒体超微结构改变;RT-qPCR检测mtDNA拷贝数变化;Western blot检测γH2AX、cGAS、STING、p-NF-κB p65及NF-κB p65的蛋白表达水平;RT-qPCR检测炎症因子白细胞介素(interleukin, IL)-6及IL-1β的mRNA表达水平。结果:酸性DCA处理后细胞存活率呈剂量-时间依赖性降低;细胞内ROS及mtROS产生增多,同时MMP降低,ATP含量减少;与对照组相比,酸性DCA处理后γH2AX的表达水平升高;mtDNA释放入胞质,mtDNA拷贝数减少;cGAS、STING 和p-NF-κB p65表达升高;炎症因子IL-6及IL-1β表达升高;cGAS 抑制剂RU.521预处理抑制了cGAS、 STING的表达水平及部分抑制了p-NF-κB p65的表达水平,炎症因子IL-6及IL-1β水平降低。结论:体外实验表明,酸性DCA诱导HEEC线粒体功能障碍,mtDNA损伤及释放,介导HEEC炎症反应,其机制可能与cGAS-STING通路的激活有关。

    Abstract

    Objective:To investigate the relationship between acidic deoxycholic acid induced mitochondrial DNA(mtDNA) damage and release of human esophageal epithelial cells and cGAS -STING pathway in the development of esophageal epithelial cell inflammation. Methods:HEECs were divided into control group and acidic deoxycholic acid treatment group. The viability of cells was measured by CCK -8 assay. Changes of reactive oxygen species,mitochondrial reactive oxygen species and mitochondrial membrane potential were detected by fluorescence microscope and flow cytometry. ATP was detected by the luminometer. The ultrastructure of mitochondria was observed by transmission electron microscope. The mtDNA copy number was evaluated by qPCR. The expressions of γH2AX,cGAS,STING,p -NF -κB p65 and NF -κB p65 were detected by Western blotting. The mRNA expressions of inflammatory cytokines IL - 6 and IL - 1β were detected by qPCR. Results:CCK - 8 assay showed that the viability of cells treated with acidic deoxycholic acid decreased in a dose-time dependent manner. The production of intracellular ROS and mtROS increased,while MMP and ATP decreased. Compared with the control group,the expression of γH2AX increased after acidic deoxycholic acid,mtDNA released into the cytoplasm,mtDNA copy number reduced,the expressions of cGAS,STING and p-NF-κB p65 were increased,and the expressions of inflammatory cytokines IL-6 and IL-1β were elevated. After pretreatment with cGAS inhibitor RU.521,the expression levels of cGAS and STING were inhibited and the expression of p-NF-κB p65 was partially inhibited,and the levels of inflammatory cytokines IL-6 and IL-1β were decreased. Conclusion:The in vitro experiments have shown that acidic deoxycholic acid can induce mitochondrial dysfunction,mitochondrial DNA damage and release,and mediate HEEC inflammation. The mechanism may be related to the activation of cGAS-STING pathway.

  • 胃食管反流病(gastroesophageal reflux disease, GERD)是上消化道的慢性疾病,其发病率逐年升高[1]。反流性食管炎(reflux esophagitis,RE)是胃食管反流病的常见类型之一,盐酸及胆汁酸等反流物质的长期刺激会导致食管远端的炎症反应,并随着反流时程的延长进展至 Barrett 食管甚至食管腺癌[2]。既往研究发现,暴露于酸性胆盐的食管上皮细胞炎症因子分泌显著增加[3]。然而,盐酸及胆汁酸诱导食管上皮炎症的确切机制尚未完全阐明,深入探讨介导食管上皮炎症的具体机制能为RE的治疗提供新的理论依据。

