en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

张红杰,E-mail:hjzhang06@163.com

中图分类号:R574.62

文献标识码:A

文章编号:1007-4368(2023)11-1479-08

DOI:10.7655/NYDXBNS20231101

参考文献 1
SABER S,EL⁃KADER E M A.Novel complementary colo⁃ protective effects of metformin and MCC950 by modulat⁃ ing HSP90/NLRP3 interaction and inducing autophagy in rats[J].Inflammopharmacology,2021,29(1):237-251
参考文献 2
SEGAL J P,LEBLANC J F,HART A L.Ulcerative coli⁃ tis:an update[J].Clin Med,2021,21(2):135-139
参考文献 3
RAY G,LONGWORTH M S.Epigenetics,DNA organiza⁃ tion,and inflammatory bowel disease[J].Inflamm Bowel Dis,2019,25(2):235-247
参考文献 4
PIOVANI D,DANESE S,PZYRIN⁃ BIROULET L,et al.Environmental risk factors for inflammatory bowel diseases:an umbrella review of meta ⁃analyses[J].Gastroenterolo⁃ gy,2019,157(3):647-659
参考文献 5
KRAUSGRUBER T,BLAZEK K,SMALLIE T,et al.IRF5 promotes inflammatory macrophage polarization and Th1⁃ Th17 responses[J].Nat Immunol,2011,12(3):231-238
参考文献 6
WU M M,WANG Q M,HUANG B Y,et al.Dioscin ame⁃ liorates murine ulcerative colitis by regulating macro⁃ phage polarization[J].Pharmacol Res,2021,172:105796
参考文献 7
MULLER P A,MATHEIS F,MUCIDA D.Gut macro⁃ phages:key players in intestinal immunity and tissue physiology[J].Curr Opin Immunol,2020,62:54-61
参考文献 8
SHAPOURI ⁃ MOGHADDAM A,MOHAMMADIAN S,VAZINI H,et al.Macrophage plasticity,polarization,and function in health and disease[J].J Cell Physiol,2018,233(9):6425-6440
参考文献 9
ORTIZ⁃MASIÁ D,COSÍN⁃ROGER J,CALATAYUD S,et al.M1 macrophages activate Notch signalling in epithelial cells:relevance in Crohn’s disease[J].J Crohns Colitis,2016,10(5):582-592
参考文献 10
FRIEDRICH M,POHIN M,POWRIE F.Cytokine net⁃ works in the pathophysiology of inflammatory bowel dis⁃ ease[J].Immunity,2019,50(4):992-1006
参考文献 11
FANOURIAKIS A,KOSTOPOULOU M,CHEEMA K,et al.SAT0173 a systematic literature review informing the 2019 update of the joint European league against rheuma⁃ tism and European renal association ⁃ European dialysis and transplant association(eular/era ⁃ edta)recommenda⁃ tions for the management of lupus nephritis[J].Ann Rheum Dis,2020,79(Suppl 1):1022-1028
参考文献 12
SCHREZENMEIER E,DÖRNER T.Mechanisms of ac⁃ tion of hydroxychloroquine and chloroquine:implications for rheumatology[J].Nat Rev Rheumatol,2020,16(3):155-166
参考文献 13
TEKTONIDOU M G,TINCANI A,WARD M M.Response to:‘Correspondence on’EULAR recommendations for the management of antiphospholipid syndrome in adults’ by Zhou et al[J].Ann Rheum Dis,2022,81(12):249
参考文献 14
KIM J J,SHAJIB M S,MANOCHA M M,et al.Investiga⁃ ting intestinal inflammation in DSS⁃induced model of IBD [J].JoVE,2012(60):3678
参考文献 15
SANTUCCI L,FIORUCCI S,RUBINSTEIN N,et al.Ga⁃ lectin⁃1 suppresses experimental colitis in mice[J].Gas⁃ troenterology,2003,124(5):1381-1394
参考文献 16
LU J X,LIU D L,TAN Y Y,et al.M1 Macrophage exo⁃ somes miR ⁃ 21a ⁃ 5p aggravates inflammatory bowel dis⁃ ease through decreasing E⁃cadherin and subsequent ILC2 activation[J].J Cell Mol Med,2021,25(6):3041-3050
参考文献 17
LIU L J,YANG Y Z,SHI S F,et al.Effects of hydroxy⁃ chloroquine on proteinuria in IgA nephropathy:a random⁃ ized controlled trial[J].Am J Kidney Dis,2019,74(1):15-22
参考文献 18
ZHENG H F,ZHANG Y N,HE J N,et al.Hydroxychloro⁃ quine inhibits macrophage activation and attenuates renal fibrosis after ischemia⁃reperfusion injury[J].Front Immu⁃ nol,2021,12:645100
参考文献 19
KIM Y G,KIM S M,KIM K P,et al.The role of inflamma⁃ some⁃dependent and inflammasome⁃independent NLRP3 in the kidney[J].Cells,2019,8(11):1389
参考文献 20
CASTRO⁃ALVES V C,SHIGA T M,DO NASCIMENTO J R O.Polysaccharides from chayote enhance lipid efflux and regulate NLRP3 inflammasome priming in macro⁃ phage ⁃ like THP ⁃ 1 cells exposed to cholesterol crystals [J].Int J Biol Macromol,2019,127:502-510
目录contents

