en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

蒋雷,E-mail:racheljl@126.com

中图分类号:R114

文献标识码:A

文章编号:1007-4368(2023)09-1194-07

DOI:10.7655/NYDXBNS20230902

参考文献 1
余翠,武琳,陈忠,等.双酚S对高脂饮食斑马鱼脂代谢的影响及机制[J].南京医科大学学报(自然科学版),2020,40(7):981-985
参考文献 2
CHEN Y,FANG J,REN L,et al.Urinary bisphenol ana⁃ logues and triclosan in children from south China and implications for human exposure[J].Environ Pollut,2018,238:299-305
参考文献 3
WANG J,YU P,XIE X,et al.Bisphenol F induces non⁃ alcoholic fatty liver disease ⁃like changes:involvement of lysosome disorder in lipid droplet deposition[J].Environ Pollut,2021,271:116304
参考文献 4
GU J,GUO M,YIN X,et al.A systematic comparison of neurotoxicity of bisphenol A and its derivatives in zebra ⁃ fish[J].Sci Total Environ,2022,805:150210
参考文献 5
HAO K,LUO J,SUN J,et al.Associations of urinary bisphenol A and its alternatives bisphenol S and F con⁃ centrations with depressive symptoms among adults[J].Chemosphere,2021,279:130573
参考文献 6
KENDRICK T,COLLINSON S.Antidepressants and the serotonin hypothesis of depression[J].BMJ,2022,378:o1993
参考文献 7
CHEN Z,LUO J,LI J,et al.Intestinal IL ⁃ 33 promotes platelet activity for neutrophil recruitment during acute inflammation[J].Blood,2022,139(12):1878-1891
参考文献 8
DENG Y,ZHOU M,WANG J,et al.Involvement of the microbiota ⁃gut ⁃brain axis in chronic restraint stress:dis⁃turbances of the kynurenine metabolic pathway in both the gut and brain[J].Gut Microbes,2021,13(1):1-16
参考文献 9
SCHULPIS K H,PAPASSOTIRIOU I,VOUNATSOU M,et al.Morning preprandial plasma ghrelin and catechola ⁃ mine concentrations in patients with phenylketonuria and normal controls:evidence for catecholamine ⁃ mediated ghrelin regulation[J].J Clin Endocrinol Metab,2004,89(8):3983-3987
参考文献 10
YE X,WONG L Y,KRAMER J,et al.Urinary concentra⁃ tions of bisphenol a and three other bisphenols in conve⁃ nience samples of U.S.adults during 2000⁃2014[J].Envi⁃ ron Sci Technol,2015,49(19):11834-11839
参考文献 11
WANG Z,YU J,YAO J,et al.Simultaneous identification and quantification of bisphenol A and 12 bisphenol ana⁃ logues in environmental samples using precolumn⁃ derivatization and ultra high performance liquid chroma⁃ tography with tandem mass spectrometry[J].J Sep Sci,2018,41(10):2269-2278
参考文献 12
ELDEFRAWY F,XU H,PUSCH E,et al.Modulation of folliculogenesis in adult laying chickens by bisphenol A and bisphenol S:perspectives on ovarian morphology and gene expression[J].Reprod Toxicol,2021,103:181-190
参考文献 13
WANG Y,AIMUZI R,NIAN M,et al.Bisphenol A substi⁃ tutes and sex hormones in children and adolescents[J].Chemosphere,2021,278:130396
参考文献 14
YANG P,LIN B G,ZHOU B,et al.Sex⁃specific associa⁃ tions of prenatal exposure to bisphenol A and its alterna⁃ tives with fetal growth parameters and gestational age[J].Environ Int,2021,146:106305
参考文献 15
HAO K,LUO J,SUN J,et al.Associations of urinary bisphenol A and its alternatives bisphenol S and F con⁃ centrations with depressive symptoms among adults[J].Chemosphere,2021,279:130573
参考文献 16
OHTANI N,IWANO H,SUDA K,et al.Adverse effects of maternal exposure to bisphenol F on the anxiety⁃ and de⁃ pression ⁃ like behavior of offspring[J].J Vet Med Sci,2017,79(2):432⁃439
参考文献 17
CARAZO⁃ARIAS E,NGUYEN P T,KASS M,et al.Con⁃ tribution of the opioid system to the antidepressant effects of fluoxetine[J].Biol Psychiatry,2022,92(12):952-963
参考文献 18
MASLEJ M M,FURUKAWA T A,CIPRIANI A,et al.In⁃ dividual differences in response to antidepressants:a meta ⁃analysis of placebo ⁃controlled randomized clinical trials [J].JAMA Psychiatry,2021,78(5):490-497
参考文献 19
TEUNIS C,NIEUWDORP M,HANSSEN N.Interactions between tryptophan metabolism,the gut microbiome and the immune system as potential drivers of non ⁃ alcoholic fatty liver disease(NAFLD)and metabolic diseases[J].Metabolites,2022,12(6):514
参考文献 20
HAROON E,WELLE J R,WOOLWINE B J,et al.Asso⁃ ciations among peripheral and central kynurenine path⁃ way metabolites and inflammation in depression[J].Neu⁃ ropsychopharmacology,2020,45(6):998-1007
参考文献 21
REINA⁃PÉREZ I,OLIVAS⁃MARTÍNEZ A,MUSTIELES V,et al.The mixture of bisphenol⁃A and its substitutes bisphenol ⁃ S and bisphenol ⁃ F exerts obesogenic activity on human adipose⁃derived stem cells[J].Toxics,2022,10(6):287
参考文献 22
NGUYEN H D.Resveratrol,endocrine disrupting chemi⁃ cals,neurodegenerative diseases and depression:genes,transcription factors,microRNAs,and sponges involved [J].Neurochem Res,2023,48(2):604-624
参考文献 23
MUSACHIO E A S,ARAUJO S M,BORTOLOTTO V C,et al.Bisphenol A exposure is involved in the develop⁃ ment of Parkinson like disease in drosophila melanogaster [J].Food Chem Toxicol,2020,137:111128
参考文献 24
LU K,HONG Y,TAO M,et al.Depressive patient ⁃ de⁃ rived GABA interneurons reveal abnormal neural activity associated with HTR2C[J].EMBO Mol Med,2023,15(1):e16364
参考文献 25
CHEN M H,CHENG C M,GUEORGUIEVA R,et al.Maintenance of antidepressant and antisuicidal effects by D⁃cycloserine among patients with treatment⁃resistant de⁃ pression who responded to low ⁃dose ketamine infusion:a double⁃blind randomized placebo⁃control study[J].Neu⁃ ropsychopharmacology,2019,44(12):2112-2118
参考文献 26
WU Q,TANG J,QI C,et al.Higher glutamatergic activity in the medial prefrontal cortex in chronic ketamine users [J].J Psychiatry Neurosci,2022,47(4):263-271
目录contents