  • 线粒体是内源性活性氧(reactive oxygen species, ROS)生成的主要部位,大量ROS诱导的氧化应激会导致线粒体功能障碍。作为线粒体遗传物质存在的线粒体 DNA(mitochondrial DNA,mtDNA)靠近呼吸链且缺乏保护性组蛋白,因此极易受到ROS的攻击,导致 mtDNA 损伤并从线粒体释放到胞质中[4]。作为线粒体损伤相关分子模式(mitochondrial damage⁃ associated molecular pattern,mtDAMP),mtDNA 可以通过结合模式识别受体(pattern recognition receptor, PRR)激活固有免疫系统[5-6]

  • 环鸟苷酸⁃腺苷酸合酶(cyclic GMP⁃AMP synthase, cGAS)作为 PRR 之一是胞质 DNA 感受器,能识别并结合胞质双链DNA,催化ATP和GTP转化为环二核苷酸cGAMP,其作为第二信使结合并激活干扰素基因刺激蛋白(stimulator of interferon gene,STING),随后 STING 招募并激活 TANK 结合激酶 1(TANK binding kinase1,TBK1)和 IκB 激酶(IκB kinase, IKK),这些激酶磷酸化并激活干扰素调节因子 3 (interferon regulatory factor 3,IRF3)和核因子 κB (nuclear factor kappa⁃B,NF⁃κb),促进Ⅰ型干扰素及其他细胞因子的表达。cGAS⁃STING 通路参与炎症性疾病、神经退行性疾病及肿瘤等多种疾病进程[7-9]。本研究拟探讨酸性DCA诱导食管上皮炎症过程中,mtDNA 损伤及释放与 cGAS⁃STING 通路之间的联系,为酸性胆盐反流引起慢性食管炎症的发病机制提供新的理论依据。

  • 1 材料和方法

  • 1.1 材料

  • 人正常食管上皮细胞系(HEEC)购自美国ATCC。去氧胆酸(deoxycholic acid,DCA,MedChemExpress 公司,美国),CCK⁃8试剂盒(APE×BIO公司,美国), ROS检测试剂盒、线粒体膜电位(mitochondrial mem⁃ brane potential,MMP)检测试剂盒及 ATP 检测试剂盒(上海碧云天科技公司),线粒体活性氧(mitochon⁃ drial reactive oxygen species,mtROS)Mitosox 荧光探针(Invitrogen公司,美国),细胞基因组DNA提取试剂盒(北京天根生化科技公司),HiScript®ⅡQ RT SuperMix 和 ChamQ SYBR qPCR Master Mix(南京诺唯赞公司);cGAS抗体及γH2AX抗体(Cell Signaling Technology 公司,美国),STING 抗体和 TOMM20 抗体(Abcam 公司,美国),p⁃NF⁃κB p65抗体和NF⁃κB p65抗体(上海Abmart公司),抗DNA抗体(Progen抗体,德国),β⁃actin抗体(北京博奥森生物公司)。

  • 1.2 方法

  • 1.2.1 细胞培养和处理

  • 使用含20%胎牛血清的DMEM高糖培养基,在 5% CO2、37℃的培养箱中培养。当细胞生长至融合度达 80%左右时传代并进行后续实验。酸性 DCA 溶液的配制如下:酸性培养基用 36%~38%的浓盐酸在 DMEM 培养基中滴定至 pH=5,在此酸性培养基中加入一定量的 DCA 贮备液配成含不同浓度 DCA 的酸性培养基,充分混匀后即为酸性 DCA 溶液。对照组即为不含DCA的中性培养基,即DMEM 培养基[3]

  • 1.2.2 CCK⁃8实验检测细胞活性

  • HEEC 接种于 96 孔板,1×105 个/孔,贴壁生长 24 h,酸性DCA组设置50、100、200、300 μmol/L 4个浓度及2、4、6、8 h 4个时间点,同时设置对照组及空白组,CCK⁃8试剂盒测定细胞存活率,细胞存活率= [(实验孔吸光度-空白孔吸光度)/(对照孔吸光度空白孔吸光度)]×100%。

