en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

覃健,E-mail:qinjian@njmu.edu.cn;

薛斌,xuebin@njmu.edu.cn

中图分类号:Q785

文献标识码:A

文章编号:1007-4368(2023)10-1366-06

DOI:10.7655/NYDXBNS20231005

参考文献 1
CONG L,RAN F A,COX D,et al.Multiplex genome engi⁃ neering using CRISPR/Cas systems[J].Science,2013,339(6121):819-823
参考文献 2
HILLE F,RICHTER H,WONG S P,et al.The biology of CRISPR ⁃cas:backward and forward[J].Cell,2018,172(6):1239-1259
参考文献 3
JINEK M,CHYLINSKI K,FONFARA I,et al.A program⁃ mable dual ⁃RNA ⁃guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337(6096):816-821
参考文献 4
曹俊霞,王友亮,王征旭,等.精准调控CRISPR/Cas9基因编辑技术研究进展[J].遗传,2020,42(12):1168-1177
参考文献 5
GUO N,LIU J B,LI W,et al.The power and the promise of CRISPR/Cas9 genome editing for clinical application with gene therapy[J].J Adv Res,2022,40:135-152
参考文献 6
朱浩然,张鑫,祁俊侠,等.利用双引导RNA的CRIS⁃ PR/Cas9 技术构建Nudt3基因敲除小鼠[J].南京医科大学学报(自然科学版),2021,41(7):949-955
参考文献 7
VITALI C,BAJAJ A,NGUYEN C,et al.A systematic review of the natural history and biomarkers of primary lecithin:cholesterol acyltransferase deficiency[J].J Lipid Res,2022,63(3):100169
参考文献 8
NORUM K R.The function of lecithin:cholesterol acyl⁃ transferase(LCAT)[J].Scand J Clin Lab Inv,2017,77(4):235-236
参考文献 9
PAVANELLO C,TURRI M,STRAZZELLA A,et al.The HDL mimetic CER⁃001 remodels plasma lipoproteins and reduces kidney lipid deposits in inherited lecithin:choles⁃ terol acyltransferase deficiency[J].J Intern Med,2022,291(3):364-370
参考文献 10
BARAGETTI A,OSSOLI A,STRAZZELLA A,et al.Low plasma lecithin:cholesterol acyltransferase(LCAT)con⁃ centration predicts chronic kidney disease[J].J Clin Med,2020,9(7):2289
参考文献 11
FLORES R,JIN X T,CHANG J,et al.LCAT,ApoD,and ApoA1 expression and review of cholesterol deposition in the cornea[J].Biomolecules,2019,9(12):785
参考文献 12
YAMAMURO D,YAMAZAKI H,OSUGA J I,et al.Este⁃ rification of 4β ⁃ hydroxycholesterol and other oxysterols in human plasma occurs independently of LCAT[J].J Lipid Res,2020,61(9):1287-1299
参考文献 13
KINOSHITA S,SUGITA S,YOSHIDA A.Corneal thick⁃ ness in the case of familial lecithin⁃cholesterol acyltrans⁃ ferase deficiency[J].Am J Ophthalmol Case Rep,2021,24:101211
参考文献 14
OSSOLI A,SIMONELLI S,VITALI C,et al.Role of LCAT in atherosclerosis[J].J Atheroscler Thromb,2016,23(2):119-127
参考文献 15
NASS K J,VAN DEN BERG E H,GRUPPEN E G,et al.Plasma lecithin:cholesterol acyltransferase and phospho⁃ lipid transfer protein activity independently associate with nonalcoholic fatty liver disease[J].Eur J Clin Invest,2018,48(9):12988
参考文献 16
LU K,SHI T S,SHEN S Y,et al.Defects in a liver⁃bone axis contribute to hepatic osteodystrophy disease progre ⁃ ssion[J].Cell Metab,2022,34(3):441-457
参考文献 17
MALI P,ESVELT K M,CHURCH G M.Cas9 as a versa⁃ tile tool for engineering biology[J].Nat Methods,2013,10(10):957-963
参考文献 18
DEVARAJU N,RAJENDIRAN V,RAVI N S,et al.Ge⁃ nome engineering of hematopoietic stem cells using CRIS⁃ PR/Cas9 system[J].Methods Mol Biol,2022,2429:307-331
参考文献 19
LYU C C,SHEN J,WANG R,et al.Targeted genome engineering in human induced pluripotent stem cells from patients with hemophilia B using the CRISPR⁃Cas9 system[J].Stem Cell Res Ther,2018,9(1):92
参考文献 20
VIKTÓRIA H,BALÁZS G.Genome engineering using the CRISPR ⁃Cas9 system and applications in cancer re⁃ search[J].Magyar Onkologia,2018,62(2):119-127
参考文献 21
SCARPIONI R,PATIES C,BERGONZI G.Dramatic atherosclerotic vascular burden in a patient with familial lecithin ⁃ cholesterol acyltransferase(LCAT)deficiency [J].Nephrol Dial Transplant,2008,23(3):1074
参考文献 22
GEBHARD C,RHAINDS D,HE G,et al.Elevated level of lecithin:cholesterol acyltransferase(LCAT)is associat⁃ ed with reduced coronary atheroma burden[J].Athero⁃ sclerosis,2018,276:131-139
参考文献 23
JANAC J,ZELJKOVIC A,JELIC ⁃ IVANOVIC Z,et al.The association between lecithin⁃cholesterol acyltransfer⁃ ase activity and fatty liver index[J].Ann Clin Biochem,2019,56(5):583-592
参考文献 24
FURBEE J W,PARKS J S.Transgenic overexpression of human lecithin:cholesterol acyltransferase(LCAT)in mice does not increase aortic cholesterol deposition[J].Atherosclerosis,2002,165(1):89-100
目录contents

