en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

徐艳,E-mail:yanxu@njmu.edu.cn

中图分类号:R78,R318

文献标识码:A

文章编号:1007-4368(2023)08-1180-05

DOI:10.7655/NYDXBNS20230821

参考文献 1
BASU B,GOWTHAM N H,XIAO Y,et al.Biomaterialo⁃ mics:data science⁃driven pathways to develop fourth⁃gen⁃ eration biomaterials[J].Acta Biomaterialia,2022,143:1-25
参考文献 2
JUNG K,CORRIGAN N,WONG E H H,et al.Bioactive synthetic polymers[J].Advanced Materials,2022,34(2):2105063
参考文献 3
XUE J,WU T,DAI Y,et al.Electrospinning and electros⁃ pun nanofibers:methods,materials,and applications[J].Chem Rev,2019,119(8):5298-5415
参考文献 4
DASH T K,KONKIMALLA V B.Poly ⁃ϵ⁃ caprolactone based formulations for drug delivery and tissue engineer⁃ ing:a review[J].J Control Release,2012,158(1):15-33
参考文献 5
XU X,ZHOU Y,ZHENG K,et al.3D Polycaprolactone/gelatin⁃oriented electrospun scaffolds promote periodontal regeneration[J].ACS Appl Materi Interfaces,2022,14(41):46145-46160
参考文献 6
LIU X,CHEN M,LUO J,et al.Immunopolarization⁃regu⁃ lated 3D printed⁃electrospun fibrous scaffolds for bone re⁃ generation[J].Biomaterials,2021,276:121037
参考文献 7
SHEELA S,ALGHALBAN F M,KHALIL K A,et al.Syn⁃ thesis and biocompatibility evaluation of PCL electrospun membranes coated with MTA/HA for potential application in dental pulp capping[J].Polymers,2022,14(22):4862
参考文献 8
SUNANDHAKUMARI V J,VIDHYADHARAN A K,AL⁃ IM A,et al.Fabrication and in vitro characterization of bioactive glass/nano hydroxyapatite reinforced electros⁃ pun poly(ε⁃caprolactone)composite membranes for guid⁃ ed tissue regeneration[J].Bioengineering(Basel),2018,5(3):54
参考文献 9
BUSCHMANN J,ANDREOLI S,JANG J H,et al.Hybrid nanocomposite as a chest wall graft with improved vascu⁃ larization by copper oxide nanoparticles[J].J Biomater Appl,2022,36(10):1826-1837
参考文献 10
JU Q,ZENJI T,MAÇON A L B,et al.Silver⁃doped calci⁃ um silicate sol ⁃gel glasses with a cotton ⁃wool ⁃like struc⁃ ture for wound healing[J].Biomater Adv,2022,134:112561
参考文献 11
JI W,SUN Y,YANG F,et al.Bioactive electrospun scaf⁃ folds delivering growth factors and genes for tissue engi⁃ neering applications[J].Pharm Res,2011,28(6):1259-1272
参考文献 12
BIGHAM A,SALEHI A O M,RAFIENIA M,et al.Zn ⁃ substituted Mg2SiO4 nanoparticles ⁃incorporated PCL ⁃ silk fibroin composite scaffold:a multifunctional platform to⁃ wards bone tissue regeneration[J].Mater Sci Eng C Ma⁃ ter Biol Appl,2021,127:112242
参考文献 13
KING W E,BOWLIN G L.Near⁃field electrospinning and melt electrowriting of biomedical polymers—progress and limitations[J].Polymers,2021,13(7):1097
参考文献 14
ABBASI N,LEE R S B,IVANOVSKI S,et al.In vivo bone regeneration assessment of offset and gradient melt elec⁃ trowritten(MEW)PCL scaffolds[J].Biomater Res,2020,24:17
参考文献 15
BRENNAN C M,EICHHOLZ K F,HOEY D A.The effect of pore size within fibrous scaffolds fabricated using melt electrowriting on human bone marrow stem cell osteogene⁃ sis[J].Biomed Mater,2019,14(6):065016
参考文献 16
BUJ⁃CORRAL I,TEJO⁃OTERO A.3D printing of bioinert oxide ceramics for medical applications[J].J Funct Bio⁃ mater,2022,13(3):155
参考文献 17
DONG Z,WU Y,WANG Q,et al.Reinforcement of elec⁃ trospun membranes using nanoscale Al2O3 whiskers for improved tissue scaffolds[J].J Biomed Mater Res A,2012,100(4):903-910
参考文献 18
LEE J Y,PARK J Y,HONG I P,et al.3D⁃printed barrier membrane using mixture of polycaprolactone and beta⁃tri⁃ calcium phosphate for regeneration of rabbit calvarial de⁃ fects[J].Materials(Basel),2021,14(12):3280
参考文献 19
BHATTACHARYA R,MUKHERJEE P.Biological prop⁃ erties of“naked”metal nanoparticles[J].Adv Drug Deliv Rev,2008,60(11):1289-1306
参考文献 20
