en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

曹海霞,E-mail:pascallschx@126.com

中图分类号:R734.2

文献标识码:A

文章编号:1007-4368(2023)11-1494-09

DOI:10.7655/NYDXBNS20231103

参考文献 1
THAI A A,SOLOMON B J,SEQUIST L V,et al.Lung cancer[J].Lancet,2021,398(10299):535-554
参考文献 2
TOUMAZIS I,BASTANI M,HAN S S,et al.Risk ⁃based lung cancer screening:a systematic review[J].Lung Can⁃ cer,2020,147:154-186
参考文献 3
ALEXANDER M,KIM S Y,CHENG H Y.Update 2020:management of non ⁃ small cell lung cancer[J].Lung,2020,198(6):897-907
参考文献 4
JONNA S,SUBRAMANIAM D S.Molecular diagnostics and targeted therapies in non ⁃ small cell lung cancer(NSCLC):an update[J].Discov Med,2019,27(148):167-170
参考文献 5
SCHABATH M B,COTE M L.Cancer progress and priori⁃ ties:lung cancer[J].Cancer Epidemiol Biomark Prev,2019,28(10):1563-1579
参考文献 6
DELA CRUZ C S,TANOUE L T,MATTHAY R A.Lung cancer:epidemiology,etiology,and prevention[J].Clin Chest Med,2011,32(4):605-644
参考文献 7
PASCOE H M,KNIPE H C,PASCOE D,et al.The many faces of lung adenocarcinoma:a pictorial essay[J].J Med Imaging Radiat Oncol,2018,62(5):654-661
参考文献 8
BUTNOR K J.Controversies and challenges in the histo⁃ logic subtyping of lung adenocarcinoma[J].Transl Lung Cancer Res,2020,9(3):839-846
参考文献 9
HOY H,LYNCH T,BECK M.Surgical treatment of lung cancer[J].Crit Care Nurs Clin N Am,2019,31(3):303-313
参考文献 10
VINOD S K,HAU E.Radiotherapy treatment for lung can⁃ cer:current status and future directions[J].Respirology,2020,25(S2):61-71
参考文献 11
RUIZ⁃CORDERO R,DEVINE W P.Targeted therapy and checkpoint immunotherapy in lung cancer[J].Surg Pathol Clin,2020,13(1):17-33
参考文献 12
SANDBOTHE M,BUURMAN R,REICH N,et al.The micro RNA ⁃ 449 family inhibits TGF ⁃β⁃ mediated liver cancer cell migration by targeting SOX4[J].J Hepatol,2017,66(5):1012-1021
参考文献 13
WINTER J,JUNG S,KELLER S,et al.Many roads to ma⁃ turity:microRNA biogenesis pathways and their regulation [J].Nat Cell Biol,2009,11(3):228-234
参考文献 14
IQBAL M A,ARORA S,PRAKASAM G,et al.MicroRNA in lung cancer:role,mechanisms,pathways and therapeu⁃ tic relevance[J].Mol Aspects Med,2019,70:3-20
参考文献 15
HILL M,TRAN N.miRNA interplay:mechanisms and consequences in cancer[J].Dis Models Mech,2021,14(4):047662
参考文献 16
YEH D W,CHEN Y S,LAI C Y,et al.Downregulation of COMMD1 by miR⁃205 promotes a positive feedback loop for amplifying inflammatory ⁃ and stemness ⁃ associated properties of cancer cells[J].Cell Death Differ,2016,23(5):841-852
参考文献 17
SHI Z M,WANG L,SHEN H,et al.Downregulation of miR⁃218 contributes to epithelial⁃mesenchymal transition and tumor metastasis in lung cancer by targeting Slug/ZEB2 signaling[J].Oncogene,2017,36(18):2577-2588
参考文献 18
YUE J N,LV D C,WANG C Y,et al.Epigenetic silenc⁃ ing of miR⁃483⁃3p promotes acquired gefitinib resistance and EMT in EGFR⁃mutant NSCLC by targeting integrin β 3[J].Oncogene,2018,37(31):4300-4312
参考文献 19
YOLDI G,PELLEGRINI P,TRINIDAD E M,et al.RANK signaling blockade reduces breast cancer recurrence by inducing tumor cell differentiation[J].Cancer Res,2016,76(19):5857-5869
参考文献 20
OGŁUSZKA M,ORZECHOWSKA M,JEDROSZKA D,et al.Evaluate Cutpoints:adaptable continuous data distribu⁃ tion system for determining survival in Kaplan⁃Meier esti⁃ mator[J].Comput Methods Programs Biomed,2019,177:133-139
参考文献 21
MAYAKONDA A,LIN D C,ASSENOV Y,et al.Maftools:efficient and comprehensive analysis of somatic variants in cancer[J].Genome Res,2018,28(11):1747-1756
参考文献 22
BUDAKOTI M,PANWAR A S,MOLPA D,et al.Micro ⁃ RNA:the darkhorse of cancer[J].Cell Signal,2021,83:109995
参考文献 23
CHEN X,WANG A P,YUE X X.miR-449c inhibits mi⁃ gration and invasion of gastric cancer cells by targeting PFKFB[3 J].Oncol Lett,2018,16(1):417-424
参考文献 24
MIAO L J,HUANG S F,SUN Z T,et al.Retracted:MiR⁃ 449c targets c ⁃Myc and inhibits NSCLC cell progression [J].FEBS Lett,2013,587(9):1359-1365
参考文献 25
DUFFY M J,O'GRADY S,TANG M H,et al.MYC as a target for cancer treatment[J].Cancer Treat Rev,2021,94:102154
参考文献 26
LOURENCO C,RESETCA D,REDEL C,et al.MYC pro⁃ tein interactors in gene transcription and cancer[J].Nat Rev Cancer,2021,21(9):579-591
参考文献 27
COMOGLIO P M,TRUSOLINO L,BOCCACCIO C.Known and novel roles of the MET oncogene in cancer:a coherent approach to targeted therapy[J].Nat Rev Can⁃ cer,2018,18(6):341-358
参考文献 28
RECONDO G,CHE J W,JÄNNE P A,et al.Targeting⁃ MET dysregulation in cancer[J].Cancer Discov,2020,10(7):922-934
参考文献 29
LI Q,LI H,ZHAO X L,et al.DNA methylation mediated downregulation of miR ⁃ 449c controls osteosarcoma cell cycle progression by directly targeting oncogene c ⁃ myc [J].Int J Biol Sci,2017,13(8):1038-1050
参考文献 30
PETRONI G,FORMENTI S C,CHEN⁃KIANG S,et al.Im⁃ munomodulation by anticancer cell cycle inhibitors[J].Nat Rev Immunol,2020,20(11):669-679
目录contents