    摘要

    目的:探讨双酚F(bisphenol F,BPF)对肝脏中色氨酸(tryptophan,TRP)及酪氨酸(tyrosine,TYR)代谢的影响,阐明其代谢稳态扰乱后神经递质的代谢特点。方法:SPF级C57BL/6J小鼠经灌胃给予不同浓度的BPF[40、400、4000 μg/(kg·d)],连续灌胃30 d,通过超高效液相色谱-串联质谱(ultra-high-performance liquid chromatography-tandem mass spectrometry,UHPLC-MS/ MS)法观察BPF暴露后小鼠肝脏TRP、TYR来源神经递质代谢特点及水平的改变。结果:BPF暴露后引起小鼠肝脏TRP、TYR 水平下降,其中 TRP 代谢途径的神经递质 5-羟色胺(5-hydroxytryptamine,5-HT)水平明显下降,相反,犬尿氨酸(kynurenine, KYN)水平显著上升;TYR代谢途径中,TYR及其代谢产物多巴胺(dopamine,DA)水平显著下降;其他兴奋性神经递质如谷氨酸(glutamate,GLU)、γ-氨基丁酸(γ-aminobutyric acid,GABA)、天冬氨酸(aspartic acid,ASP)、甘氨酸(glycine,GLY)水平亦明显降低。结论:BPF暴露可抑制TRP、TYR及多个兴奋性神经递质的代谢,促进TRP通路中5-HT向KYN代谢转化,对肝脏神经递质代谢的探讨可为BPF持续暴露导致的肝脏及神经精神性病变提供依据。

    Abstract

    Objective:To investigate the effects of bisphenol F(BPF)on the tryptophan(TRP)and tyrosine(TYR)- derived neurotransmitter metabolism in the liver,elucidating the metabolic characteristics of the neurotransmitter disturbance elicited by BPF. Methods:The SPF C57BL/6J mice were administrated with different concentrations of BPF[40,400,4000 μg/(kg·d)]by gavage for 30 consecutive days,and the ultra -high -performance liquid chromatography -tandem mass spectrometry(UHPLC -MS/MS)assay was used to examine the characteristics and levels of TRP and TYR - derived neurotransmitters in the mouse livers after BPF exposure. Results:The levels of TRP and TYR in mouse livers were significantly decreased after BPF exposure ,and 5-hydroxytryptamine (5 - HT)was significantly decreased,while kynurine(KYN),another key metabolite of the TRP metabolic pathway,significantly increased. For the TYR metabolism,TYR and its metabolite dopamine(DA)obviously decreased;meanwhile,other excitatory neurotransmitters,such as glutamate(GLU),γ - aminobutyric acid(GABA),aspartic acid(ASP)and glycine(GLY),dramatically decreased. Conclusion:BPF exposure can decrease the levels of TRP,TYR and several other excitatory neurotransmitters,and promote the metabolic transformation of 5-HT into KYN in the TRP pathway. Therefore,the current study on the metabolism of hepatic neurotransmitters provides novel evidence for the liver and neuropsychiatric diseases caused by continuous exposure to BPF.