QIAN Y,ZHOU X,ZHANG F,et al.Triple PLGA/PCL scaffold modification including silver impregnation,colla⁃ gen coating,and electrospinning significantly improve bio⁃ compatibility,antimicrobial,and osteogenic properties for orofacial tissue regeneration[J].ACS Appl Mater Interfac⁃ es,2019,11(41):37381-37396
参考文献 21
ABDELAZIZ D,HEFNAWY A,AL ⁃ WAKEEL E,et al.New biodegradable nanoparticles ⁃ in ⁃ nanofibers based membranes for guided periodontal tissue and bone regen⁃ eration with enhanced antibacterial activity[J].J Adv Res,2021,28:51-62
参考文献 22
REN S,ZHOU Y,ZHENG K,et al.Cerium oxide nanopar⁃ ticles loaded nanofibrous membranes promote bone regen⁃ eration for periodontal tissue engineering[J].Bioact Ma⁃ ter,2021,7:242-253
参考文献 23
RASTIN H,MANSOURI N,TUNG T T,et al.Converging 2D nanomaterials and 3D bioprinting technology:state⁃of⁃ the ⁃ art,challenges,and potential outlook in biomedical applications[J].Adv Healthc Mater,2021,10(22):2101439
参考文献 24
PARK J,PARK S,KIM J E,et al.Enhanced osteogenic differentiation of periodontal ligament stem cells using a graphene oxide ⁃coated poly(ε⁃caprolactone)scaffold[J].Polymers,2021,13(5):797
参考文献 25
DIAS A M,DA SILVA F G,MONTEIRO A P DE F,et al.Polycaprolactone nanofibers loaded oxytetracycline hydro⁃ chloride and zinc oxide for treatment of periodontal disease [J].Mater Sci Eng C Mater Biol Appl,2019,103:109798
参考文献 26
SUN M,LIU Y,JIAO K,et al.A periodontal tissue regen⁃ eration strategy via biphasic release of zeolitic imidazo⁃ late framework⁃8 and FK506 using a uniaxial electrospun Janus nanofiber[J].J Mater Chem B,2022,10(5):765-778
参考文献 27
KIRAN A S K,KUMAR T S S,SANGHAVI R,et al.Anti⁃ bacterial and bioactive surface modifications of titanium implants by PCL/TiO2 nanocomposite coatings[J].Nano⁃ materials,2018,8(10):860
参考文献 28
YUAN Q,ZHANG Q,XU X,et al.Development and char⁃ acterization of novel orthodontic adhesive containing PCL⁃ gelatin⁃AgNPs fibers[J].J Funct Biomater,2022,13(4):303
参考文献 29
SOLTANI DEHNAVI S,MEHDIKHANI M,RAFIENIA M,et al.Preparation and in vitro evaluation of polycapro⁃ lactone/PEG/bioactive glass nanopowders nanocomposite membranes for GTR/GBR applications[J].Mater Sci Eng C Mater Biol Appl,2018,90:236-247
参考文献 30
PEDROSA M C G,DOS ANJOS S A,MAVROPOULOS E,et al.Structure and biological compatibility of polycapro⁃ lactone/zinc⁃hydroxyapatite electrospun nanofibers for tis⁃ sue regeneration[J].J Bioact Compat Polym,2021,36(4):314-333
参考文献 31
PENG W,REN S,ZHANG Y,et al.MgO nanoparticles⁃in⁃ corporated PCL/gelatin ⁃ derived coaxial electrospinning nanocellulose membranes for periodontal tissue regenera⁃ tion[J].Front Bioeng Biotechnol,2021,9:668428
参考文献 32
WU X,MIAO L,YAO Y,et al.Electrospun fibrous scaf⁃ folds combined with nanoscale hydroxyapatite induce os⁃ teogenic differentiation of human periodontal ligament cells[J].Int J Nanomedicine,2014,9:4135-4143
参考文献 33
NIVEDHITHA SUNDARAM M,SOWMYA S,DEEPTHI S,et al.Bilayered construct for simultaneous regeneration of alveolar bone and periodontal ligament[J].J Biomed Mater Res B Appl Biomater,2016,104(4):761-770
参考文献 34
QIAN Y,ZHOU X,ZHANG F,et al.Triple PLGA/PCL scaffold modification including silver⁃impregnation,colla⁃ gen⁃coating,and electrospinning significantly improve bio⁃ compatibility,antimicrobial,and osteogenic properties for oro ⁃facial tissue regeneration[J].ACS Appl Mater Inter⁃ faces,2019,11(41):37381-37396
参考文献 35
SHU Z,ZHANG C,YAN L,et al.Antibacterial and osteo⁃ conductive polycaprolactone/polylactic acid/nano ⁃ hy⁃ droxyapatite/Cu@ZIF ⁃8 GBR membrane with asymmetric porous structure[J].Int J Biol Macromol,2023,224:1040-1051
参考文献 36
周和阳,吕佳欣,刘栋宇,等.美学区种植同期引导骨再生术骨替代材料留存率的相关因素分析[J].南京医科大学学报(自然科学版),2023,43(3):380-385
目录contents