  • 1.2.3 流式细胞术检测ROS、mtROS和MMP

  • 将处于对数生长期且生长状态良好的细胞接种于6孔板,待细胞贴壁后给药处理,PBS润洗后胰酶消化离心,将探针稀释在特定溶液中孵育一定时间,孵育结束后离心并清洗,上机检测。

  • 1.2.4 荧光显微镜检测ROS、mtROS和MMP

  • 将处于对数生长期且生长状态良好的细胞接种于6孔板,待细胞贴壁后给药处理,PBS润洗后加入荧光探针孵育,孵育结束后吸弃并清洗,荧光显微镜采集图像。

  • 1.2.5 ATP检测

  • 将处于对数生长期且生长状态良好的细胞接种于6孔板,待细胞贴壁后给药处理,使用ATP检测试剂盒进行检测,配制不同浓度梯度的ATP标准溶液,绘制标准曲线,将 ATP 检测工作液加入样品和标准品中,使用光度计检测相对光单位(relative light unit,RLU)值。BCA法检测蛋白浓度,ATP含量 =ATP浓度/蛋白浓度。

  • 1.2.6 细胞免疫荧光

  • 将处于对数生长期且生长状态良好的细胞接种于共聚焦小皿,待细胞贴壁后给药处理,4%多聚甲醛室温固定 20 min,0.1% Triton X⁃100 室温破膜 15 min,5% BSA⁃PBS 室温封闭 2 h,一抗 4℃孵育过夜,隔日二抗避光室温孵育 1 h,DAPI 室温复染 10 min,抗荧光淬灭剂封片,荧光显微镜下采集图像。

  • 1.2.7 实时荧光定量PCR(RT⁃qPCR)

  • TRIzol 法提取细胞总 RNA,紫外分光光度计测定 RNA 浓度及纯度,按照逆转录试剂说明合成 cDNA,以 cDNA 为模板进行 RT⁃qPCR 扩增。IL⁃1β 上游引物:5′⁃AGCTACGAATCTCCGACCAC⁃3′,下游引物:5′⁃CGTTATCCCATGTGTCGAAGAA⁃3′;IL⁃6上游引物:5′⁃ACTCACCTCTTCAGAACGAATGG⁃3′,下游引物:5′⁃CCATCTTTGGAAGGTTCAGGTTG⁃3′;以 GAPDH 为内参,上游引物:5′ ⁃ ACCATCTTCCAG⁃ GAGCGAG⁃3′,下游引物:5′⁃GATGGCATGGACTGT⁃ GGTCA⁃3′。RT⁃qPCR反应条件:预变性95℃ 30 s; 40 次循环反应 95℃变性 10 s,60℃退火 30 s;95℃ 变性15 s,60℃退火60 s,95℃变性15 s。以GAPDH 作为内参,采用2-ΔΔCt法计算目的基因mRNA相对表达量。

  • 1.2.8 mtDNA拷贝数测定

  • 将处于对数生长期且生长状态良好的细胞接种于 6 孔板,待细胞贴壁后给药处理,按照细胞基因组 DNA 提取试剂盒说明书进行 DNA 提取,紫外分光光度计测定 DNA 浓度及纯度,以基因组 DNA 为模板进行 RT⁃qPCR 扩增,mtDNA 拷贝数的检测以细胞核 DNA 作为参照,B2M 基因代表细胞核 DNA,ND1 及 ND2 基因代表 mtDNA。ND1 上游引物:5′⁃CTCTTCGTCTGATCCGTCCT⁃3′,下游引物: 5′⁃TGAGGTTGCGGTCTGTTAGT⁃3′;ND2上游引物: 5′⁃GTAGACAGTCCCACCCTCAC⁃3′,下游引物: 5′⁃TTGATCCCGTTTCGTGCAAG⁃3′;B2M上游引物: 5′⁃CCAGCAGCGAATGGAAAGTCAA⁃3′,下游引物: 5′⁃TCTCTCTCCATTCTTCAGTAAGTCAACT⁃3′。