    摘要

    目的:通过 CRISPR/Cas9 介导的基因编辑技术构建卵磷脂胆固醇脂酰转移酶(lecithin-cholesterol acyltransferase, LCAT)基因敲入C57BL/6小鼠并与肝脏特异性表达Cre的转基因小鼠配繁得到肝脏特异性敲入Lcat基因C57BL/6小鼠模型。为Lcat基因在肝脏相关代谢疾病发生机制的研究提供动物模型。方法:利用CRISPR/Cas9技术构建Lcat基因敲入小鼠;利用肝脏特异性表达Cre的转基因小鼠与Lcat基因敲入小鼠交配得到肝脏特异性敲入Lcat基因小鼠;通过PCR法鉴定小鼠的基因型 ;利用实时荧光定量 PCR(real-time quantitative PCR,qPCR)和 Western blot 技术验证 Lcat 基因的 mRNA 水平和蛋白水平。结果:PCR结果显示肝脏特异性敲入Lcat基因的小鼠模型构建成功;qPCR结果显示Lcat基因在肝脏中特异性高表达;WB结果显示,与对照组小鼠相比,LCAT蛋白在肝脏特异性敲入Lcat的小鼠肝脏中有明显更高的表达。结论:成功构建肝脏特异性敲入Lcat基因小鼠,为在动物水平探索Lcat基因在肝脏相关代谢疾病中的功能及相关发病机制提供研究平台。

    Abstract

    Objective:To construct lecithin - cholesterolacyl transferase(LCAT)knock -in mice by CRISPR/Cas9 - mediated gene editing and to obtain liver-specific overexpression of Lcat mice by mating with liver-specific Cre-expressing transgenic mice. Providing an animal model for the study of the mechanism of the Lcat gene in the development of liver-related metabolic diseases. Methods:Lcat knock -in mice were constructed by CRISPR/Cas9 technology;Liver - specific Cre- expressing transgenic mice were mated with Lcat knock -in mice to obtain liver -specific overexpressing Lcat mice;Genotyping mice by PCR;Quantitative real -time PCR(qPCR)and Western blot(WB)techniques were used to verify the expression of Lcat gene in C57BL/6 mice. Results:The PCR results showed that the liver-specific overexpression of Lcat gene in mice was successfully constructed;the qPCR results showed that the Lcat gene was specifically highly expressed in the liver,and the liver of knock -in mice showed higher Lcat expression;the WB results showed that LCAT protein was more highly expressed in the liver of liver-specific Lcat knock-in mice. Conclusion:Liver-specific overexpression of Lcat gene mice were successfully constructed,providing a platform for exploring the function of the Lcat gene at animal level in liver-related metabolic diseases and the associated pathogenesis.