    摘要

    静电纺丝可制备出模拟细胞外基质的生物支架材料,以聚己内酯(poly-caprolactone,PCL)作为静电纺丝原料可获得良好的生物相容性,而将PCL电纺纳米纤维与无机材料组合,可以改善支架材料亲水性和机械性能,调控降解性能,增强生物矿化能力,具有良好的应用前景。文章对PCL静电纺丝纳米纤维基复合材料在口腔医学中的应用进行综述。

    Abstract

    Electrospinning can prepare bio - scaffold materials that mimic extracellular matrix,and good biocompatibility can be obtained by using poly-caprolactone(PCL)as the raw material. The combination of PCL electrospun nanofibers with inorganic materials can improve the hydrophilic and mechanical properties of scaffold materials,regulate the degradation performance and enhance the biomineralization ability,which has promising applications. In this paper,we review the application of PCL electrospun nanofiber - based hybrid biomaterials in dentistry.

  • 生物材料可分为金属材料、无机材料和有机高分子材料三大类,已被广泛应用于组织再生、缺损修复等方面[1]。有机高分子材料包括以明胶、胶原等为代表的天然高分子材料和人工合成高分子材料。人工合成的高分子材料因其生物相容性好、化学性能稳定、可加工性好、降解相对可控和原料批次间差异性小等优点而受到关注[2]。常用的人工合成的有机高分子材料有聚乙醇酸(polyglycolic acid, PGA)、聚乳酸(polylactic acid,PLA)、聚己内酯(poly⁃ caprolactone,PCL)及他们的共聚物如聚羟基乙酸 (poly⁃lactic⁃co⁃glycolic acid,PLGA)[3] 等,尤其PCL因具有较低的熔点、较好生物相容性、相对可控的较长降解时间和高药物渗透性[4],被广泛研究应用于载药系统(drug delivery systems,DDS)和合成生物支架。相关研究表明,3D打印和静电纺丝合成的PCL支架可促进牙周膜[5] 和牙槽骨再生[6] 及牙髓干细胞钙化[7]

  • 静电纺丝是利用高压电场引起聚合物液滴变形和拉伸来形成泰勒锥以合成纳米纤维的方法。通过调节参数,静电纺丝可以合成几十纳米至几微米不等的纤维。电纺获得的纤维膜具有高孔隙率和高比表面积,且纤维间相互缠绕形成3D网络,其与细胞外基质(extracellular matrix,ECM)相类似,在生物医学、生物工程、制药等领域获得广泛关注[8]。 PCL也因其易操作性和良好的生物相容性成为静电纺丝常用的聚合物材料。但不可忽视的是,PCL因其表面疏水性不利于细胞黏附和机械性能不佳而应用受限。近年来无机材料如生物玻璃、生物陶瓷、金属基材料等因拥有较高的表面积及释放离子的能力,被应用于促进成骨[8]、成血管化[9] 以及促进创面愈合[10]。但这些无机材料也存在脆性较大、低机械性能、缺损部分形态塑造和维持困难等缺陷,使其单独使用受阻。因此,将 PCL 纳米纤维与无机材料组合,可以改善亲水性和机械性能,调控降解性能,增强生物矿化能力,拓展其在生物医学中的应用,具有良好的应用前景,文章对 PCL 静电纺丝纳米纤维基复合材料在口腔医学中的应用进行综述。

  • 1 静电纺丝的原理和种类

  • 1.1 静电纺丝的原理

  • 纳米纤维是指直径<1 μm的纤维,可以通过拉伸、模板合成、静电纺丝等方法合成[3]。静电纺丝是合成纳米纤维最为简单和低成本的方法,主要原理是在注射器的喷头针尖施加高压电场。注射器中包含聚合物溶液或熔体材料,由泵控制其流量。当溶液液滴离开针尖时,高压电场引起液滴表面带电,并发生变形和拉伸,当电场力大于表面张力时,直射与带电射流被喷射出来形成泰勒锥。锥体的伸长形成黏弹性射流,该射流被电场和重力完全拉离尖端。拉力是由射流携带的电荷与外加电场相互作用产生的。在传统的静电纺丝中,射流在到达收集器的途中被进一步拉伸和细化,发生纤维的延伸和溶剂的蒸发,最终在收集器上发生纤维的凝固[3]。众多参数会影响静电纺丝纳米纤维的形貌和性能,如聚合物溶液初始浓度与黏度、溶剂类型、电场强度、喷嘴到收集器的距离、溶液进料速率等。通过改变参数,可以获得不同直径的纤维,其应用也有所不同。

  • 1.2 静电纺丝的种类

  • 1.2.1 传统静电纺丝(traditional electrospinning,TES)

  • TES是通过添加或不添加纳米颗粒作为功能性填料进行静电纺丝,前者称为共混静电纺丝[11-12]。 TES合成方法简单,但纳米颗粒的增加可能导致纤维直径的变化,且当纳米颗粒添加量较大时可能会出现颗粒的团聚,其可能与表面电荷影响纳米颗粒的分散性有关。

  • 1.2.2 同轴电纺(coaxial electrospinning)

  • 同轴电纺又称共静电纺丝(co⁃electrospinning),是使用两个同心对齐的喷嘴,将两种不同液体的同轴射流同时流过外毛细管和内毛细管,相同的电压施加到两个喷嘴并使液滴变形,在理想情况下,在溶剂蒸发和拉伸过程中产生并固结纳米纤维[3]。核心部分的留存受内外液体的进料速率、两界面之间的张力和黏弹力等因素影响。

  • 1.2.3 近场直写静电纺丝(near field directly writing electrospinning,NFDWE)

  • 传统静电纺丝及同轴静电纺丝均无法精准控制纤维尺寸分布和层级,只能在一定程度上调控纤维的取向性,难以获得所需求的 3D 结构支架。而近场直写静电纺丝是在低电压条件下减小收集距离,在电纺纳米纤维发生弯曲前通过控制收集器的精确平移运动来控制单根静电纺丝纤维的定点沉积或按预定轨迹沉积[13-15]。根据聚合物液体类型,NFDWE 分为近场直写溶液静电纺丝技术和近场直写熔体静电纺丝技术(melt electrowriting, MEW)。