  • 1.2.9 Western blot

  • RIPA裂解液提取细胞总蛋白,BCA法测定蛋白浓度并确定上样量,SDS⁃PAGE凝胶进行电泳,电泳结束后冰浴转膜,5%脱脂奶粉溶液室温封闭1 h,一抗 4℃孵育过夜,隔日二抗室温孵育 1 h,ECL 化学发光显影。

  • 1.3 统计学方法

  • 所有数据均使用 GraphPad Prism8 软件进行分析,计量资料以均数±标准差(x-±s)表示,两组间比较采用t检验,多组间比较采用单因素方差分析,事后比较采用Tukey 检验。P <0.05为差异有统计学意义。

  • 2 结果

  • 2.1 酸性DCA对HEEC细胞形态和存活率的影响

  • 倒置显微镜下观察酸性DCA(100 μmol/L)处理前后HEEC形态变化,对照组中,细胞贴壁生长且状态良好,形态饱满。随着药物作用时间的延长,细胞逐渐皱缩,空泡增多(图1A)。为了探究酸性DCA 对HEEC存活率的影响,将不同浓度酸性DCA溶液处理细胞2、4、6、8 h,CCK⁃8法检测细胞存活率,结果如图1B所示,HEEC的存活率随着浓度的增加及暴露时间的延长而降低,呈浓度⁃时间依赖性。当干预浓度为200 μmol/L及300 μmol/L时,细胞存活率极显著降低。当干预浓度为50 μmol/L及100 μmol/ L时,与对照组相比,细胞存活率下降,且差异具有统计学意义(P <0.001),依据既往研究[10-11],本研究中选择100 μmol/L作为后续实验的干预浓度。

  • 2.2 酸性DCA诱导HEEC线粒体功能障碍

  • 用酸性DCA(100 μmol/L)处理HEEC 2 h后,荧光显微镜及流式细胞仪检测细胞内ROS、mtROS和 MMP 水平。如图2A~F 所示,与对照组相比,酸性 DCA 处理后细胞内 ROS 及 mtROS 水平显著升高,MMP 显著降低。用酸性 DCA(100 μmol/L)处理 HEEC 4 h 后,如图2G 所示,与对照组相比,酸性 DCA 刺激后细胞 ATP 水平降低。运用透射电镜观察线粒体超微结构,如图 H 所示,对照组线粒体结构完整,轮廓清晰,线粒体嵴排列有序,基质均匀; 酸性 DCA 处理后线粒体外形肿胀,线粒体嵴排列紊乱,稀疏,线粒体出现空泡化。上述结果表明,酸性 DCA 诱导 HEEC 线粒体形态改变及功能障碍。

  • 图1 酸性DCA处理后HEEC存活率及形态变化

  • Figure1 Viability and morphological changes of HEEC treated with acidic deoxycholic acid

  • 2.3 酸性DCA导致HEEC DNA双链断裂及mtDNA 拷贝数减少及释放

  • 用酸性DCA(100 μmol/L)处理HEEC 4 h后,荧光显微镜下观察γH2AX 阳性细胞,结果如图3A 所示,与对照组相比,酸性DCA处理后γH2AX阳性细胞数显著增加。Western blot 结果如图3B 所示, γH2AX蛋白表达水平高于对照组。为了验证酸性 DCA 处理后 mtDNA 是否从线粒体释放到胞质中, RT⁃qPCR检测mtRNA基因ND⁃1、ND⁃2相对细胞核 DNA基因B2M的表达水平,结果显示,酸性DCA处理后mtDNA拷贝数显著降低(图3C)。进一步用荧光显微镜观察了线粒体与 DNA 共定位情况,如图3D 所示,对照组中,mtDNA 位于线粒体内部,酸性 DCA处理后mtDNA从线粒体释放到胞质中。上述结果表明,酸性DCA 诱导HEEC 双链DNA 断裂,导致DNA损伤,mtDNA释放至胞质中。