  • 成簇规律间隔的短回文重复序列(clustered regularly interspaced short palindromic repeats, CRISPR)是一组广泛存在于细菌和古细菌中的DNA 序列,Cas 序列位于其附近,编码 CRISPR 相关蛋白 9(CRISPR⁃associated protein 9,Cas9)[1-2]。CRISPER/ Cas9 技术发现细菌中存在病毒的天然基因组编辑体系,即细菌识别特定的病毒 DNA 片段并对其进行切割使其失活。利用这一特性,研究人员通过设计特定的向导 RNA(guide RNA,gRNA)来识别生物体基因组特定的 DNA 位点并对其进行识别和切割[3]。CRISPER/Cas9 技术因其更快更高效的特点,已成为众多基因编辑技术中运用最广泛的技术[4-6],特别是基因编辑小鼠。本研究使用 CRISPER/Cas9技术完成了基因编辑小鼠的构建。

  • 卵磷脂胆固醇脂酰转移酶(lecithin⁃cholesterol acyltransferase,LCAT)是一种广泛存在于血浆中的酶[7],主要由肝脏合成并分泌,对维持机体胆固醇稳态以及参与血浆中胆固醇反向转运(reverse cholesterol transport,RCT)起重要作用[7]。在胆固醇逆向转运过程中,LCAT 将游离的胆固醇进行酯化,形成的胆固醇酯经转运蛋白转运至肝脏进行代谢,从而使得外周多余的胆固醇被清除,以维持体内胆固醇平衡[8-9]。大量研究表明,体内LCAT水平或活性与众多代谢疾病密切相关[10]。LCAT不同程度的突变及缺失会导致家族性LCAT缺乏症和鱼眼病[11-13]; 此外,LCAT 水平或活性异常可导致胆固醇代谢异常,已被报道与心血管疾病和脂肪肝的发生发展有独立的相关性[14-15]。与此同时,本课题组之前的研究也证实 LCAT 参与肝性骨病的调控,而具体机制需要进一步探索[16]。因此,构建肝脏特异性敲入Lcat小鼠对LCAT作为胆固醇代谢异常疾病治疗靶点的进一步研究具有重要意义。

  • 本研究利用 CRISPR/Cas9 的技术,通过同源重组的原理设计并体外转录 gRNA,同时构建同源重组载体(donor vector)。将 Cas9、gRNA、donor vector 同时注射到小鼠的受精卵中并获得 F0 代小鼠。将测序正确的 F0 代小鼠与 C57BL/6JGpt 小鼠交配得到稳定遗传的 F1 代小鼠后将其与肝脏特异性表达 Cre 的小鼠交配获得肝脏特异性敲入 Lcat 的小鼠。

  • 1 材料和方法

  • 1.1 材料

  • 1.1.1 实验动物

  • 本研究所用小鼠品系为 C57BL/6,该品系源自 Abby Lathrop 小鼠株的近交品系实验鼠,所有小鼠均购自江苏集萃药康生物科技有限公司。动物实验符合南京医科大学伦理委员会的规定并被授权。所有实验小鼠均饲养于无特定病原体(specific pathogen free,SPF)环境中,光照时间为6:00~18:00 (明/暗循环 12 h),温度为(22±3)℃,所有动物可自由饮食与活动。