  • 双酚A(bisphenol A,BPA)在工业上被广泛用来合成聚碳酸酯和环氧树脂等材料,随着BPA毒性被不断揭示、相关不良事件被曝光,全球许多国家和地区纷纷出台法律法规限制BPA的使用[1]。为应对监管措施,近年来一些双酚类化合物(bisphenol, BP),如双酚 F(bisphenol F,BPF)、双酚 S(bisphenol S,BPS)和双酚AF(bisphenol AF,BPAF)作为BPA的替代品逐渐被大量生产和使用[2],因此,其安全性的研究尤为重要。近年来,作为最广泛使用的BPA替代物BPF,其潜在的健康危害逐渐被人们认识。研究显示,BPF具有典型的内分泌干扰作用,不仅可引起胰岛素分泌异常,引发外周胰岛素抵抗,导致非酒精性脂肪肝样改变[3],同时亦可产生中枢神经系统毒性,引起认知损伤[4]。这些结果为外周系统紊乱引发中枢神经系统损伤提供了合理解释。近年来,环境内分泌干扰物暴露与精神性疾病发生的关联引发了人们的高度关注,既往研究显示,BPA 暴露可引发抑郁样改变[5],但其机制仍不清楚。因而,基于BPF与BPA结构的相似性,本研究系统探讨了肝脏这一最大的外周代谢器官在 BPF 暴露后神经递质代谢的改变情况,以期为后续可能引发的精神性及肝脏性疾病提供依据。

  • 1 材料和方法

  • 1.1 材料

  • SPF 级 C57BL/6J 雄性小鼠(6 周龄)购自南京医科大学医药实验动物中心。小鼠在具有适宜温度(22 ± 1)℃与湿度(55 ± 5)%的屏障环境中适应性饲养,光照12 h,黑暗12 h,并自由进食、进水。适应 1 周后,行 BPF 灌胃染毒,分为对照组和 40、400、 4 000 μg/(kg·d)BPF 处理组,每组 8 只,连续灌胃 30 d后,取其肝脏,进行后续检测。

  • 色氨酸(tryptophan,TRP)、5⁃羟色胺(5⁃hydroxy⁃ tryptamine,5⁃HT)、3⁃羟基犬尿氨酸(3⁃hydroxycanin⁃ uric acid,3⁃HK)、3⁃羟基邻氨基苯甲酸(3⁃hydroxyan⁃ thranilic acid,3⁃HAA)、5⁃羟基吲哚乙酸(5⁃hydroxy⁃ indoleacetic acid,5⁃HIAA)、N⁃乙酰⁃5⁃羟色胺(N⁃ace⁃ tyl serotonin,NAS)、褪黑素(melatonin,MLT)、γ⁃氨基丁酸(γ ⁃ aminobutyric acid,GABA)、谷氨酸(gluta⁃ mate,GLU)、甘氨酸(glycine,GLY)、酪氨酸(tyro⁃ sine,TYR)、左旋多巴(levodopa,L⁃DOPA)、去甲肾上腺素(norepinephrine,NE)、肾上腺素(adrenaline, E)、高香草酸(homovanillic acid,HVA)、3,4⁃二羟基 3⁃苯乙酸(3,4⁃dihydroxyphenylacetic acid,DOPAC)、3 ⁃甲氧基⁃4⁃羟苯乙二醇(3⁃methoxy⁃4⁃hydroxyphenyl⁃ glycol,MHPG)、犬尿氨酸(kynurenine,KYN)、天冬氨酸(aspartic acid,ASP)等标准品(Sigma Aldich 公司,美国),丹磺酰氯(Tokyo Chemical Industry公司,日本)。Ultimate3000超高效液相色谱仪系统、Q Ex⁃ ac⁃tive四级杆轨道阱高分辨质谱仪(赛默飞世尔科技公司,美国),低温离心浓缩富集系统(Labconco公司,美国),组织研磨仪TissueLyser Ⅱ(Dusseldorf 公司,德国),生物样品均质仪(杭州奥盛),微量加样器(RAININ公司,瑞士)。

  • 1.2 方法

  • 1.2.1 样本前处理与检测

  • 称取约 10 mg 肝脏样本于 1.5 mL 离心管中,加入500 μL冰萃取液(甲醇∶水体积比为3∶1),50 μL 混合内标溶液及不锈钢珠(直径=3 mm),于组织匀浆仪 TissueLyser Ⅱ中进行均质化,持续 15 min,重复 2 次,加入 50 μL 混合内标溶液和 400 μL 甲醇,涡旋1 min 后18 000 r/min、4℃高速离心10 min,充分沉淀蛋白。后将上清转移至另一 1.5 mL 离心管中并置于低温真空离心浓缩富集系统中挥干。挥干后加入 50 μL 丹磺酰氯溶液(2 mg/mL,溶于丙酮)和 50 μL 碳酸氢钠溶液(pH=11、2 mol/L),充分涡旋后置于 60℃水浴锅中进行衍生化反应8 min,随后18 000 r/min、4℃高速离心 10 min,取 60 μL 上清液于棕色进样小瓶中,超高效液相色谱⁃串联质谱 (ultra ⁃ high ⁃ performance liquid chromatography ⁃ tan⁃ dem mass spectrometry,UHPLC⁃MS/MS)检测时进样量为5 μL。