  • 2.4 酸性DCA激活cGAS⁃STING信号通路

  • 用酸性DCA(100 μmol/L)处理HEEC 4 h后,与对照组相比,酸性 DCA 组 cGAS、STING 及 p⁃NF⁃κB p65蛋白表达增加,RT⁃qPCR结果显示炎症因子IL⁃6 及 IL ⁃1β表达水平增加(图4A、B)。cGAS 抑制剂 RU.521 预处理抑制了酸性 DCA 诱导的 cGAS、 STING及p⁃NF⁃κB p65表达水平的升高,同时炎症因子IL⁃6及IL⁃1β表达水平降低(图4C、D)。

  • 3 讨论

  • GERD 是全球最常见的慢性疾病之一,具有死亡率低但发病率高的特点,RE是GERD常见的类型之一[1]。研究表明,酸性胆盐刺激食管上皮细胞分泌IL⁃8及IL⁃1β等细胞因子[3],MAPK、PKC及PKA等信号通路介导了这一过程[10-11]。本研究采用酸性 DCA刺激人正常食管上皮细胞的方法初步模拟RE 的发生发展过程,探讨mtDNA损伤及释放与cGAS⁃ STING通路在食管上皮炎症中的关联。结果表明,酸性DCA诱导线粒体功能障碍,进一步导致mtDNA 双链断裂及释放,激活cGAS⁃STING通路,促进下游炎症因子的分泌。

  • 近年来,线粒体在疾病发生发展中的作用备受关注。内源性ROS主要在线粒体呼吸链上产生,在正常机体内,ROS 的产生和清除受到严格控制,当体内氧化和抗氧化系统处于失衡状态时,ROS的清除受限从而在体内蓄积,导致细胞毒性及组织和机体损伤[12]。既往研究表明,酸性胆盐诱导Barrett食管上皮细胞线粒体氧化应激,在食管腺癌发展过程中起重要作用[13]。本研究发现酸性 DCA 诱导 ROS 及 mtROS 产生增多,MMP 降低以及 ATP 生成减少,提示氧化应激的发生并进一步导致线粒体功能障碍。

  • 图2 酸性DCA处理后对HEEC线粒体功能和结构的影响

  • Figure2 Effects of acidic deoxycholic acid on mitochondrial function and structure of HEEC

  • 图3 酸性DCA处理对HEEC mtDNA的影响

  • Figure3 Effects of acidic deoxycholic acid on HEEC mtDNA

  • DNA 损伤与各种疾病的发病机制相关,导致细胞稳态失衡,诱导炎症、细胞凋亡和衰老[14-15]。 mtDNA以环状双链DNA的形式存在,对机体正常生命活动至关重要。由于mtDNA缺乏保护性组蛋白,靠近 ROS 产生部位且修复能力有限,mtDNA 比核 DNA(nuclear DNA,nDNA)更容易受到 ROS 的攻击[16]。既往研究发现,酸性胆盐在下咽癌癌变过程中诱导氧化应激和DNA损伤[17]。本研究发现酸性 DCA诱导细胞氧化应激,γH2AX表达水平升高,提示ROS攻击DNA并造成双链断裂。DNA双链断裂 (DNA double strand break,DSB)是最严重的损伤形式且难以完全修复,当损伤持续发生时,会引起大量异常DNA在细胞内蓄积[18]