    摘要

    目的:探讨羟氯喹(hydroxychloroquine,HCQ)对葡聚糖硫酸钠(dextran sulfate sodium salt,DSS)诱导的结肠炎模型鼠肠道炎症的影响及其M1型巨噬细胞极化机制。方法:C57BL/6小鼠随机分3组:对照组(正常饮水+200 μL纯水每日灌胃)、 DSS组(自由饮用3.5% DSS溶液+200 μL纯水每日灌胃)、DSS+HCQ组[自由饮用3.5% DSS+200 μL HCQ溶液(60 mg/kg)每日灌胃]。造模期间观察小鼠粪便性状,记录体重、疾病活动指数(disease activity index,DAI)评分。造模后测量小鼠结肠长度、结肠组织HE染色行组织病理学评分;提取结肠组织固有层单个核细胞,流式细胞术检测M1型巨噬细胞比例。体外提取并诱导分化小鼠骨髓来源的巨噬细胞,HCQ 处理后,流式细胞术检测 M1 型巨噬细胞比例;蛋白质印迹法检测 p-STAT1、IRF5、 NF-κB/p65等表达水平。结果:HCQ可以减轻DSS诱导的小鼠肠道炎症并减少结肠中M1型巨噬细胞比例。细胞实验显示HCQ可抑制M1型巨噬细胞极化并同时抑制NF-κB信号通路及其下游NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3,NLRP3)炎症小体的形成;NF-κB通路抑制剂PDTC可得到相似的结果。结论:羟氯喹可抑制 NF-κB/NLRP3信号通路减少M1型巨噬细胞极化,减轻DSS诱导的小鼠肠道炎症。

    Abstract

    Objective:The current study aims to explore the effect of hydroxychloroquine(HCQ)on dextran sulfate sodium salt(DSS)- induced colitis in mice and to reveal the underlying mechanisms of HCQ in the inhibition of M1 macrophage polarisation. Methods:All the C57BL/6 mice were randomly divided into 3 groups:the control group(common drinking water+200 μL pure water by gavage),DSS group(3.5% DSS drinking water+200 μL pure water by gavage)and DSS+HCQ group(3.5% DSS drinking water+200 μL HCQ of 60 mg/kg by gavage). The disease activity index(DAI)score was evaluated according to stool property and body weight changes every day. The mice in each group were sacrificed after modeling experiment with the colon length measured. The colon tissues were stained with haematoxylin and eosin(HE)for histological score calculation. The colonic lamina propria mononuclear cells were isolated and the proportion of M1 macrophages was measured by flow cytometry. In vitro,bone marrow - derived macrophages were isolated and treated with HCQ,and the proportion of M1 macrophages was measured by flow cytometry. The levels of p-STAT1,IRF5,NF-κB /p65, etc in the macrophages were detected by Western blot. Results:HCQ ameliorated DSS-induced colitis and significantly decreased the percentage of M1 macrophages in colon in DSS - induced colitis mice. In vitro,HCQ significantly repressed M1 polarisation and decreased the phosphorylation of NF - κB and the downstream of NOD - like receptor thermal protein domain associated protein 3 (NLRP3)inflammasome formation in M1 macrophages. The similar results were observed with PDTC(an inhibitor of NF-κB signaling) treatment. Conclusion:HCQ attenuates colonic inflammation in mice by supressing M1 macrophage polarization through the inhibition of NF-κB/NLRP3 signaling pathway.