  • 1.2.2 色谱与质谱仪器检测条件

  • 仪器检测系统由Ultimate3000超高效液相色谱仪串联Q Exactive四级杆轨道阱高分辨质谱仪组成,选用 Acquity BEH ⁃C18 色谱柱(100.0 mm×2.1 mm, 1.7 μm),柱温为 35℃。使用流动相 A(乙腈+0.1% 甲酸)和 B(水+0.1%甲酸)进行梯度洗脱,流速为 0.25 mL/min。质谱采用加热电喷雾电离源进行离子化,利用平行反应监测模式进行定量分析。仪器控制、数据采集与分析使用XCalibur 2.2。

  • 1.3 统计学方法

  • 使用SPSS 20.0软件进行实验数据的统计与分析,GraphPad Prism 7.0进行统计图的绘制。符合正态分布的定量资料表示为均数±标准差(x-±s)。多组间定量资料比较采用单因素方差分析(one⁃way ANOVA),两两比较采用 LSD 法,P<0.05 为差异有统计学意义。

  • 2 结果

  • 2.1 BPF暴露对小鼠肝脏TRP来源5⁃HT途径神经递质代谢的影响

  • 5 ⁃HT代谢是TRP代谢的重要通路,其紊乱可导致外周及中枢多种疾病的发生[6-7]。不同浓度的 BPF[0、40、400、4 000 μg/(kg·d)]暴露后,与对照组比较,低、中、高浓度BPF暴露组小鼠肝脏中的TRP浓度均显著下降;进一步检测其下游代谢产物5⁃HT,发现低浓度BPF暴露组中5⁃HT显著下降,中浓度BPF 暴露组5⁃HT有下降的趋势,但未呈现明显差异;对 5⁃HT下游代谢产物深入探讨,发现与对照组比较, BPF暴露组5⁃HIAA、NAS、MLT等5⁃HT代谢产物差异均无统计学意义(图1)。

  • 2.2 BPF暴露对小鼠肝脏TRP来源KYN途径神经递质代谢的影响

  • 进一步,对TRP另一关键代谢通路KYN进行检测[8],结果显示,与对照组比较,KYN在BPF暴露后明显上升,且随BPF暴露水平的增高而升高。对其下游代谢产物深入分析发现,与对照组比较,尽管 BPF 暴露组 3⁃HK 及 3⁃HAA 的差异无统计学意义,但有上升趋势(图2),说明BPF暴露后,TRP代谢途径引起在KYN这一层面积聚。明显上升,且随BPF暴露水平的增高而升高。对其下游代谢产物深入分析发现,与对照组比较,尽管 BPF 暴露组 3⁃HK 及 3⁃HAA 的差异无统计学意义,但有上升趋势(图2),说明BPF暴露后,TRP代谢途径引起在KYN这一层面积聚。

  • 2.3 BPF 暴露对小鼠肝脏 TYR 来源多巴胺(dopa⁃ mine,DA)途径神经递质代谢的影响

  • DA 代谢通路是 TYR 代谢的重要途径,在精神性、中枢性疾病中发挥重要的调节作用[9]。本研究发现,BPF连续暴露30 d后,与对照组比较,TYR在低浓度 BPF 暴露组中的浓度明显下降,在中、高浓度 BPF暴露组呈现下降趋势;与对照组比较,DA在低、中浓度BPF暴露组中呈现明显下降作用;TYR代谢产物L⁃DOPA 虽未出现显著性差异,但均表现出上升趋势;DA的代谢产物DOPAC在低、中浓度BPF暴露组表现为下降趋势,而HVA在BPF暴露组中,均出现上升趋势(图3)。上述结果表明,BPF 暴露导致小鼠肝脏中TYR来源DA代谢途径的紊乱。

  • 图1 不同浓度BPF暴露对小鼠肝脏中5⁃HT代谢途径的影响

  • Figure1 Effects of BPF exposure with varied concentrations on hepatic 5⁃HT metabolic pathway

  • 图2 不同浓度BPF暴露对小鼠肝脏中KYN代谢途径的影响

  • Figure2 Effects of BPF exposure with varied concentrations on hepatic KYN metabolic pathway

  • 2.4 BPF暴露对小鼠肝脏TYR来源NE途径神经递质代谢的影响

  • 进一步,针对 TYR 代谢的另一关键通路 NE 进行探索,发现BPF暴露后,与对照组比较,BPF暴露的各组小鼠肝脏中的下游代谢产物如NE、E及MHPG 均显示下降趋势(图4),说明 BPF 暴露后,NE 代谢途径可能被抑制。