  • 图4 酸性DCA刺激对cGAS⁃STING信号通路的影响

  • Figure4 Effects of acidic deoxycholic acid on cGAS⁃STING signaling pathway

  • 真核细胞DNA存在于细胞核与线粒体,病理情况下,高水平氧化应激可诱导线粒体功能障碍,增强线粒体通透性转变,导致DNA损伤并从线粒体泄漏到胞质中[19]。胞质双链 DNA 可作为 DAMP 被 PRR 之一的 cGAS 检测到。既往研究发现,化疗药伊利替康会引起 DNA 损伤和双链 DNA 释放,激活 cGAS⁃STING通路从而导致肠黏膜炎[20]。本研究探讨了酸性 DCA 刺激后 mtDNA 拷贝数及线粒体与 DNA的共定位,结果表明mtDNA拷贝数减少并从线粒体释放到胞质中,提示mtDNA损伤后从线粒体释放,进而激活了cGAS⁃STING通路。

  • NF⁃κB 是促炎基因表达的关键调节器之一,诱导促炎细胞因子 IL⁃1β、IL⁃6、IL⁃8 及 TNF⁃α的转录[21]。既往研究证明,盐酸通过激活NF⁃κB通路刺激人食管上皮细胞系(Het⁃1a)分泌炎症因子[11]。暴露于过量锰可通过激活cGAS⁃STING/NF⁃κB通路诱导神经炎症[22]。RU.521 是应用广泛的 cGAS 抑制剂,可强效且选择性抑制人和鼠的 cGAS 酶活性和下游炎症发生[23]。RU.521能抑制小鼠脑静脉窦血栓模型中被激活的cGAS⁃STING/NF⁃κB通路以及下游炎症因子的分泌,改善神经功能障碍[24]。本研究发现,酸性DCA通过间接方式激活NF⁃κB通路,即 cGAS⁃STING/NF⁃κB 通路,并促进炎症因子 IL⁃6 及 IL⁃1β的分泌,cGAS 抑制剂 RU.521 处理后 cGAS 及STING的表达水平降低及p⁃NF⁃κB⁃p65表达水平被部分抑制,炎症因子IL⁃6及IL⁃1β分泌减少。上述结果表明NF⁃κB介导的cGAS依赖性炎症反应可能在酸性DCA诱导的食管上皮细胞炎症中起重要作用。

  • 综上所述,本研究发现,酸性 DCA 诱导人正常食管上皮细胞线粒体功能障碍,进一步导致mtDNA 损伤及释放,从而激活 cGAS ⁃ STING 通路,抑制 cGAS的激活可部分抑制酸性DCA诱导的人正常食管上皮细胞炎症,提示针对 cGAS 的靶向干预有望成为临床治疗RE的新靶点。

  • 参考文献

    • [1] MARET⁃OUDA J,MARKAR S R,LAGERGREN J.Gas⁃ troesophageal reflux disease:a review[J].JAMA,2020,324(24):2536-2547

    • [2] EUSEBI L H,TELESE A,CIROTA G G,et al.Effect of gastro esophageal reflux symptoms on the risk of Barrett’s esophagus:a systematic review and meta ⁃ analysis[J].J Gastroenterol Hepatol,2022,37(8):1507-1516

    • [3] SOUZA R F,HUO X F,MITTAL V,et al.Gastroesopha⁃ geal reflux might cause esophagitis through a cytokine ⁃ mediated mechanism rather than caustic acid injury[J].Gastroenterology,2009,137(5):1776-1784

    • [4] KANG D,KIM S H,HAMASAKI N.Mitochondrial tran⁃ scription factor A(TFAM):roles in maintenance of mtD⁃ NA and cellular functions[J].Mitochondrion,2007,7(1/2):39-44

    • [5] RILEY J S,TAIT S W.Mitochondrial DNA in inflamma⁃ tion and immunity[J].EMBO Rep,2020,21(4):e49799

    • [6] YU C H,DAVIDSON S,HARAPAS C R,et al.TDP ⁃43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS[J].Cell,2020,183(3):636-649

    • [7] SHAN J,OSHIMA T,FUKUI H,et al.Acidic deoxycholic acid and chenodeoxycholic acid induce interleukin⁃8 pro⁃ duction through p38 mitogen⁃activated protein kinase and protein kinase A in a squamous epithelial model[J].J Gastroenterol Hepatol,2013,28(5):823-828