  • 2 常用于合成PCL复合材料的无机材料

  • 2.1 生物陶瓷颗粒

  • 自 20 世纪 60 年代以来,生物陶瓷作为金属替代物受到生物医学方面的广泛关注。目前包括两种基本类型:生物惰性陶瓷、生物活性陶瓷。生物惰性陶瓷主要包括氧化铝陶瓷、氧化锆陶瓷等,其主要特点是强度高、化学稳定性好[16]。已有研究将 Al2O3纳米颗粒作为PCL电纺填料,用于改善纤维的弹性模量[17]。生物活性陶瓷包括生物活性玻璃 (bioactive glasses,BG)和磷酸钙生物活性陶瓷等。其中磷酸钙生物活性陶瓷的主要成分为 CaO 和 P2O5,应用最多的是羟基磷灰石(hydroxyapatite, HA)、双相磷酸钙(biphasic calcium phosphate,BCP) 和磷酸三钙(tricalcium phosphate,TCP)。因其结构和组分与人体硬组织相同,也常被用于硬组织引导再生[18]

  • 2.2 金属基颗粒

  • 金属基颗粒主要指金属纳米颗粒或金属氧化物颗粒。金属纳米颗粒是具有纳米尺寸的金属或合金,具有比表面能大、相对惰性、易于表面改性等特点[19],在口腔中金纳米颗粒(gold nanoparticls, AuNPs)和银纳米颗粒(silver nanoparticles,AgNPs) 应用较多。有人利用AgNPs合成抗菌复合材料[20],也有利用 AuNPs 合成 GTR 膜促进骨再生的应用[21]

  • 金属氧化物颗粒也是常见的植入材料,目前 MgO、ZnO、CeO2等可降解的金属氧化物因其释放的金属离子的治疗作用,受到了深入研究。本课题组曾合成含CeO2 NPs的PCL电纺膜,证实其具有良好的细胞相容性,并能够促进人牙周膜干细胞的成骨向分化,是牙周骨再生的候选材料之一[22]

  • 2.3 二维纳米材料

  • 二维纳米材料(two⁃dimension nanomaterials,2D NMs)是指尺寸上仅有长度及宽度,厚度在纳米尺度可忽略不计的超薄纳米材料,具有其3D对应物所不具备的大比表面积、光学特性、高机械强度等优点。2D NMs包括石墨烯相关材料、纳米硅酸盐、过渡金属的二维碳化物/氮化物(carbides and nitrides of transition metals,MXenes)、过渡金属硫族化合物、六方氮化硼、金属有机框架等,已被应用于药物递送、生物传感、癌症治疗、再生工程等[23]。Park等[24] 在3D打印的PCL支架材料上构建氧化石墨烯(gra⁃ phene oxide,GO)涂层,发现支架材料能够促进牙周膜干细胞的增殖和成骨向分化。

  • 3 PCL静电纺丝纳米纤维基复合材料口腔医学中的应用

  • 3.1 牙周病

  • 牙周病是由定植在牙齿表面的多种牙周致病菌引起的混合细菌感染,导致包括牙周膜、牙骨质、牙槽骨在内的牙齿支持组织的破坏,表现为牙龈红肿,牙槽骨吸收,牙齿松动。为恢复牙周缺损组织,临床往往在控制局部感染后使用引导性组织再生术(guided tissue regeneration,GTR)。

  • 研究利用共混电纺合成掺ZnO和土霉素的PCL 电纺纤维膜,发现掺ZnO、掺土霉素以及掺ZnO和土霉素的纤维膜都对格兰阴性菌有极佳的抑制作用,但仅掺ZnO的细胞生物相容性更好,且ZnO的加入减缓了土霉素的爆发性释放,使药物释放时间从10 h 延长至 120 h [25]。Sun 等[26] 通过单轴电纺构建新型双相多功能的 Janus 纳米纤维,在亲水聚乙烯醇缩丁醛酯(polyvinylbutyral,PVB)部分加载沸石咪唑酯骨架纳米颗粒(zeolitic imidazolate framework ⁃ 8 nanoparticle,ZIF ⁃8 NP)释放 Zn2+,可发挥抑菌作用;在疏水 PCL 部分加载他克莫司(FK506),可提供有利于成骨过程的微环境,在体外和体内均证明可以修复牙槽骨损伤。Abdelaziz 等[21] 也合成了含羟基磷灰石纳米颗粒(hydroxyapatite nanoparticle, HA⁃NP)和 AgNPs 的 PCL/CS 共混电纺纤维膜用于 GTR 的屏障膜,利用其持续释放银离子发挥抑菌作用,并发现低添加量的纤维膜拉伸强度获得改善。

  • 3.2 牙体牙髓病

  • 龋齿主要是由于致龋饮食、口腔卫生不良和致龋菌定植产酸,导致釉质和牙本质脱矿,感染进入有丰富干细胞、血管、神经分布的牙髓腔。通过直接和间接盖髓保护牙髓可以保持牙髓活力和牙齿功能。有研究开发三氧化二物聚集体(mineral triox⁃ ide aggregate,MTA)或HA涂层的PCL静电纺丝膜作为盖髓材料,发现PCL/MTA 较PCL/HA 表现出更好的细胞黏附、扩散和迁移[7]