  • 溃疡性结肠炎(ulcerative colitis,UC)是一种以结肠黏膜损伤及肠道稳态破坏为特征的慢性、非特异性炎症性疾病[1]。我国UC发病率呈逐年上升趋势[2]。UC的发病机制与环境因素、遗传易感性、免疫功能紊乱和肠道菌群失衡相关,免疫因素在 UC 发病中发挥了重要作用[3-4]。在UC患者和动物模型的结肠组织中存在大量巨噬细胞浸润[5-6]

  • 巨噬细胞是固有免疫反应的一线应答者[7]。巨噬细胞超极化引起的炎症反应在UC中具有重要作用。在不同环境刺激下、巨噬细胞表型及功能处于 M1型(促炎或经典活化型)及M2型(抗炎或替代活化型)的动态转化中[8]。UC 患者肠黏膜中促炎的 M1 型巨噬细胞数量增加[9],M1 型巨噬细胞产生白介素(interleukin,IL)⁃12、IL⁃23和IL⁃1β、促进Th1和 Th17免疫应答,加重肠道上皮损伤[10]。羟氯喹(hy⁃ droxychloroquine,HCQ)作为经典的抗疟药,具有免疫调节作用,常用于系统性红斑狼疮[11]、类风湿关节炎[12] 及抗磷脂抗体综合征[13] 等疾病的治疗。本研究运用体外诱导的骨髓来源巨噬细胞(bone mar⁃ row ⁃ derived macrophage,BMDM)及葡聚糖硫酸钠 (dextran sulfate sodium salt,DSS)诱导的小鼠急性结肠炎模型,探讨 HCQ 在肠道炎症中的作用及调控 M1/M2型巨噬细胞分化的可能机制。

  • 1 材料和方法

  • 1.1 材料

  • 8 周龄、体重18~22 g的C575L/6雄性小鼠(维通利华实验动物技术有限公司),在南京医科大学实验动物中心、SPF级环境饲养。动物实验严格遵循实验动物饲养及操作规范,符合3R原则,且通过南京医科大学实验动物福利伦理审查委员会审核(IACUC⁃ 1912008)。

  • Percp/cy5.5⁃CD11b、FITC⁃CD45抗体、APC⁃F4/80 以及PE⁃CD86等流式抗体(BioLegend公司,美国); p⁃STAT1、STAT1、IRF5、NF⁃κB、p⁃NF⁃κB、NOD 样受体热蛋白结构域相关蛋白 3(NOD⁃like receptor thermal protein domain associated protein 3,NLRP3)、 ASC、pro⁃Caspase⁃1、Caspase⁃1以及β⁃Actin蛋白免疫印记实验一抗(Cell Signaling Technology公司,美国);ECL显影液(Thermo Fisher公司,美国),HCQ(Sigma 公司,美国),NF⁃κB通路抑制剂吡咯烷二硫代甲酸铵 (pyrrolidinedithiocarbamate,PDTC)(杭州碧云天公司),DSS(MP公司,美国),胶原酶Ⅳ(Biosharp公司,美国),DNA酶Ⅰ(Sigma公司,美国),Percoll溶液(GE 公司,美国)。

  • 1.2 方法

  • 1.2.1 动物分组及DSS结肠炎模型的建立

  • 将小鼠随机分为3组。对照组(n=6):饮用正常水,每天给予 200 μL 纯水灌胃;DSS 组(n=6):自由饮用3.5% DSS溶液,并每天给予200 μL纯水灌胃; DSS+HCQ组(n=6):自由饮用3.5% DSS溶液,并每天给予200 μL HCQ溶液(60 mg/kg)灌胃。构建DSS诱导的小鼠结肠炎模型:配制DSS浓度为3.5%的液体,小鼠自由饮用DSS溶液7 d后,换成正常水饮用2 d。

  • 1.2.2 疾病活动指数(disease activity index,DAI) 评分

  • 每日称量小鼠体重、观察大便性状、检测大便隐血、观察肛周出血等,根据表1计算小鼠DAI评分[14]

  • 表1 DAI评分

  • Table1 Score of DAI

  • 1.2.3 结肠组织病理学评分

  • 小鼠结肠组织行固定、包埋、切片及 HE 染色后,将切片置于光学显微镜下观察,具体评分标准参考相关文献[15](表2)。

  • 1.2.4 实时荧光定量PCR(RT⁃PCR)