  • 2.5 BPF 暴露对小鼠肝脏兴奋性神经递质代谢的影响

  • 兴奋性神经递质在调节个体情绪及精神性疾病中发挥重要作用。既往研究显示,BPA暴露引起小鼠抑郁样改变[5]。因此,该研究观察了不同浓度 BPF 暴露后,神经递质 GLU、GABA、GLY 和 ASP 水平的变化。与对照组比较,BPF暴露能显著降低兴奋性神经递质在小鼠肝脏中的水平,GLU 含量降低,其下游代谢产物GABA同样显示出与GLU代谢完全一致的趋势,表现为在各BPF浓度暴露组中水平的降低;此外,作为NMDA受体重要的调节因子, BPF暴露引发GLY浓度降低,另一重要的兴奋性中枢神经递质ASP在BPF的暴露下也有明显下降(图 5),提示BPF亚急性暴露对于兴奋性神经递质具有明显的抑制作用。

  • 3 讨论

  • 美国疾病预防控制中心环境健康部门的一项针对 616 例普通人群在 2000—2014 年中 BPA 及其替代物在该人群暴露的前瞻性研究显示,74%~99% 的尿液样本中可检测到BPA,42%~88%的人群中可检测出 BPF,而 19%~74%的人群中可检测出 BPS。值得关注的是,BPA在该人群中的暴露水平随年份呈下降趋势,而2010年后BPS和BPF的暴露水平呈明显上升趋势[10]。本课题组前期针对水体及空气灰尘,对 12 种双酚类化学物进行外暴露水平的评估,发现BPF无论在水体还是空气灰尘中的含量均超过了BPA[11]。因此,BPF暴露可能带来潜在健康危害亟需大量证据的支持。双酚类化学物的剂量⁃ 效应关系并不遵循线性关系,在剂量选择中,本研究参考了美国国家环境保护局确立的 BPA 安全剂量[50 μg/(kg·d)][12],选择了与该剂量同一量级的 40 μg/(kg·d)为最低剂量,同时设定中剂量和高剂量组,旨在了解 BPF 暴露引起神经递质紊乱的剂量。本研究发现与BPA类似,BPF引起的神经递质改变多表现为低、高剂量引起的较为典型的U型效应关系,这与BPF 暴露水平与女童及青少年女性游离雄激素水平呈现U型剂量关系[13] 以及母亲BPF孕期暴露水平与女性胎儿出生体长、生长呈非线性关系的现象一致[14]

  • 图3 不同浓度BPF暴露对小鼠肝脏中DA代谢途径的影响

  • Figure3 Effects of BPF exposure with varied concentrations on hepatic DA metabolic pathway

  • 图4 不同浓度BPF暴露对小鼠肝脏中NE代谢途径的影响

  • Figure4 Effects of BPF exposure with varied concentrations on hepatic NE metabolic pathway

  • 图5 不同浓度BPF暴露对小鼠肝脏中多种兴奋性神经递质的影响

  • Figure5 Effects of BPF exposure with varied concentrations on the excitatory neurotransmitters in mouse liver

  • 近期,有学者对来自美国国家健康与营养调查数据进行分析,发现尿液中双酚系化学物的外暴露水平与抑郁的发生呈正相关[15];在动物层面,BPF 孕期暴露后,其子代成年后表现出明显的抑郁焦虑样改变[16],然而其机制仍不清楚。研究显示,神经递质失调是精神性疾病如抑郁、焦虑发生的重要原因,目前针对抑郁的治疗更是立足神经递质的干预,采用5⁃HT、NE等再摄取抑制剂,进而提高突触间隙5⁃HT及NE的水平,达到治疗的目的[17-18]。既往对神经递质的研究多数集中于中枢神经系统,近期,外周神经递质紊乱引发的疾病越来越受到关注。最近研究发现,KYN作为TRP代谢的下游关键通路,炎性因子激活 KYN 生成关键酶 IDO⁃1 后,可引发非酒精性脂肪肝样改变[19];此外,KYN 在血清中升高被证明与抑郁发生密切相关,该过程通过 IDO⁃1或TDO关键酶的高表达或激活,实现TRP从 5⁃HT向KYN代谢的转化(图6)。有意思的是,80% 的 KYN 均来自肝脏,而脑中 60%以上的 KYN 来自外周[20],因此,BPF 暴露对肝脏 KYN 水平的影响尤为重要。本研究结果显示,BPF暴露后小鼠肝脏中 TRP水平显著下降,5⁃HT水平下降,尤其在低浓度 BPF 暴露后,这可能与双酚类化学物暴露后产生U 型反应相关,提示在较低浓度作用下,即可产生较明显的损伤效应[21]。值得关注的是,BPF暴露后,肝脏中的KYN水平明显增加,提示BPF促进了TRP从 5⁃HT 代谢途径向 KYN 代谢途径的转化,可能导致外周KYN水平升高;针对TYR代谢途径,本研究发现 BPF 暴露后,肝脏中 TYR 含量降低,其下游关键代谢产物DA 水平显著下调,本研究结果与BPA 暴露后DA下降导致的抑郁等精神性疾病及帕金森样改变的结果一致[22-23]。与 5⁃HT、DA 等关键神经递质一致的是,肝脏中NE及E的含量亦表现出下降趋势,这为双酚类化学物暴露作为精神性疾病发生的环境危险因素提供了部分解释。值得一提的是, BPF 暴露降低了肝脏中兴奋性神经递质的代谢水平,表现为 GLU、GABA、GLY 及 ASP 4 种神经递质同时下降。研究显示,GLU、GABA、GLY 及 ASP 与 N⁃甲基⁃D⁃天冬氨酸(NMDA)等受体结合,在维持神经兴奋性方面发挥极为重要的作用,抑郁自杀患者尸检的脑组织中的GABA水平明显降低[24];此外, D⁃环丝氨酸与 GLY 共同激活 NMDA 受体发挥抑郁症强化治疗作用[25],而严重抑郁症采用氯胺酮的治疗则基于其增强谷氨酸能活性[26],这些研究均显示,兴奋性神经递质的干预可作为临床抑郁或其他精神性疾病的潜在干预方案,同时亦证明了 BPF 长期暴露通过抑制兴奋性神经递质的水平引发精神类疾病的可能。值得注意的是,本研究亦有一些不足之处,如BPF暴露引起的神经递质改变会引发何种下游生物学效应?同时,BPF引起的神经递质改变未能通过药理学或敲除动物进一步验证,导致BPF引起神经递质改变的因果关系还不够明确,后期将借助腺相关病毒或敲除小鼠模型探讨关键代谢酶在BPF引起神经递质改变中的作用。