  • 3.3 口腔修复及正畸

  • 研究表明,利用PCL/TiO2共混电纺纤维对纯Ti 种植体进行表面改性,不仅改善了细胞相容性,还获得了良好的抗菌特性[27]。Yuan 等[28] 利用PCL⁃明胶⁃AgNPs 制备复合电纺纤维,并将其制成短纤维,加入传统正畸胶黏剂用于抗菌、防止正畸治疗导致的牙釉质脱矿。

  • 此外,还有多篇文献[29-35] 提及了PCL 静电纺丝纳米纤维基复合材料在口腔医学中的应用,见表1。

  • 4 小结与展望

  • PCL静电纺丝纳米纤维具有高孔隙率、高比表面积、易操作性、良好生物相容性和高药物渗透性,但具有表面疏水性;无机材料拥有较高的表面积及释放离子的能力,但存在着脆性大、机械性能低、缺损部分形态塑造和维持困难与不足。将两者结合可取长补短,此类复合材料在口腔医学领域具有广阔的应用前景,可用于治疗牙周炎、牙体牙髓病及口腔修复与正畸。但此类材料在口腔医学中的应用仍存在以下问题:①目前主要通过物理方法结合,仍难以避免无机材料附着不牢固的缺陷,而两者间的化学结合或许能拓宽其应用;②目前合成的 PCL静电纺丝纳米纤维复合材料均为2D的膜形式,在临床应用中仍存在空间维持困难、无法解决骨替代材料留存率不高等不足[36],因此,静电纺丝纤维与无机材料间的化学结合及合成纳米纤维3D支架可能是未来的研究方向。

  • 表1 PCL静电纺丝纳米纤维基复合材料在口腔医学中的应用

  • Table1 Application of PCL electrospun nanofiber wiki composite in stomatology

  • 参考文献

    • [1] BASU B,GOWTHAM N H,XIAO Y,et al.Biomaterialo⁃ mics:data science⁃driven pathways to develop fourth⁃gen⁃ eration biomaterials[J].Acta Biomaterialia,2022,143:1-25

    • [2] JUNG K,CORRIGAN N,WONG E H H,et al.Bioactive synthetic polymers[J].Advanced Materials,2022,34(2):2105063

    • [3] XUE J,WU T,DAI Y,et al.Electrospinning and electros⁃ pun nanofibers:methods,materials,and applications[J].Chem Rev,2019,119(8):5298-5415

    • [4] DASH T K,KONKIMALLA V B.Poly ⁃ϵ⁃ caprolactone based formulations for drug delivery and tissue engineer⁃ ing:a review[J].J Control Release,2012,158(1):15-33

    • [5] XU X,ZHOU Y,ZHENG K,et al.3D Polycaprolactone/gelatin⁃oriented electrospun scaffolds promote periodontal regeneration[J].ACS Appl Materi Interfaces,2022,14(41):46145-46160

    • [6] LIU X,CHEN M,LUO J,et al.Immunopolarization⁃regu⁃ lated 3D printed⁃electrospun fibrous scaffolds for bone re⁃ generation[J].Biomaterials,2021,276:121037

    • [7] SHEELA S,ALGHALBAN F M,KHALIL K A,et al.Syn⁃ thesis and biocompatibility evaluation of PCL electrospun membranes coated with MTA/HA for potential application in dental pulp capping[J].Polymers,2022,14(22):4862

    • [8] SUNANDHAKUMARI V J,VIDHYADHARAN A K,AL⁃ IM A,et al.Fabrication and in vitro characterization of bioactive glass/nano hydroxyapatite reinforced electros⁃ pun poly(ε⁃caprolactone)composite membranes for guid⁃ ed tissue regeneration[J].Bioengineering(Basel),2018,5(3):54

    • [9] BUSCHMANN J,ANDREOLI S,JANG J H,et al.Hybrid nanocomposite as a chest wall graft with improved vascu⁃ larization by copper oxide nanoparticles[J].J Biomater Appl,2022,36(10):1826-1837

    • [10] JU Q,ZENJI T,MAÇON A L B,et al.Silver⁃doped calci⁃ um silicate sol ⁃gel glasses with a cotton ⁃wool ⁃like struc⁃ ture for wound healing[J].Biomater Adv,2022,134:112561

    • [11] JI W,SUN Y,YANG F,et al.Bioactive electrospun scaf⁃ folds delivering growth factors and genes for tissue engi⁃ neering applications[J].Pharm Res,2011,28(6):1259-1272

    • [12] BIGHAM A,SALEHI A O M,RAFIENIA M,et al.Zn ⁃ substituted Mg2SiO4 nanoparticles ⁃incorporated PCL ⁃ silk fibroin composite scaffold:a multifunctional platform to⁃ wards bone tissue regeneration[J].Mater Sci Eng C Ma⁃ ter Biol Appl,2021,127:112242

    • [13] KING W E,BOWLIN G L.Near⁃field electrospinning and melt electrowriting of biomedical polymers—progress and limitations[J].Polymers,2021,13(7):1097

    • [14] ABBASI N,LEE R S B,IVANOVSKI S,et al.In vivo bone regeneration assessment of offset and gradient melt elec⁃ trowritten(MEW)PCL scaffolds[J].Biomater Res,2020,24:17