  • 利用TRIzol将结肠组织或细胞裂解,氯仿、异丙醇等溶剂提取RNA并检测浓度,根据逆转录试剂盒操作说明逆转录合成cDNA。北京擎科生物科技有限公司进行引物合成。相关引物序列如下:GAPDH (mouse)上游:5′ ⁃AGGTCGGTGTGAACGGA ⁃TTTG ⁃ 3′,下游:5′⁃TGTAGACCATGTAGTTGAGGTCA⁃3′; IL⁃1β(mouse)上游:5′ ⁃AAGGGGACATTAGGCAG⁃ CAC ⁃3′,下游:5′ ⁃ATGAAAGA ⁃CCTCAGTGCGGG ⁃ 3′;IL ⁃ 23(mouse)上游:5′ ⁃ CAGCAGCTCTCTCG⁃ GAATCTC ⁃ 3′,下游:5′ ⁃ TGGATACGGGGCACAT⁃ TATTTTT⁃3′;IL⁃12(mouse)上游:5′⁃CAATCACGC⁃ TACCTCCTCTTTT ⁃ 3′,下游:5′ ⁃ CAGCAGTGCAG⁃ GAATAATGTTTC⁃3′;iNOS(mouse)上游:5′⁃GTTCT⁃ CAGCCCAACAATACAAGA ⁃3′,下游:5′ ⁃GTGGAC⁃ GGGTCGATGTCAC⁃3′;TNF⁃α(mouse)上游:5′⁃AC⁃ GGCATGGATCTCAAAGAC ⁃ 3′,下游:5′ ⁃GTGGGT⁃ GAGGAGCACGTAGT⁃3′;IL⁃6(mouse)上游:5′⁃TC⁃ TATACCACTTCACAAGTCGGA⁃3′,下游:5′⁃GAATT⁃ GCCATTGCACAACTCTTT⁃3′。

  • 表2 组织病理学评分标准

  • Table2 Scores for histological evaluation

  • 1.2.5 小鼠结肠固有肌层单个核细胞的提取

  • 将结肠切成0.5 cm片段,加入EDTA(2% FBS + 0.5 mmol/L EDTA +10 mmol/L HEPES),37℃震荡 40 min去除上皮细胞。筛网过滤,加入胶原酶溶液 (2%FBS+胶原酶Ⅳ+DNA酶Ⅰ),37℃、220 r/min震荡 15 min 充分消化。筛网过滤,收集上清,离心后加入 4 mL 40% Percoll 溶液重悬,缓慢加入 2 mL 75% Percoll 溶液,2 000 r/min、20℃离心 20 min,吸取中间层细胞加入RPMI⁃1640溶液重悬。行流式细胞术检测或用于其他实验。

  • 1.2.6 流式细胞术检测M1型巨噬细胞比例

  • 调整流式管中细胞数为 5×105~1×106 个,加入 100 μL抗体混合液(FITC⁃CD45、Percp/cy5.5⁃CD11b、 APC⁃F4/80、PE⁃CD86),轻弹混匀,4℃ 避光孵育 30 min。加入 3 mL PBS,300 r/min 离心 5 min,重复 1 次。然后加入 300 μL 流式染色缓冲液重悬细胞,上机检测,用FlowJo_V10软件分析。

  • 1.2.7 BMDM体外诱导分化及培养

  • 分离小鼠胫骨和股骨,暴露骨髓腔,吸取RPMI⁃ 1640 培养基冲洗骨髓至离心管中。无菌滤网过滤,离心后弃上清,加入3 mL红细胞裂解液,静置5 min, PBS 清洗 1 次。用 RPMI⁃1640(含 10%FBS)重悬铺板,加入10 ng/mL M⁃CSF,培养箱中培养,分别于铺板第 3、5、7 天更换培养基,第 7 天获得成熟的骨髓来源巨噬细胞。

  • 1.2.8 BMDM的处理及分组

  • 将BMDM分为对照组、LPS/IFN⁃γ组、HCQ+LPS /IFN⁃γ组和PDTC+LPS/INF⁃γ组。LPS/IFN⁃γ组加入 LPS(100 ng/mL)及 IFN ⁃ γ(20 ng/mL)处理 24 h, HCQ+LPS /IFN⁃γ组提前加入 HCQ(10 μmol/L)预处理 2 h,PDTC+LPS/INF ⁃ γ 组提前加入 PDTC (10 μmol/L)预处理 30 min,之后处理同 LPS/IFN ⁃γ 组,收集细胞进行相关实验。

  • 1.2.9 蛋白质免疫印记实验

  • 蛋白上样后100 V恒压电泳。冰浴状态下250 mA 恒流转 PVDF 膜,5%脱脂牛奶封闭 1 h,加入一抗 (1∶1 000)4℃过夜孵育。次日,TBST 漂洗 3 次,每次10 min;室温下孵育二抗(1∶10 000)1 h;TBST漂洗3次,每次10 min;天能凝胶成像系统曝光显影。

  • 1.3 统计学方法

  • 实验数据使用GraphPad Prism 8软件进行统计学分析及作图,计量数据用均数±标准差(x-±s)表示,两样本均数比较采用独立样本t检验,多组样本均数比较采用单因素方差分析(one⁃way ANOVA)。 P<0.05为差异有统计学意义。