  • 图6 TRP、TYR及兴奋性神经递质的代谢图

  • Figure6 Metabolic profiles of TRP,TYR and excitatory neurotransmitters

  • 总之,本研究系统观察到BPF亚急性暴露引起肝脏中神经递质代谢紊乱。肝脏作为最重要的代谢器官之一,其神经递质代谢异常可为外周神经递质紊乱引发精神性疾病提供解释,同时提示了BPF暴露引发精神疾病的风险,后续将围绕“肝⁃脑轴”,进一步揭示BPF暴露引起外周神经递质紊乱对中枢神经递质的影响及引起潜在精神性疾病的作用及机制。

  • 参考文献

    • [1] 余翠,武琳,陈忠,等.双酚S对高脂饮食斑马鱼脂代谢的影响及机制[J].南京医科大学学报(自然科学版),2020,40(7):981-985

    • [2] CHEN Y,FANG J,REN L,et al.Urinary bisphenol ana⁃ logues and triclosan in children from south China and implications for human exposure[J].Environ Pollut,2018,238:299-305

    • [3] WANG J,YU P,XIE X,et al.Bisphenol F induces non⁃ alcoholic fatty liver disease ⁃like changes:involvement of lysosome disorder in lipid droplet deposition[J].Environ Pollut,2021,271:116304

    • [4] GU J,GUO M,YIN X,et al.A systematic comparison of neurotoxicity of bisphenol A and its derivatives in zebra ⁃ fish[J].Sci Total Environ,2022,805:150210

    • [5] HAO K,LUO J,SUN J,et al.Associations of urinary bisphenol A and its alternatives bisphenol S and F con⁃ centrations with depressive symptoms among adults[J].Chemosphere,2021,279:130573

    • [6] KENDRICK T,COLLINSON S.Antidepressants and the serotonin hypothesis of depression[J].BMJ,2022,378:o1993

    • [7] CHEN Z,LUO J,LI J,et al.Intestinal IL ⁃ 33 promotes platelet activity for neutrophil recruitment during acute inflammation[J].Blood,2022,139(12):1878-1891

    • [8] DENG Y,ZHOU M,WANG J,et al.Involvement of the microbiota ⁃gut ⁃brain axis in chronic restraint stress:dis⁃turbances of the kynurenine metabolic pathway in both the gut and brain[J].Gut Microbes,2021,13(1):1-16

    • [9] SCHULPIS K H,PAPASSOTIRIOU I,VOUNATSOU M,et al.Morning preprandial plasma ghrelin and catechola ⁃ mine concentrations in patients with phenylketonuria and normal controls:evidence for catecholamine ⁃ mediated ghrelin regulation[J].J Clin Endocrinol Metab,2004,89(8):3983-3987

    • [10] YE X,WONG L Y,KRAMER J,et al.Urinary concentra⁃ tions of bisphenol a and three other bisphenols in conve⁃ nience samples of U.S.adults during 2000⁃2014[J].Envi⁃ ron Sci Technol,2015,49(19):11834-11839

    • [11] WANG Z,YU J,YAO J,et al.Simultaneous identification and quantification of bisphenol A and 12 bisphenol ana⁃ logues in environmental samples using precolumn⁃ derivatization and ultra high performance liquid chroma⁃ tography with tandem mass spectrometry[J].J Sep Sci,2018,41(10):2269-2278

    • [12] ELDEFRAWY F,XU H,PUSCH E,et al.Modulation of folliculogenesis in adult laying chickens by bisphenol A and bisphenol S:perspectives on ovarian morphology and gene expression[J].Reprod Toxicol,2021,103:181-190

    • [13] WANG Y,AIMUZI R,NIAN M,et al.Bisphenol A substi⁃ tutes and sex hormones in children and adolescents[J].Chemosphere,2021,278:130396