    • [15] BRENNAN C M,EICHHOLZ K F,HOEY D A.The effect of pore size within fibrous scaffolds fabricated using melt electrowriting on human bone marrow stem cell osteogene⁃ sis[J].Biomed Mater,2019,14(6):065016

    • [16] BUJ⁃CORRAL I,TEJO⁃OTERO A.3D printing of bioinert oxide ceramics for medical applications[J].J Funct Bio⁃ mater,2022,13(3):155

    • [17] DONG Z,WU Y,WANG Q,et al.Reinforcement of elec⁃ trospun membranes using nanoscale Al2O3 whiskers for improved tissue scaffolds[J].J Biomed Mater Res A,2012,100(4):903-910

    • [18] LEE J Y,PARK J Y,HONG I P,et al.3D⁃printed barrier membrane using mixture of polycaprolactone and beta⁃tri⁃ calcium phosphate for regeneration of rabbit calvarial de⁃ fects[J].Materials(Basel),2021,14(12):3280

    • [19] BHATTACHARYA R,MUKHERJEE P.Biological prop⁃ erties of“naked”metal nanoparticles[J].Adv Drug Deliv Rev,2008,60(11):1289-1306

    • [20] QIAN Y,ZHOU X,ZHANG F,et al.Triple PLGA/PCL scaffold modification including silver impregnation,colla⁃ gen coating,and electrospinning significantly improve bio⁃ compatibility,antimicrobial,and osteogenic properties for orofacial tissue regeneration[J].ACS Appl Mater Interfac⁃ es,2019,11(41):37381-37396

    • [21] ABDELAZIZ D,HEFNAWY A,AL ⁃ WAKEEL E,et al.New biodegradable nanoparticles ⁃ in ⁃ nanofibers based membranes for guided periodontal tissue and bone regen⁃ eration with enhanced antibacterial activity[J].J Adv Res,2021,28:51-62

    • [22] REN S,ZHOU Y,ZHENG K,et al.Cerium oxide nanopar⁃ ticles loaded nanofibrous membranes promote bone regen⁃ eration for periodontal tissue engineering[J].Bioact Ma⁃ ter,2021,7:242-253

    • [23] RASTIN H,MANSOURI N,TUNG T T,et al.Converging 2D nanomaterials and 3D bioprinting technology:state⁃of⁃ the ⁃ art,challenges,and potential outlook in biomedical applications[J].Adv Healthc Mater,2021,10(22):2101439

    • [24] PARK J,PARK S,KIM J E,et al.Enhanced osteogenic differentiation of periodontal ligament stem cells using a graphene oxide ⁃coated poly(ε⁃caprolactone)scaffold[J].Polymers,2021,13(5):797

    • [25] DIAS A M,DA SILVA F G,MONTEIRO A P DE F,et al.Polycaprolactone nanofibers loaded oxytetracycline hydro⁃ chloride and zinc oxide for treatment of periodontal disease [J].Mater Sci Eng C Mater Biol Appl,2019,103:109798

    • [26] SUN M,LIU Y,JIAO K,et al.A periodontal tissue regen⁃ eration strategy via biphasic release of zeolitic imidazo⁃ late framework⁃8 and FK506 using a uniaxial electrospun Janus nanofiber[J].J Mater Chem B,2022,10(5):765-778

    • [27] KIRAN A S K,KUMAR T S S,SANGHAVI R,et al.Anti⁃ bacterial and bioactive surface modifications of titanium implants by PCL/TiO2 nanocomposite coatings[J].Nano⁃ materials,2018,8(10):860

    • [28] YUAN Q,ZHANG Q,XU X,et al.Development and char⁃ acterization of novel orthodontic adhesive containing PCL⁃ gelatin⁃AgNPs fibers[J].J Funct Biomater,2022,13(4):303

    • [29] SOLTANI DEHNAVI S,MEHDIKHANI M,RAFIENIA M,et al.Preparation and in vitro evaluation of polycapro⁃ lactone/PEG/bioactive glass nanopowders nanocomposite membranes for GTR/GBR applications[J].Mater Sci Eng C Mater Biol Appl,2018,90:236-247

    • [30] PEDROSA M C G,DOS ANJOS S A,MAVROPOULOS E,et al.Structure and biological compatibility of polycapro⁃ lactone/zinc⁃hydroxyapatite electrospun nanofibers for tis⁃ sue regeneration[J].J Bioact Compat Polym,2021,36(4):314-333

    • [31] PENG W,REN S,ZHANG Y,et al.MgO nanoparticles⁃in⁃ corporated PCL/gelatin ⁃ derived coaxial electrospinning nanocellulose membranes for periodontal tissue regenera⁃ tion[J].Front Bioeng Biotechnol,2021,9:668428

    • [32] WU X,MIAO L,YAO Y,et al.Electrospun fibrous scaf⁃ folds combined with nanoscale hydroxyapatite induce os⁃ teogenic differentiation of human periodontal ligament cells[J].Int J Nanomedicine,2014,9:4135-4143

    • [33] NIVEDHITHA SUNDARAM M,SOWMYA S,DEEPTHI S,et al.Bilayered construct for simultaneous regeneration of alveolar bone and periodontal ligament[J].J Biomed Mater Res B Appl Biomater,2016,104(4):761-770