    • [8] RAFIEE P,NELSON V M,MANLEY S,et al.Effect of curcumin on acidic pH ⁃induced expression of IL ⁃6 and IL⁃8 in human esophageal epithelial cells(HET⁃1A):role of PKC,MAPKs,and NF⁃kappaB[J].Am J Physiol Gas⁃ trointest Liver Physiol,2009,296(2):388-398

    • [9] MORI M P,PENJWEINI R,KNUTSON J R,et al.Mito⁃ chondria and oxygen homeostasis[J].Febs J,2022,289(22):6959-6968

    • [10] DVORAK K,PAYNE C M,CHAVARRIA M,et al.Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage:relevance to the pathogene⁃ sis of Barrett’s oesophagus[J].Gut,2007,56(6):763-771

    • [11] TIWARI V,WILSON D M.DNA damage and associated DNA repair defects in disease and premature aging[J].Am J Hum Genet,2019,105(2):237-257

    • [12] BURDAK ⁃ ROTHKAMM S,MANSOUR W Y,ROTH⁃ KAMM K.DNA damage repair deficiency in prostate can⁃ cer[J].Trends Cancer,2020,6(11):974-984

    • [13] FANG C J,WEI X W,WEI Y Q.Mitochondrial DNA in the regulation of innate immune responses[J].Protein Cell,2016,7(1):11-16

    • [14] SASAKI C T,DOUKAS S G,DOUKAS P G,et al.Weakly acidic bile is a risk factor for hypopharyngeal carcinogene⁃ sis evidenced by DNA damage,antiapoptotic function,and premalignant dysplastic lesions in vivo[J].Cancers,2021,13(4):852

    • [15] SIMOVIC M,ERNST A.Chromothripsis,DNA repair and checkpoints defects[J].Semin Cell Dev Biol,2022,123:110-114

    • [16] ZHAO M,WANG Y Z,LI L,et al.Mitochondrial ROS pro⁃ mote mitochondrial dysfunction and inflammation in isch⁃ emic acute kidney injury by disrupting TFAM ⁃ mediated mtDNA maintenance[J].Theranostics,2021,11(4):1845-1863

    • [17] LI Q,VERMA I M.NF⁃kappaB regulation in the immune system[J].Nat Rev Immunol,2002,2(10):725-734

    • [18] WU J,CHEN H,GUO T,et al.Sesamol alleviates manga⁃ nese ⁃ induced neuroinflammation and cognitive impair⁃ ment via regulating the microglial cGAS ⁃ STING/NF ⁃ κB pathway[J].Environ Pollut,2022,319:120988

    • [19] WISER C,KIM B,VINCENT J,et al.Small molecule inhi⁃ bition of human cGAS reduces total cGAMP output and cytokine expression in cells[J].Sci Rep,2020,10(1):7604

    • [20] DING R,LI H,LIU Y,et al.Activating cGAS⁃STING axis contributes to neuroinflammation in CVST mouse model and induces inflammasome activation and microglia py⁃ roptosis[J].J Neuroinflammation,2022,19(1):137

  • 参考文献

    • [1] MARET⁃OUDA J,MARKAR S R,LAGERGREN J.Gas⁃ troesophageal reflux disease:a review[J].JAMA,2020,324(24):2536-2547

    • [2] EUSEBI L H,TELESE A,CIROTA G G,et al.Effect of gastro esophageal reflux symptoms on the risk of Barrett’s esophagus:a systematic review and meta ⁃ analysis[J].J Gastroenterol Hepatol,2022,37(8):1507-1516

    • [3] SOUZA R F,HUO X F,MITTAL V,et al.Gastroesopha⁃ geal reflux might cause esophagitis through a cytokine ⁃ mediated mechanism rather than caustic acid injury[J].Gastroenterology,2009,137(5):1776-1784