    • [14] YANG P,LIN B G,ZHOU B,et al.Sex⁃specific associa⁃ tions of prenatal exposure to bisphenol A and its alterna⁃ tives with fetal growth parameters and gestational age[J].Environ Int,2021,146:106305

    • [15] HAO K,LUO J,SUN J,et al.Associations of urinary bisphenol A and its alternatives bisphenol S and F con⁃ centrations with depressive symptoms among adults[J].Chemosphere,2021,279:130573

    • [16] OHTANI N,IWANO H,SUDA K,et al.Adverse effects of maternal exposure to bisphenol F on the anxiety⁃ and de⁃ pression ⁃ like behavior of offspring[J].J Vet Med Sci,2017,79(2):432⁃439

    • [17] CARAZO⁃ARIAS E,NGUYEN P T,KASS M,et al.Con⁃ tribution of the opioid system to the antidepressant effects of fluoxetine[J].Biol Psychiatry,2022,92(12):952-963

    • [18] MASLEJ M M,FURUKAWA T A,CIPRIANI A,et al.In⁃ dividual differences in response to antidepressants:a meta ⁃analysis of placebo ⁃controlled randomized clinical trials [J].JAMA Psychiatry,2021,78(5):490-497

    • [19] TEUNIS C,NIEUWDORP M,HANSSEN N.Interactions between tryptophan metabolism,the gut microbiome and the immune system as potential drivers of non ⁃ alcoholic fatty liver disease(NAFLD)and metabolic diseases[J].Metabolites,2022,12(6):514

    • [20] HAROON E,WELLE J R,WOOLWINE B J,et al.Asso⁃ ciations among peripheral and central kynurenine path⁃ way metabolites and inflammation in depression[J].Neu⁃ ropsychopharmacology,2020,45(6):998-1007

    • [21] REINA⁃PÉREZ I,OLIVAS⁃MARTÍNEZ A,MUSTIELES V,et al.The mixture of bisphenol⁃A and its substitutes bisphenol ⁃ S and bisphenol ⁃ F exerts obesogenic activity on human adipose⁃derived stem cells[J].Toxics,2022,10(6):287

    • [22] NGUYEN H D.Resveratrol,endocrine disrupting chemi⁃ cals,neurodegenerative diseases and depression:genes,transcription factors,microRNAs,and sponges involved [J].Neurochem Res,2023,48(2):604-624

    • [23] MUSACHIO E A S,ARAUJO S M,BORTOLOTTO V C,et al.Bisphenol A exposure is involved in the develop⁃ ment of Parkinson like disease in drosophila melanogaster [J].Food Chem Toxicol,2020,137:111128

    • [24] LU K,HONG Y,TAO M,et al.Depressive patient ⁃ de⁃ rived GABA interneurons reveal abnormal neural activity associated with HTR2C[J].EMBO Mol Med,2023,15(1):e16364

    • [25] CHEN M H,CHENG C M,GUEORGUIEVA R,et al.Maintenance of antidepressant and antisuicidal effects by D⁃cycloserine among patients with treatment⁃resistant de⁃ pression who responded to low ⁃dose ketamine infusion:a double⁃blind randomized placebo⁃control study[J].Neu⁃ ropsychopharmacology,2019,44(12):2112-2118

    • [26] WU Q,TANG J,QI C,et al.Higher glutamatergic activity in the medial prefrontal cortex in chronic ketamine users [J].J Psychiatry Neurosci,2022,47(4):263-271

  • 参考文献

    • [1] 余翠,武琳,陈忠,等.双酚S对高脂饮食斑马鱼脂代谢的影响及机制[J].南京医科大学学报(自然科学版),2020,40(7):981-985

    • [2] CHEN Y,FANG J,REN L,et al.Urinary bisphenol ana⁃ logues and triclosan in children from south China and implications for human exposure[J].Environ Pollut,2018,238:299-305

    • [3] WANG J,YU P,XIE X,et al.Bisphenol F induces non⁃ alcoholic fatty liver disease ⁃like changes:involvement of lysosome disorder in lipid droplet deposition[J].Environ Pollut,2021,271:116304

    • [4] GU J,GUO M,YIN X,et al.A systematic comparison of neurotoxicity of bisphenol A and its derivatives in zebra ⁃ fish[J].Sci Total Environ,2022,805:150210

    • [5] HAO K,LUO J,SUN J,et al.Associations of urinary bisphenol A and its alternatives bisphenol S and F con⁃ centrations with depressive symptoms among adults[J].Chemosphere,2021,279:130573

    • [6] KENDRICK T,COLLINSON S.Antidepressants and the serotonin hypothesis of depression[J].BMJ,2022,378:o1993

    • [7] CHEN Z,LUO J,LI J,et al.Intestinal IL ⁃ 33 promotes platelet activity for neutrophil recruitment during acute inflammation[J].Blood,2022,139(12):1878-1891