  • 1.1.2 主要试剂

  • 2 ×TaqPlusMasterMix、RNA⁃easyIsolationReagent、 HiScript Ⅲ RT SuperMix for qPCR、2 × SYBR Green MasterMix(南京诺唯赞生物科技有限公司);蛋白酶抑制剂、RIPA蛋白裂解液(上海碧云天生物技术有限公司);PVDF膜(Millipore 公司,美国);鼠抗小鼠 β⁃actin抗体(武汉三鹰生物技术有限公司);兔抗小鼠 LCAT 抗体(武汉博士德生物有限公司);ECL 超敏发光液(上海天能生命科学有限公司);肝脏特异性 Lcat 基因过表达小鼠的 DNA 鉴定引物序列信息及 qPCR 引物序列见表1,所有引物合成以及测序结果均来自南京擎科生物技术有限公司。

  • 表1 小鼠DNA鉴定及qPCR引物序列

  • Table1 The primer sequences for mice genotyping and qPCR

  • 1.2 方法

  • 1.2.1 Lcat基因敲入小鼠模型的构建

  • 利用 CRISPR/Cas9 技术,将 CAG⁃LSL⁃Lcat⁃His⁃ polyA基因片段定点插入到小鼠的H11位点。gRNA 的序列为5′ ⁃ CTGAGCCAACAGTGGTAGTA ⁃ 3′。将 CRISPR/Cas9 体系和 donor vector 显微注射到C57BL/6JGpt 小鼠的受精卵中,获得 F0 代小鼠。经 PCR 和测序验证正确的 F0 代阳性小鼠与 C57BL/6JGpt 小鼠交配获得可稳定遗传的 F1 代阳性小鼠模型。将 F1 代小鼠与肝脏特异性表达 Cre 的小鼠交配获得 F2 代小鼠并对其进行基因鉴定。

  • 1.2.2 小鼠基因型的鉴定

  • 取上述F2代小鼠的脚趾并使用碱提法提取基因组DNA,通过PCR技术检测目的基因表达。PCR 反应体系为2×Taq Master Mix 10 μL,cDNA 2 μL,上下游引物均为0.4 μL,ddH2O 7.2 μL。反应条件为: 95℃ 3 min;95℃ 15 s,65℃ 15 s,72℃ 60 s,35 个循环;72℃ 5 min。对反应产物进行琼脂糖凝胶电泳分析。

  • 1.2.3 实时荧光定量 PCR(quantitative real ⁃ time PCR,qPCR)检测小鼠不同组织Lcat基因mRNA表达

  • 利用TRIzol法提取组织总RNA,采用逆转录试剂盒制备 cDNA,qPCR 反应体系为 2×SYBR qPCR Master Mix 5 μL,cDNA 1 μL,上下游引物均为0.2 μL, ddH2O 3.6 μL。反应条件为:95℃ 30 s;95℃ 10 s, 60℃ 30 s,40 个循环;95℃ 15 s,60℃ 60 s,95℃ 15 s。单个样品做 3 个重复,内参基因为 Actb,根据公式 2-ΔΔCT计算 Lcat mRNA 在不同组织中的表达水平。

  • 1.2.4 Western blot 验证小鼠不同组织 LCAT 蛋白水平

  • 颈椎脱臼法处死野生型和肝脏特异性敲入Lcat 的小鼠后,依次提取各组织并剪取30 mg放入含蛋白酶抑制剂的蛋白裂解液中,研磨,12 000 r/min离心15 min取上清,加入上样缓冲液后100℃金属浴 8 min,提取总蛋白。在 120 V 电压下经 SDS⁃PAGE 胶分离蛋白,湿转法将蛋白转至 PVDF 膜上,使用 5%的脱脂奶粉室温封闭 1 h 后孵育一抗(LCAT 稀释比为1∶1 000,β⁃actin稀释比为1∶10 000),4℃摇床孵育过夜后用 PBST 洗 3×10 min,二抗 1∶10 000 稀释后室温孵育 1 h,PBST 洗 3×10 min 后显影成像,使用 Image J 对 Western blot 条带的灰度值进行统计分析。