    • [34] QIAN Y,ZHOU X,ZHANG F,et al.Triple PLGA/PCL scaffold modification including silver⁃impregnation,colla⁃ gen⁃coating,and electrospinning significantly improve bio⁃ compatibility,antimicrobial,and osteogenic properties for oro ⁃facial tissue regeneration[J].ACS Appl Mater Inter⁃ faces,2019,11(41):37381-37396

    • [35] SHU Z,ZHANG C,YAN L,et al.Antibacterial and osteo⁃ conductive polycaprolactone/polylactic acid/nano ⁃ hy⁃ droxyapatite/Cu@ZIF ⁃8 GBR membrane with asymmetric porous structure[J].Int J Biol Macromol,2023,224:1040-1051

    • [36] 周和阳,吕佳欣,刘栋宇,等.美学区种植同期引导骨再生术骨替代材料留存率的相关因素分析[J].南京医科大学学报(自然科学版),2023,43(3):380-385

  • 参考文献

    • [1] BASU B,GOWTHAM N H,XIAO Y,et al.Biomaterialo⁃ mics:data science⁃driven pathways to develop fourth⁃gen⁃ eration biomaterials[J].Acta Biomaterialia,2022,143:1-25

    • [2] JUNG K,CORRIGAN N,WONG E H H,et al.Bioactive synthetic polymers[J].Advanced Materials,2022,34(2):2105063

    • [3] XUE J,WU T,DAI Y,et al.Electrospinning and electros⁃ pun nanofibers:methods,materials,and applications[J].Chem Rev,2019,119(8):5298-5415

    • [4] DASH T K,KONKIMALLA V B.Poly ⁃ϵ⁃ caprolactone based formulations for drug delivery and tissue engineer⁃ ing:a review[J].J Control Release,2012,158(1):15-33

    • [5] XU X,ZHOU Y,ZHENG K,et al.3D Polycaprolactone/gelatin⁃oriented electrospun scaffolds promote periodontal regeneration[J].ACS Appl Materi Interfaces,2022,14(41):46145-46160

    • [6] LIU X,CHEN M,LUO J,et al.Immunopolarization⁃regu⁃ lated 3D printed⁃electrospun fibrous scaffolds for bone re⁃ generation[J].Biomaterials,2021,276:121037

    • [7] SHEELA S,ALGHALBAN F M,KHALIL K A,et al.Syn⁃ thesis and biocompatibility evaluation of PCL electrospun membranes coated with MTA/HA for potential application in dental pulp capping[J].Polymers,2022,14(22):4862

    • [8] SUNANDHAKUMARI V J,VIDHYADHARAN A K,AL⁃ IM A,et al.Fabrication and in vitro characterization of bioactive glass/nano hydroxyapatite reinforced electros⁃ pun poly(ε⁃caprolactone)composite membranes for guid⁃ ed tissue regeneration[J].Bioengineering(Basel),2018,5(3):54

    • [9] BUSCHMANN J,ANDREOLI S,JANG J H,et al.Hybrid nanocomposite as a chest wall graft with improved vascu⁃ larization by copper oxide nanoparticles[J].J Biomater Appl,2022,36(10):1826-1837

    • [10] JU Q,ZENJI T,MAÇON A L B,et al.Silver⁃doped calci⁃ um silicate sol ⁃gel glasses with a cotton ⁃wool ⁃like struc⁃ ture for wound healing[J].Biomater Adv,2022,134:112561

    • [11] JI W,SUN Y,YANG F,et al.Bioactive electrospun scaf⁃ folds delivering growth factors and genes for tissue engi⁃ neering applications[J].Pharm Res,2011,28(6):1259-1272

    • [12] BIGHAM A,SALEHI A O M,RAFIENIA M,et al.Zn ⁃ substituted Mg2SiO4 nanoparticles ⁃incorporated PCL ⁃ silk fibroin composite scaffold:a multifunctional platform to⁃ wards bone tissue regeneration[J].Mater Sci Eng C Ma⁃ ter Biol Appl,2021,127:112242

    • [13] KING W E,BOWLIN G L.Near⁃field electrospinning and melt electrowriting of biomedical polymers—progress and limitations[J].Polymers,2021,13(7):1097

    • [14] ABBASI N,LEE R S B,IVANOVSKI S,et al.In vivo bone regeneration assessment of offset and gradient melt elec⁃ trowritten(MEW)PCL scaffolds[J].Biomater Res,2020,24:17

    • [15] BRENNAN C M,EICHHOLZ K F,HOEY D A.The effect of pore size within fibrous scaffolds fabricated using melt electrowriting on human bone marrow stem cell osteogene⁃ sis[J].Biomed Mater,2019,14(6):065016

    • [16] BUJ⁃CORRAL I,TEJO⁃OTERO A.3D printing of bioinert oxide ceramics for medical applications[J].J Funct Bio⁃ mater,2022,13(3):155

    • [17] DONG Z,WU Y,WANG Q,et al.Reinforcement of elec⁃ trospun membranes using nanoscale Al2O3 whiskers for improved tissue scaffolds[J].J Biomed Mater Res A,2012,100(4):903-910

    • [18] LEE J Y,PARK J Y,HONG I P,et al.3D⁃printed barrier membrane using mixture of polycaprolactone and beta⁃tri⁃ calcium phosphate for regeneration of rabbit calvarial de⁃ fects[J].Materials(Basel),2021,14(12):3280