  • 2 结果

  • 2.1 HCQ可减轻DSS小鼠肠道炎症

  • 与DSS组相比,HCQ干预的DSS模型小鼠体重下降延缓(图1B)、DAI评分明显降低(图1C)。结肠大体外观:HCQ干预的DSS模型小鼠结肠黏膜充血水肿程度减轻,一定程度上恢复了结肠长度(图1D、E)。此外,HCQ干预的小鼠结肠组织病理学评分改善,结肠上皮及隐窝、腺体结构的破坏减轻,炎性细胞的浸润明显减少(图1F、G)。

  • 2.2 HCQ抑制模型鼠结肠中M1型巨噬细胞极化

  • 提取各组小鼠结肠固有肌层单个核细胞(lamina propria mononuclear cell,LPMC),流式细胞术检测小鼠结肠LPMC中M1型巨噬细胞的比例。结果显示,与对照组相比,DSS组小鼠肠道M1型巨噬细胞比例明显升高,HCQ干预后M1型巨噬细胞降低(图2A)。 PCR检测M1型巨噬细胞相关炎性因子:与对照组相比,DSS 组小鼠LPMC 中IL⁃1β、IL⁃6、IL⁃12、TNF⁃α、 IL⁃23及iNOS的表达均明显升高,HCQ干预可抑制 IL⁃1β、TNF⁃α、IL⁃23 及 iNOS 的表达,但对 IL⁃6 及 IL⁃12的抑制作用不显著(图2B)。以上结果提示, HCQ 减轻 DSS 模型鼠肠道炎症的作用可能与抑制肠道固有肌层M1型巨噬细胞极化有关。

  • 图1 HCQ可减轻DSS诱导的小鼠肠道炎症

  • Figure1 HCQ ameliorates the severity of DSS⁃induced acute colitis in mice

  • 2.3 HCQ抑制骨髓源性M1型巨噬细胞极化及其相关炎性因子表达

  • 为了证实HCQ 对M1型巨噬细胞极化的作用,提取并诱导分化小鼠 BMDM。①流式细胞术鉴定巨噬细胞纯度,结果显示 F4/80 及 CD11b 双阳性细胞占90%以上,证明巨噬细胞诱导成功(图3A)。② 在M1型巨噬细胞诱导条件下,巨噬细胞形态改变,呈圆形、扁平、煎蛋样形状,与既往研究一致(图3B)。③将细胞分为对照组、LPS/IFN⁃γ组、HCQ+LPS/ IFN⁃γ组,流式检测各组细胞中M1型巨噬细胞比例,结果显示,与未处理对照组相比,LPS/IFN⁃γ刺激24 h 后M1型巨噬细胞比例显著增加,予以HCQ处理后, M1型巨噬细胞比例明显降低(图3C)。④PCR检测各组中 M1 型巨噬细胞相关炎性因子(IL⁃1β、IL⁃6、 IL⁃12、IL⁃23、TNF⁃α)的表达水平。结果显示,LPS/ IFN⁃γ刺激后IL⁃1β、IL⁃6、IL⁃12、IL⁃23、TNF⁃α的表达明显上调,而HCQ则不同程度地抑制了上述炎性因子的表达(图3D)。

  • 图2 HCQ抑制肠炎模型鼠结肠中M1型巨噬细胞极化及其相关炎性标志物表达

  • Figure2 HCQ reduces M1 proportion and expression of M1⁃related inflammatory mediators in colitis model mice

  • 2.4 HCQ 通过 NF⁃κB/NLRP3 信号通路抑制 M1 型巨噬细胞极化

  • 首先检测参与调控M1型巨噬细胞极化通路的 p⁃NF⁃κB、p⁃STAT1以及IRF5蛋白表达水平,发现在 LPS/IFN⁃γ处理组中NF⁃κB的蛋白磷酸化水平明显升高,而 HCQ 处理后可显著抑制 NF⁃κB 蛋白磷酸化,但HCQ对p⁃STAT1以及IRF5蛋白表达水平无明显影响(图4A、B)。其次,检测各组中NF⁃κB下游通路炎性小体相关基因的表达,结果提示HCQ可显著抑制 LPS/IFN⁃γ对 NLRP3、Caspase⁃1 以及 ASC 蛋白的上调(图4C~F)。最后,利用NF⁃κB抑制剂PDTC 作为对照,结果发现,PDTC可显著抑制p⁃NF⁃κB及其下游相关基因NLRP3、Caspase⁃1以及ASC蛋白表达水平(图4G~L),并且 PDTC 可显著抑制 M1 型巨噬细胞极化(图4M),与 HCQ对M1型巨噬细胞极化的抑制作用相同。