  • 2 结果

  • 2.1 小鼠Lcat基因修饰靶点gRNA序列设计及表达载体构建

  • 由于小鼠第 11 号染色体上的 H11 位点位于 Eif4enif1Drg1这两个基因之间,且外源基因插入后对内源基因表达影响较小,因此针对H11位点合成gRNA序列。采用CRISPR/Cas9技术将CAG⁃LSL⁃ Lcat ⁃His ⁃polyA 片段基因片段定点插入到小鼠的 H11位点上。载体结构见图1。

  • 图1 载体结构示意图

  • Figure1 Diagram of carrier structure

  • 2.2 肝脏特异性敲入Lcat小鼠基因型鉴定

  • 将 F0 代小鼠与 C57BL/6JGpt 小鼠交配获得 F1 代小鼠,对 1 周内的 F1 代小鼠进行剪趾并提取 DNA后进行PCR,核酸电泳结果中F1代杂合子H11H11⁃wt均有条带显示(图2A)。后将F1代杂合子与 Alb ⁃iCre 小鼠交配得到肝脏特异性敲入 Lcat 小鼠。核酸电泳结果中H11H11⁃wt和Cre均有条带显示(图2B)。

  • 图2 F1代和F2代小鼠基因型鉴定结果

  • Figure2 Identification of genotype in F1 and F2 mice

  • 2.3 肝脏特异性敲入 Lcat 小鼠不同组织的 Lcat mRNA水平

  • 为确定小鼠各组织Lcat转录水平的差异,根据核酸电泳结果,筛出基因型带Cre的敲入(knock⁃in, KI)小鼠,以未携带 Cre 的 KI/WT 或 KI/KI 鼠作为对照,依次提出心脏、肝脏、肾脏、脑、棕色脂肪的RNA,将其进行逆转录,并将得到的 cDNA 进行 qPCR,结果以小鼠心脏内Lcat表达为比较基准,提示在对照组小鼠中,Lcat主要由肝脏特异性表达,而在肝脏特异性敲入Lcat小鼠的肝脏内,Lcat的RNA水平显著增加(图3)。

  • 2.4 肝脏特异性敲入Lcat小鼠不同组织的LCAT蛋白水平

  • 为探究肝脏特异性敲入小鼠与对照组相比各组织LCAT蛋白水平的差异,依次提取各组织蛋白,并通过Western blot检测LCAT的表达差异。结果显示,在肝脏特异性敲入 Lcat 小鼠体内,除肝外,心、肾、脑和脾中也出现了LCAT的高水平表达(图4)。提示 LCAT 作为一种分泌性蛋白,可通过血液循环运输到其他组织中。

  • 图3 小鼠各组织Lcat mRNA表达水平

  • Figure3 The relative expressions of Lcat mRNA in multi⁃ ple tissues of mice

  • 图4 Western blot检测Lcat CKI小鼠组织中蛋白表达情况

  • Figure4 The relative expressions of proteins in multiple tissues of Lcat CKI mice detected by Western blot

  • 3 讨论

  • CRISPER/Cas9是近年来发现的一种特定、高效和多功能的基因编辑技术[17]。利用 CRISPER/Cas9 对DNA的特定区域进行插入、缺失和替换已广泛运用于基因过程领域并进一步参与疾病的研究与治疗中[18-20]。CRISPER/Cas9 体系主要由 Cas9 酶和 gRNA构成。当gRNA与Cas9结合后,在gRNA的引导下,Cas9 完成对指定序列位点的切割。利用 CRISPER/Cas9技术完成了基因编辑小鼠的构建,从而对特定基因在相应疾病模型中发挥的作用进行体内研究。

  • LCAT 作为胆固醇代谢中不可缺少的酶,在脂代谢异常中的作用已被广泛研究。如 Scarpioni 等[21] 发现LCAT缺乏的患者动脉粥样硬化风险显著升高。Gebhard等[22] 通过经冠状动脉造影证实冠心病患者血浆 LCAT 质量浓度升高,且与斑块体积呈负相关,提示 LCAT 有动脉粥样硬化保护作用。在动脉粥样硬化负荷的风险预测模型中,LCAT 质量浓度优于LCAT活性,表明LCAT质量是动脉粥样硬化保护的关键变量。因此,进一步评估 LCAT 作为心血管疾病治疗靶点的研究是有必要的。