    • [8] DENG Y,ZHOU M,WANG J,et al.Involvement of the microbiota ⁃gut ⁃brain axis in chronic restraint stress:dis⁃turbances of the kynurenine metabolic pathway in both the gut and brain[J].Gut Microbes,2021,13(1):1-16

    • [9] SCHULPIS K H,PAPASSOTIRIOU I,VOUNATSOU M,et al.Morning preprandial plasma ghrelin and catechola ⁃ mine concentrations in patients with phenylketonuria and normal controls:evidence for catecholamine ⁃ mediated ghrelin regulation[J].J Clin Endocrinol Metab,2004,89(8):3983-3987

    • [10] YE X,WONG L Y,KRAMER J,et al.Urinary concentra⁃ tions of bisphenol a and three other bisphenols in conve⁃ nience samples of U.S.adults during 2000⁃2014[J].Envi⁃ ron Sci Technol,2015,49(19):11834-11839

    • [11] WANG Z,YU J,YAO J,et al.Simultaneous identification and quantification of bisphenol A and 12 bisphenol ana⁃ logues in environmental samples using precolumn⁃ derivatization and ultra high performance liquid chroma⁃ tography with tandem mass spectrometry[J].J Sep Sci,2018,41(10):2269-2278

    • [12] ELDEFRAWY F,XU H,PUSCH E,et al.Modulation of folliculogenesis in adult laying chickens by bisphenol A and bisphenol S:perspectives on ovarian morphology and gene expression[J].Reprod Toxicol,2021,103:181-190

    • [13] WANG Y,AIMUZI R,NIAN M,et al.Bisphenol A substi⁃ tutes and sex hormones in children and adolescents[J].Chemosphere,2021,278:130396

    • [14] YANG P,LIN B G,ZHOU B,et al.Sex⁃specific associa⁃ tions of prenatal exposure to bisphenol A and its alterna⁃ tives with fetal growth parameters and gestational age[J].Environ Int,2021,146:106305

    • [15] HAO K,LUO J,SUN J,et al.Associations of urinary bisphenol A and its alternatives bisphenol S and F con⁃ centrations with depressive symptoms among adults[J].Chemosphere,2021,279:130573

    • [16] OHTANI N,IWANO H,SUDA K,et al.Adverse effects of maternal exposure to bisphenol F on the anxiety⁃ and de⁃ pression ⁃ like behavior of offspring[J].J Vet Med Sci,2017,79(2):432⁃439

    • [17] CARAZO⁃ARIAS E,NGUYEN P T,KASS M,et al.Con⁃ tribution of the opioid system to the antidepressant effects of fluoxetine[J].Biol Psychiatry,2022,92(12):952-963

    • [18] MASLEJ M M,FURUKAWA T A,CIPRIANI A,et al.In⁃ dividual differences in response to antidepressants:a meta ⁃analysis of placebo ⁃controlled randomized clinical trials [J].JAMA Psychiatry,2021,78(5):490-497

    • [19] TEUNIS C,NIEUWDORP M,HANSSEN N.Interactions between tryptophan metabolism,the gut microbiome and the immune system as potential drivers of non ⁃ alcoholic fatty liver disease(NAFLD)and metabolic diseases[J].Metabolites,2022,12(6):514

    • [20] HAROON E,WELLE J R,WOOLWINE B J,et al.Asso⁃ ciations among peripheral and central kynurenine path⁃ way metabolites and inflammation in depression[J].Neu⁃ ropsychopharmacology,2020,45(6):998-1007

    • [21] REINA⁃PÉREZ I,OLIVAS⁃MARTÍNEZ A,MUSTIELES V,et al.The mixture of bisphenol⁃A and its substitutes bisphenol ⁃ S and bisphenol ⁃ F exerts obesogenic activity on human adipose⁃derived stem cells[J].Toxics,2022,10(6):287

    • [22] NGUYEN H D.Resveratrol,endocrine disrupting chemi⁃ cals,neurodegenerative diseases and depression:genes,transcription factors,microRNAs,and sponges involved [J].Neurochem Res,2023,48(2):604-624

    • [23] MUSACHIO E A S,ARAUJO S M,BORTOLOTTO V C,et al.Bisphenol A exposure is involved in the develop⁃ ment of Parkinson like disease in drosophila melanogaster [J].Food Chem Toxicol,2020,137:111128

    • [24] LU K,HONG Y,TAO M,et al.Depressive patient ⁃ de⁃ rived GABA interneurons reveal abnormal neural activity associated with HTR2C[J].EMBO Mol Med,2023,15(1):e16364

    • [25] CHEN M H,CHENG C M,GUEORGUIEVA R,et al.Maintenance of antidepressant and antisuicidal effects by D⁃cycloserine among patients with treatment⁃resistant de⁃ pression who responded to low ⁃dose ketamine infusion:a double⁃blind randomized placebo⁃control study[J].Neu⁃ ropsychopharmacology,2019,44(12):2112-2118

    • [26] WU Q,TANG J,QI C,et al.Higher glutamatergic activity in the medial prefrontal cortex in chronic ketamine users [J].J Psychiatry Neurosci,2022,47(4):263-271