    • [19] BHATTACHARYA R,MUKHERJEE P.Biological prop⁃ erties of“naked”metal nanoparticles[J].Adv Drug Deliv Rev,2008,60(11):1289-1306

    • [20] QIAN Y,ZHOU X,ZHANG F,et al.Triple PLGA/PCL scaffold modification including silver impregnation,colla⁃ gen coating,and electrospinning significantly improve bio⁃ compatibility,antimicrobial,and osteogenic properties for orofacial tissue regeneration[J].ACS Appl Mater Interfac⁃ es,2019,11(41):37381-37396

    • [21] ABDELAZIZ D,HEFNAWY A,AL ⁃ WAKEEL E,et al.New biodegradable nanoparticles ⁃ in ⁃ nanofibers based membranes for guided periodontal tissue and bone regen⁃ eration with enhanced antibacterial activity[J].J Adv Res,2021,28:51-62

    • [22] REN S,ZHOU Y,ZHENG K,et al.Cerium oxide nanopar⁃ ticles loaded nanofibrous membranes promote bone regen⁃ eration for periodontal tissue engineering[J].Bioact Ma⁃ ter,2021,7:242-253

    • [23] RASTIN H,MANSOURI N,TUNG T T,et al.Converging 2D nanomaterials and 3D bioprinting technology:state⁃of⁃ the ⁃ art,challenges,and potential outlook in biomedical applications[J].Adv Healthc Mater,2021,10(22):2101439

    • [24] PARK J,PARK S,KIM J E,et al.Enhanced osteogenic differentiation of periodontal ligament stem cells using a graphene oxide ⁃coated poly(ε⁃caprolactone)scaffold[J].Polymers,2021,13(5):797

    • [25] DIAS A M,DA SILVA F G,MONTEIRO A P DE F,et al.Polycaprolactone nanofibers loaded oxytetracycline hydro⁃ chloride and zinc oxide for treatment of periodontal disease [J].Mater Sci Eng C Mater Biol Appl,2019,103:109798

    • [26] SUN M,LIU Y,JIAO K,et al.A periodontal tissue regen⁃ eration strategy via biphasic release of zeolitic imidazo⁃ late framework⁃8 and FK506 using a uniaxial electrospun Janus nanofiber[J].J Mater Chem B,2022,10(5):765-778

    • [27] KIRAN A S K,KUMAR T S S,SANGHAVI R,et al.Anti⁃ bacterial and bioactive surface modifications of titanium implants by PCL/TiO2 nanocomposite coatings[J].Nano⁃ materials,2018,8(10):860

    • [28] YUAN Q,ZHANG Q,XU X,et al.Development and char⁃ acterization of novel orthodontic adhesive containing PCL⁃ gelatin⁃AgNPs fibers[J].J Funct Biomater,2022,13(4):303

    • [29] SOLTANI DEHNAVI S,MEHDIKHANI M,RAFIENIA M,et al.Preparation and in vitro evaluation of polycapro⁃ lactone/PEG/bioactive glass nanopowders nanocomposite membranes for GTR/GBR applications[J].Mater Sci Eng C Mater Biol Appl,2018,90:236-247

    • [30] PEDROSA M C G,DOS ANJOS S A,MAVROPOULOS E,et al.Structure and biological compatibility of polycapro⁃ lactone/zinc⁃hydroxyapatite electrospun nanofibers for tis⁃ sue regeneration[J].J Bioact Compat Polym,2021,36(4):314-333

    • [31] PENG W,REN S,ZHANG Y,et al.MgO nanoparticles⁃in⁃ corporated PCL/gelatin ⁃ derived coaxial electrospinning nanocellulose membranes for periodontal tissue regenera⁃ tion[J].Front Bioeng Biotechnol,2021,9:668428

    • [32] WU X,MIAO L,YAO Y,et al.Electrospun fibrous scaf⁃ folds combined with nanoscale hydroxyapatite induce os⁃ teogenic differentiation of human periodontal ligament cells[J].Int J Nanomedicine,2014,9:4135-4143

    • [33] NIVEDHITHA SUNDARAM M,SOWMYA S,DEEPTHI S,et al.Bilayered construct for simultaneous regeneration of alveolar bone and periodontal ligament[J].J Biomed Mater Res B Appl Biomater,2016,104(4):761-770

    • [34] QIAN Y,ZHOU X,ZHANG F,et al.Triple PLGA/PCL scaffold modification including silver⁃impregnation,colla⁃ gen⁃coating,and electrospinning significantly improve bio⁃ compatibility,antimicrobial,and osteogenic properties for oro ⁃facial tissue regeneration[J].ACS Appl Mater Inter⁃ faces,2019,11(41):37381-37396

    • [35] SHU Z,ZHANG C,YAN L,et al.Antibacterial and osteo⁃ conductive polycaprolactone/polylactic acid/nano ⁃ hy⁃ droxyapatite/Cu@ZIF ⁃8 GBR membrane with asymmetric porous structure[J].Int J Biol Macromol,2023,224:1040-1051

    • [36] 周和阳,吕佳欣,刘栋宇,等.美学区种植同期引导骨再生术骨替代材料留存率的相关因素分析[J].南京医科大学学报(自然科学版),2023,43(3):380-385