  • 另一方面,Janac 等[23] 对 130 例患者进行了脂肪肝指数分类,发现较高的 LCAT 活性与脂肪肝指数升高有关。类似的还有 Nass 等[15]对 348 例受试者的研究中发现,LCAT 活性升高与脂肪肝指数升高独立相关,而具体机制尚不清楚。同时,本课题组前期研究显示,Pp2a 敲除小鼠导致的 LCAT 升高对肝性骨病有明显缓解与改善作用[16]。而与之前报道的小鼠全身性转入人 Lcat基因相比[24],本课题首次将鼠源的Lcat特异性敲入小鼠肝脏,具有明显的创新性。因此,本课题构建的肝脏特异性敲入 Lcat 小鼠对研究动脉粥样硬化、脂肪肝以及肝性骨病的具体发病机制和靶点的选择具有重要意义。

  • 参考文献

    • [1] CONG L,RAN F A,COX D,et al.Multiplex genome engi⁃ neering using CRISPR/Cas systems[J].Science,2013,339(6121):819-823

    • [2] HILLE F,RICHTER H,WONG S P,et al.The biology of CRISPR ⁃cas:backward and forward[J].Cell,2018,172(6):1239-1259

    • [3] JINEK M,CHYLINSKI K,FONFARA I,et al.A program⁃ mable dual ⁃RNA ⁃guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337(6096):816-821

    • [4] 曹俊霞,王友亮,王征旭,等.精准调控CRISPR/Cas9基因编辑技术研究进展[J].遗传,2020,42(12):1168-1177

    • [5] GUO N,LIU J B,LI W,et al.The power and the promise of CRISPR/Cas9 genome editing for clinical application with gene therapy[J].J Adv Res,2022,40:135-152

    • [6] 朱浩然,张鑫,祁俊侠,等.利用双引导RNA的CRIS⁃ PR/Cas9 技术构建Nudt3基因敲除小鼠[J].南京医科大学学报(自然科学版),2021,41(7):949-955

    • [7] VITALI C,BAJAJ A,NGUYEN C,et al.A systematic review of the natural history and biomarkers of primary lecithin:cholesterol acyltransferase deficiency[J].J Lipid Res,2022,63(3):100169

    • [8] NORUM K R.The function of lecithin:cholesterol acyl⁃ transferase(LCAT)[J].Scand J Clin Lab Inv,2017,77(4):235-236

    • [9] PAVANELLO C,TURRI M,STRAZZELLA A,et al.The HDL mimetic CER⁃001 remodels plasma lipoproteins and reduces kidney lipid deposits in inherited lecithin:choles⁃ terol acyltransferase deficiency[J].J Intern Med,2022,291(3):364-370

    • [10] BARAGETTI A,OSSOLI A,STRAZZELLA A,et al.Low plasma lecithin:cholesterol acyltransferase(LCAT)con⁃ centration predicts chronic kidney disease[J].J Clin Med,2020,9(7):2289

    • [11] FLORES R,JIN X T,CHANG J,et al.LCAT,ApoD,and ApoA1 expression and review of cholesterol deposition in the cornea[J].Biomolecules,2019,9(12):785

    • [12] YAMAMURO D,YAMAZAKI H,OSUGA J I,et al.Este⁃ rification of 4β ⁃ hydroxycholesterol and other oxysterols in human plasma occurs independently of LCAT[J].J Lipid Res,2020,61(9):1287-1299

    • [13] KINOSHITA S,SUGITA S,YOSHIDA A.Corneal thick⁃ ness in the case of familial lecithin⁃cholesterol acyltrans⁃ ferase deficiency[J].Am J Ophthalmol Case Rep,2021,24:101211