  • 3 讨论

  • 本研究在DSS诱导小鼠结肠炎模型上,明确了 HCQ 可减轻肠道炎症,并发现可以降低小鼠结肠 M1 型巨噬细胞比例。细胞实验中诱导分化小鼠 BMDM,发现HCQ通过NF⁃κB/NLRP3信号通路抑制 M1型巨噬细胞极化及其炎性因子的释放。

  • UC是一种慢性非特异性消化道炎症性疾病,研究发现M1型巨噬细胞极化与肠道炎症有关[16]。本研究也证实,DSS结肠炎模型鼠肠道固有肌层中M1型巨噬细胞比例增加,同时 M1 型巨噬细胞相关细胞因子,如 IL⁃1β、IL⁃6、IL⁃12、IL⁃23、TNF⁃α等释放增加,提示结肠炎的形成与 M1 型巨噬细胞增加及其促炎因子释放增加有关。

  • 图3 HCQ体外抑制骨髓源性M1型巨噬细胞极化及其相关炎性标志物表达

  • Figure3 HCQ reduces M1 polarization and production of M1⁃related inflammatory mediators in vitro

  • HCQ 为氯喹的衍生物,临床上用于多种免疫性疾病的治疗[17]。研究发现HCQ可通过减少小鼠肾脏中白细胞及巨噬细胞浸润减轻缺血/再灌注导致的肾脏炎症反应,并改善肾纤维化[18]。本研究给予DSS诱导的结肠炎模型鼠HCQ干预,发现HCQ灌胃可明显缓解DSS结肠炎鼠的体重减轻、血便、大便不成形等症状,且对炎症导致的结肠缩短及肠黏膜水肿充血也有改善作用。组织病理学提示HCQ减少固有层及黏膜下层炎性细胞浸润、改善腺体结构及减少隐窝的破坏。

  • 进一步提取了对照组、DSS组及DSS+HCQ组小鼠的结肠 LPMC,发现 DSS+HCQ 组 M1 型巨噬细胞较 DSS 组降低,提示 HCQ 抑制了 M1 型巨噬细胞的极化。同时PCR检测了M1型巨噬细胞相关炎性因子,与流式结果一致,DSS造模后M1型巨噬细胞的炎性因子表达上调,而HCQ干预后,显著下调了如 IL⁃1β、TNF⁃α、IL⁃23及iNOS的表达,以上研究提示 HCQ抑制巨噬细胞向M1极化,减少炎性因子释放,进而减轻DSS诱导的肠道炎症。

  • 图4 HCQ体外通过调节NF⁃κB/NLRP3信号通路抑制M1型巨噬细胞极化

  • Figure4 HCQ suppresses M1 macrophage polarization through inhibiting the NF⁃κB/NLRP3 pathway

  • 为探究HCQ 抑制M1型巨噬细胞极化的机制,体外诱导分化小鼠BMDM,发现HCQ可抑制NF⁃κB 信号通路,而对 IRF5 和 STAT1 通路无明显影响。 NLRP3炎性小体是一种多蛋白复合物,被认为是炎症反应的关键[19],同时,NF⁃κB是NLRP3炎性小体激活的重要诱导剂[20]。因此对NF⁃κB下游的NLRP3炎性小体相关基因进行验证,发现 HCQ 显著抑制了 NLRP3炎性小体复合物中相关基因的表达。最后,利用NF⁃κB通路抑制剂PDTC作为对照,得到相似的结果。以上结果提示,HCQ可能抑制NF⁃κB/NLRP3信号通路、抑制M1型巨噬细胞极化,减少其炎症因子释放。

  • 总之,本研究证实了HCQ可以减轻DSS模型鼠肠道炎症,可能机制是抑制NF⁃κB/NLRP3信号通路进而抑制M1型巨噬细胞极化,为UC的治疗提供了新方法。本研究尚有一定的局限性,如未在动物体内验证HCQ抑制M1型巨噬细胞极化的相关通路,后续将进一步研究补充完善。

  • 参考文献

    • [1] SABER S,EL⁃KADER E M A.Novel complementary colo⁃ protective effects of metformin and MCC950 by modulat⁃ ing HSP90/NLRP3 interaction and inducing autophagy in rats[J].Inflammopharmacology,2021,29(1):237-251

    • [2] SEGAL J P,LEBLANC J F,HART A L.Ulcerative coli⁃ tis:an update[J].Clin Med,2021,21(2):135-139

    • [3] RAY G,LONGWORTH M S.Epigenetics,DNA organiza⁃ tion,and inflammatory bowel disease[J].Inflamm Bowel Dis,2019,25(2):235-247