    • [4] KANG D,KIM S H,HAMASAKI N.Mitochondrial tran⁃ scription factor A(TFAM):roles in maintenance of mtD⁃ NA and cellular functions[J].Mitochondrion,2007,7(1/2):39-44

    • [5] RILEY J S,TAIT S W.Mitochondrial DNA in inflamma⁃ tion and immunity[J].EMBO Rep,2020,21(4):e49799

    • [6] YU C H,DAVIDSON S,HARAPAS C R,et al.TDP ⁃43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS[J].Cell,2020,183(3):636-649

    • [7] SHAN J,OSHIMA T,FUKUI H,et al.Acidic deoxycholic acid and chenodeoxycholic acid induce interleukin⁃8 pro⁃ duction through p38 mitogen⁃activated protein kinase and protein kinase A in a squamous epithelial model[J].J Gastroenterol Hepatol,2013,28(5):823-828

    • [8] RAFIEE P,NELSON V M,MANLEY S,et al.Effect of curcumin on acidic pH ⁃induced expression of IL ⁃6 and IL⁃8 in human esophageal epithelial cells(HET⁃1A):role of PKC,MAPKs,and NF⁃kappaB[J].Am J Physiol Gas⁃ trointest Liver Physiol,2009,296(2):388-398

    • [9] MORI M P,PENJWEINI R,KNUTSON J R,et al.Mito⁃ chondria and oxygen homeostasis[J].Febs J,2022,289(22):6959-6968

    • [10] DVORAK K,PAYNE C M,CHAVARRIA M,et al.Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage:relevance to the pathogene⁃ sis of Barrett’s oesophagus[J].Gut,2007,56(6):763-771

    • [11] TIWARI V,WILSON D M.DNA damage and associated DNA repair defects in disease and premature aging[J].Am J Hum Genet,2019,105(2):237-257

    • [12] BURDAK ⁃ ROTHKAMM S,MANSOUR W Y,ROTH⁃ KAMM K.DNA damage repair deficiency in prostate can⁃ cer[J].Trends Cancer,2020,6(11):974-984

    • [13] FANG C J,WEI X W,WEI Y Q.Mitochondrial DNA in the regulation of innate immune responses[J].Protein Cell,2016,7(1):11-16

    • [14] SASAKI C T,DOUKAS S G,DOUKAS P G,et al.Weakly acidic bile is a risk factor for hypopharyngeal carcinogene⁃ sis evidenced by DNA damage,antiapoptotic function,and premalignant dysplastic lesions in vivo[J].Cancers,2021,13(4):852

    • [15] SIMOVIC M,ERNST A.Chromothripsis,DNA repair and checkpoints defects[J].Semin Cell Dev Biol,2022,123:110-114

    • [16] ZHAO M,WANG Y Z,LI L,et al.Mitochondrial ROS pro⁃ mote mitochondrial dysfunction and inflammation in isch⁃ emic acute kidney injury by disrupting TFAM ⁃ mediated mtDNA maintenance[J].Theranostics,2021,11(4):1845-1863

    • [17] LI Q,VERMA I M.NF⁃kappaB regulation in the immune system[J].Nat Rev Immunol,2002,2(10):725-734

    • [18] WU J,CHEN H,GUO T,et al.Sesamol alleviates manga⁃ nese ⁃ induced neuroinflammation and cognitive impair⁃ ment via regulating the microglial cGAS ⁃ STING/NF ⁃ κB pathway[J].Environ Pollut,2022,319:120988

    • [19] WISER C,KIM B,VINCENT J,et al.Small molecule inhi⁃ bition of human cGAS reduces total cGAMP output and cytokine expression in cells[J].Sci Rep,2020,10(1):7604

    • [20] DING R,LI H,LIU Y,et al.Activating cGAS⁃STING axis contributes to neuroinflammation in CVST mouse model and induces inflammasome activation and microglia py⁃ roptosis[J].J Neuroinflammation,2022,19(1):137