    • [14] OSSOLI A,SIMONELLI S,VITALI C,et al.Role of LCAT in atherosclerosis[J].J Atheroscler Thromb,2016,23(2):119-127

    • [15] NASS K J,VAN DEN BERG E H,GRUPPEN E G,et al.Plasma lecithin:cholesterol acyltransferase and phospho⁃ lipid transfer protein activity independently associate with nonalcoholic fatty liver disease[J].Eur J Clin Invest,2018,48(9):12988

    • [16] LU K,SHI T S,SHEN S Y,et al.Defects in a liver⁃bone axis contribute to hepatic osteodystrophy disease progre ⁃ ssion[J].Cell Metab,2022,34(3):441-457

    • [17] MALI P,ESVELT K M,CHURCH G M.Cas9 as a versa⁃ tile tool for engineering biology[J].Nat Methods,2013,10(10):957-963

    • [18] DEVARAJU N,RAJENDIRAN V,RAVI N S,et al.Ge⁃ nome engineering of hematopoietic stem cells using CRIS⁃ PR/Cas9 system[J].Methods Mol Biol,2022,2429:307-331

    • [19] LYU C C,SHEN J,WANG R,et al.Targeted genome engineering in human induced pluripotent stem cells from patients with hemophilia B using the CRISPR⁃Cas9 system[J].Stem Cell Res Ther,2018,9(1):92

    • [20] VIKTÓRIA H,BALÁZS G.Genome engineering using the CRISPR ⁃Cas9 system and applications in cancer re⁃ search[J].Magyar Onkologia,2018,62(2):119-127

    • [21] SCARPIONI R,PATIES C,BERGONZI G.Dramatic atherosclerotic vascular burden in a patient with familial lecithin ⁃ cholesterol acyltransferase(LCAT)deficiency [J].Nephrol Dial Transplant,2008,23(3):1074

    • [22] GEBHARD C,RHAINDS D,HE G,et al.Elevated level of lecithin:cholesterol acyltransferase(LCAT)is associat⁃ ed with reduced coronary atheroma burden[J].Athero⁃ sclerosis,2018,276:131-139

    • [23] JANAC J,ZELJKOVIC A,JELIC ⁃ IVANOVIC Z,et al.The association between lecithin⁃cholesterol acyltransfer⁃ ase activity and fatty liver index[J].Ann Clin Biochem,2019,56(5):583-592

    • [24] FURBEE J W,PARKS J S.Transgenic overexpression of human lecithin:cholesterol acyltransferase(LCAT)in mice does not increase aortic cholesterol deposition[J].Atherosclerosis,2002,165(1):89-100

  • 参考文献

    • [1] CONG L,RAN F A,COX D,et al.Multiplex genome engi⁃ neering using CRISPR/Cas systems[J].Science,2013,339(6121):819-823

    • [2] HILLE F,RICHTER H,WONG S P,et al.The biology of CRISPR ⁃cas:backward and forward[J].Cell,2018,172(6):1239-1259

    • [3] JINEK M,CHYLINSKI K,FONFARA I,et al.A program⁃ mable dual ⁃RNA ⁃guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337(6096):816-821

    • [4] 曹俊霞,王友亮,王征旭,等.精准调控CRISPR/Cas9基因编辑技术研究进展[J].遗传,2020,42(12):1168-1177

    • [5] GUO N,LIU J B,LI W,et al.The power and the promise of CRISPR/Cas9 genome editing for clinical application with gene therapy[J].J Adv Res,2022,40:135-152

    • [6] 朱浩然,张鑫,祁俊侠,等.利用双引导RNA的CRIS⁃ PR/Cas9 技术构建Nudt3基因敲除小鼠[J].南京医科大学学报(自然科学版),2021,41(7):949-955

    • [7] VITALI C,BAJAJ A,NGUYEN C,et al.A systematic review of the natural history and biomarkers of primary lecithin:cholesterol acyltransferase deficiency[J].J Lipid Res,2022,63(3):100169