    • [4] PIOVANI D,DANESE S,PZYRIN⁃ BIROULET L,et al.Environmental risk factors for inflammatory bowel diseases:an umbrella review of meta ⁃analyses[J].Gastroenterolo⁃ gy,2019,157(3):647-659

    • [5] KRAUSGRUBER T,BLAZEK K,SMALLIE T,et al.IRF5 promotes inflammatory macrophage polarization and Th1⁃ Th17 responses[J].Nat Immunol,2011,12(3):231-238

    • [6] WU M M,WANG Q M,HUANG B Y,et al.Dioscin ame⁃ liorates murine ulcerative colitis by regulating macro⁃ phage polarization[J].Pharmacol Res,2021,172:105796

    • [7] MULLER P A,MATHEIS F,MUCIDA D.Gut macro⁃ phages:key players in intestinal immunity and tissue physiology[J].Curr Opin Immunol,2020,62:54-61

    • [8] SHAPOURI ⁃ MOGHADDAM A,MOHAMMADIAN S,VAZINI H,et al.Macrophage plasticity,polarization,and function in health and disease[J].J Cell Physiol,2018,233(9):6425-6440

    • [9] ORTIZ⁃MASIÁ D,COSÍN⁃ROGER J,CALATAYUD S,et al.M1 macrophages activate Notch signalling in epithelial cells:relevance in Crohn’s disease[J].J Crohns Colitis,2016,10(5):582-592

    • [10] FRIEDRICH M,POHIN M,POWRIE F.Cytokine net⁃ works in the pathophysiology of inflammatory bowel dis⁃ ease[J].Immunity,2019,50(4):992-1006

    • [11] FANOURIAKIS A,KOSTOPOULOU M,CHEEMA K,et al.SAT0173 a systematic literature review informing the 2019 update of the joint European league against rheuma⁃ tism and European renal association ⁃ European dialysis and transplant association(eular/era ⁃ edta)recommenda⁃ tions for the management of lupus nephritis[J].Ann Rheum Dis,2020,79(Suppl 1):1022-1028

    • [12] SCHREZENMEIER E,DÖRNER T.Mechanisms of ac⁃ tion of hydroxychloroquine and chloroquine:implications for rheumatology[J].Nat Rev Rheumatol,2020,16(3):155-166

    • [13] TEKTONIDOU M G,TINCANI A,WARD M M.Response to:‘Correspondence on’EULAR recommendations for the management of antiphospholipid syndrome in adults’ by Zhou et al[J].Ann Rheum Dis,2022,81(12):249

    • [14] KIM J J,SHAJIB M S,MANOCHA M M,et al.Investiga⁃ ting intestinal inflammation in DSS⁃induced model of IBD [J].JoVE,2012(60):3678

    • [15] SANTUCCI L,FIORUCCI S,RUBINSTEIN N,et al.Ga⁃ lectin⁃1 suppresses experimental colitis in mice[J].Gas⁃ troenterology,2003,124(5):1381-1394

    • [16] LU J X,LIU D L,TAN Y Y,et al.M1 Macrophage exo⁃ somes miR ⁃ 21a ⁃ 5p aggravates inflammatory bowel dis⁃ ease through decreasing E⁃cadherin and subsequent ILC2 activation[J].J Cell Mol Med,2021,25(6):3041-3050

    • [17] LIU L J,YANG Y Z,SHI S F,et al.Effects of hydroxy⁃ chloroquine on proteinuria in IgA nephropathy:a random⁃ ized controlled trial[J].Am J Kidney Dis,2019,74(1):15-22

    • [18] ZHENG H F,ZHANG Y N,HE J N,et al.Hydroxychloro⁃ quine inhibits macrophage activation and attenuates renal fibrosis after ischemia⁃reperfusion injury[J].Front Immu⁃ nol,2021,12:645100

    • [19] KIM Y G,KIM S M,KIM K P,et al.The role of inflamma⁃ some⁃dependent and inflammasome⁃independent NLRP3 in the kidney[J].Cells,2019,8(11):1389

    • [20] CASTRO⁃ALVES V C,SHIGA T M,DO NASCIMENTO J R O.Polysaccharides from chayote enhance lipid efflux and regulate NLRP3 inflammasome priming in macro⁃ phage ⁃ like THP ⁃ 1 cells exposed to cholesterol crystals [J].Int J Biol Macromol,2019,127:502-510

  • 参考文献

    • [1] SABER S,EL⁃KADER E M A.Novel complementary colo⁃ protective effects of metformin and MCC950 by modulat⁃ ing HSP90/NLRP3 interaction and inducing autophagy in rats[J].Inflammopharmacology,2021,29(1):237-251

    • [2] SEGAL J P,LEBLANC J F,HART A L.Ulcerative coli⁃ tis:an update[J].Clin Med,2021,21(2):135-139