    • [8] NORUM K R.The function of lecithin:cholesterol acyl⁃ transferase(LCAT)[J].Scand J Clin Lab Inv,2017,77(4):235-236

    • [9] PAVANELLO C,TURRI M,STRAZZELLA A,et al.The HDL mimetic CER⁃001 remodels plasma lipoproteins and reduces kidney lipid deposits in inherited lecithin:choles⁃ terol acyltransferase deficiency[J].J Intern Med,2022,291(3):364-370

    • [10] BARAGETTI A,OSSOLI A,STRAZZELLA A,et al.Low plasma lecithin:cholesterol acyltransferase(LCAT)con⁃ centration predicts chronic kidney disease[J].J Clin Med,2020,9(7):2289

    • [11] FLORES R,JIN X T,CHANG J,et al.LCAT,ApoD,and ApoA1 expression and review of cholesterol deposition in the cornea[J].Biomolecules,2019,9(12):785

    • [12] YAMAMURO D,YAMAZAKI H,OSUGA J I,et al.Este⁃ rification of 4β ⁃ hydroxycholesterol and other oxysterols in human plasma occurs independently of LCAT[J].J Lipid Res,2020,61(9):1287-1299

    • [13] KINOSHITA S,SUGITA S,YOSHIDA A.Corneal thick⁃ ness in the case of familial lecithin⁃cholesterol acyltrans⁃ ferase deficiency[J].Am J Ophthalmol Case Rep,2021,24:101211

    • [14] OSSOLI A,SIMONELLI S,VITALI C,et al.Role of LCAT in atherosclerosis[J].J Atheroscler Thromb,2016,23(2):119-127

    • [15] NASS K J,VAN DEN BERG E H,GRUPPEN E G,et al.Plasma lecithin:cholesterol acyltransferase and phospho⁃ lipid transfer protein activity independently associate with nonalcoholic fatty liver disease[J].Eur J Clin Invest,2018,48(9):12988

    • [16] LU K,SHI T S,SHEN S Y,et al.Defects in a liver⁃bone axis contribute to hepatic osteodystrophy disease progre ⁃ ssion[J].Cell Metab,2022,34(3):441-457

    • [17] MALI P,ESVELT K M,CHURCH G M.Cas9 as a versa⁃ tile tool for engineering biology[J].Nat Methods,2013,10(10):957-963

    • [18] DEVARAJU N,RAJENDIRAN V,RAVI N S,et al.Ge⁃ nome engineering of hematopoietic stem cells using CRIS⁃ PR/Cas9 system[J].Methods Mol Biol,2022,2429:307-331

    • [19] LYU C C,SHEN J,WANG R,et al.Targeted genome engineering in human induced pluripotent stem cells from patients with hemophilia B using the CRISPR⁃Cas9 system[J].Stem Cell Res Ther,2018,9(1):92

    • [20] VIKTÓRIA H,BALÁZS G.Genome engineering using the CRISPR ⁃Cas9 system and applications in cancer re⁃ search[J].Magyar Onkologia,2018,62(2):119-127

    • [21] SCARPIONI R,PATIES C,BERGONZI G.Dramatic atherosclerotic vascular burden in a patient with familial lecithin ⁃ cholesterol acyltransferase(LCAT)deficiency [J].Nephrol Dial Transplant,2008,23(3):1074

    • [22] GEBHARD C,RHAINDS D,HE G,et al.Elevated level of lecithin:cholesterol acyltransferase(LCAT)is associat⁃ ed with reduced coronary atheroma burden[J].Athero⁃ sclerosis,2018,276:131-139

    • [23] JANAC J,ZELJKOVIC A,JELIC ⁃ IVANOVIC Z,et al.The association between lecithin⁃cholesterol acyltransfer⁃ ase activity and fatty liver index[J].Ann Clin Biochem,2019,56(5):583-592

    • [24] FURBEE J W,PARKS J S.Transgenic overexpression of human lecithin:cholesterol acyltransferase(LCAT)in mice does not increase aortic cholesterol deposition[J].Atherosclerosis,2002,165(1):89-100