    • [3] RAY G,LONGWORTH M S.Epigenetics,DNA organiza⁃ tion,and inflammatory bowel disease[J].Inflamm Bowel Dis,2019,25(2):235-247

    • [4] PIOVANI D,DANESE S,PZYRIN⁃ BIROULET L,et al.Environmental risk factors for inflammatory bowel diseases:an umbrella review of meta ⁃analyses[J].Gastroenterolo⁃ gy,2019,157(3):647-659

    • [5] KRAUSGRUBER T,BLAZEK K,SMALLIE T,et al.IRF5 promotes inflammatory macrophage polarization and Th1⁃ Th17 responses[J].Nat Immunol,2011,12(3):231-238

    • [6] WU M M,WANG Q M,HUANG B Y,et al.Dioscin ame⁃ liorates murine ulcerative colitis by regulating macro⁃ phage polarization[J].Pharmacol Res,2021,172:105796

    • [7] MULLER P A,MATHEIS F,MUCIDA D.Gut macro⁃ phages:key players in intestinal immunity and tissue physiology[J].Curr Opin Immunol,2020,62:54-61

    • [8] SHAPOURI ⁃ MOGHADDAM A,MOHAMMADIAN S,VAZINI H,et al.Macrophage plasticity,polarization,and function in health and disease[J].J Cell Physiol,2018,233(9):6425-6440

    • [9] ORTIZ⁃MASIÁ D,COSÍN⁃ROGER J,CALATAYUD S,et al.M1 macrophages activate Notch signalling in epithelial cells:relevance in Crohn’s disease[J].J Crohns Colitis,2016,10(5):582-592

    • [10] FRIEDRICH M,POHIN M,POWRIE F.Cytokine net⁃ works in the pathophysiology of inflammatory bowel dis⁃ ease[J].Immunity,2019,50(4):992-1006

    • [11] FANOURIAKIS A,KOSTOPOULOU M,CHEEMA K,et al.SAT0173 a systematic literature review informing the 2019 update of the joint European league against rheuma⁃ tism and European renal association ⁃ European dialysis and transplant association(eular/era ⁃ edta)recommenda⁃ tions for the management of lupus nephritis[J].Ann Rheum Dis,2020,79(Suppl 1):1022-1028

    • [12] SCHREZENMEIER E,DÖRNER T.Mechanisms of ac⁃ tion of hydroxychloroquine and chloroquine:implications for rheumatology[J].Nat Rev Rheumatol,2020,16(3):155-166

    • [13] TEKTONIDOU M G,TINCANI A,WARD M M.Response to:‘Correspondence on’EULAR recommendations for the management of antiphospholipid syndrome in adults’ by Zhou et al[J].Ann Rheum Dis,2022,81(12):249

    • [14] KIM J J,SHAJIB M S,MANOCHA M M,et al.Investiga⁃ ting intestinal inflammation in DSS⁃induced model of IBD [J].JoVE,2012(60):3678

    • [15] SANTUCCI L,FIORUCCI S,RUBINSTEIN N,et al.Ga⁃ lectin⁃1 suppresses experimental colitis in mice[J].Gas⁃ troenterology,2003,124(5):1381-1394

    • [16] LU J X,LIU D L,TAN Y Y,et al.M1 Macrophage exo⁃ somes miR ⁃ 21a ⁃ 5p aggravates inflammatory bowel dis⁃ ease through decreasing E⁃cadherin and subsequent ILC2 activation[J].J Cell Mol Med,2021,25(6):3041-3050

    • [17] LIU L J,YANG Y Z,SHI S F,et al.Effects of hydroxy⁃ chloroquine on proteinuria in IgA nephropathy:a random⁃ ized controlled trial[J].Am J Kidney Dis,2019,74(1):15-22

    • [18] ZHENG H F,ZHANG Y N,HE J N,et al.Hydroxychloro⁃ quine inhibits macrophage activation and attenuates renal fibrosis after ischemia⁃reperfusion injury[J].Front Immu⁃ nol,2021,12:645100

    • [19] KIM Y G,KIM S M,KIM K P,et al.The role of inflamma⁃ some⁃dependent and inflammasome⁃independent NLRP3 in the kidney[J].Cells,2019,8(11):1389

    • [20] CASTRO⁃ALVES V C,SHIGA T M,DO NASCIMENTO J R O.Polysaccharides from chayote enhance lipid efflux and regulate NLRP3 inflammasome priming in macro⁃ phage ⁃ like THP ⁃ 1 cells exposed to cholesterol crystals [J].Int J Biol Macromol,2019,127:502-510