    摘要

    目的:探讨miR-449c对肺腺癌发生发展的影响及可能机制。方法:利用生物信息学分析鉴定高复发风险肺腺癌患者(无病生存期≤6个月)与低复发风险患者(无病生存期>60个月)之间差异表达的microRNA(miRNA)。靶基因预测及通路分析研究可能的机制。RT-PCR检测miR-449c在肺腺癌组织和细胞系中的表达,利用细胞转染实验在肺腺癌细胞系中过表达 miR-449c和c-Myc,CCK-8法测定细胞增殖活性,流式细胞术检测细胞周期及凋亡,蛋白质印迹分析检测相关蛋白表达水平。结果:生物信息学分析结果显示,相比低复发风险患者,肺腺癌高复发风险患者的miR-449c表达显著降低。miR-449c表达水平与肺腺癌患者临床分期和淋巴结转移相关,miR-449c低表达患者的预后显著差于高表达患者。通路和功能分析表明,miR- 449c可能与细胞周期进程有关。与癌旁组织相比,miR-449c在肺腺癌组织中显著低表达;过表达miR-449c抑制了肺腺癌细胞增殖,导致细胞周期阻滞于G1期,下调了c-Myc及其下游细胞周期蛋白的表达。c-Myc过表达可部分逆转miR-449c对细胞周期蛋白的抑制,miR-449c过表达也可部分逆转c-Myc对细胞周期蛋白的上调。结论:miR-449c低表达的肺腺癌患者预后较差,过表达miR-449c可以通过下调c-Myc调控细胞周期,抑制肺腺癌细胞增殖,提示miR-449c可能作为肺腺癌潜在的治疗靶标之一。

    Abstract

    Objective:The purpose of the current study was to explore the effect and possible mechanism of miR - 449c on the occurrence and development of lung adenocarcinoma. Methods:Bioinformatics analysis was used to identify the differentially expressed microRNAs between samples with lung adenocarcinoma patients at a high risk of recurrence(disease - free survival ≤6 months)and samples with lung adenocarcinoma patients at a low risk of recurrence(disease -free survival >60 months). Target gene prediction and pathway analysis were used to analysis possible mechanisms. RT-PCR was used to detect the expression of miR-449c in lung adenocarcinoma tissues and cell lines. miR - 449c and c - Myc were overexpressed in lung adenocarcinoma cell lines by cell transfection experiments. Cell growth activity was determined by CCK - 8. Cell cycle and apoptosis were detected by flow cytometry. Western blot analysis was used for relevant protein expression. Results:The results of bioinformatics analysis showed that the expression of miR - 449c was significantly decreased in the group of lung adenocarcinoma patients at a high risk of recurrence, compared with that at a low risk of recurrence. The expression of miR - 449c was significantly correlated with the clinical stage and lymph node metastasis of patients with lung adenocarcinoma. The prognosis of patients with low miR-449c expression was significantly worse than that of patients with high miR-449c expression. Pathway and functional analysis indicated that miR-449c may be involved in cell cycle progression. Compared with normal tissues,miR - 449c was significantly lower expressed in lung adenocarcinoma tissues.Overexpression of miR - 449c inhibited lung adenocarcinoma cell proliferation,resulted in cell cycle arrest in G1 phase,and downregulated the expression of c-Myc and its downstream cyclins. Overexpression of c-Myc could partially counteract the inhibition of cyclin by miR -449c. Overexpression of miR - 449c could also partially counteract the up - regulation of cyclin expression by c -Myc. Conclusion:Lung adenocarcinoma patients with low expression of miR-449c have a poor prognosis. Overexpression of miR-449c can regulate the lung adenocarcinoma cell cycle by downregulating c -Myc to inhibit the proliferation of lung adenocarcinoma cells. The results suggest that miR-449c may be one of the potential therapeutic targets for lung adenocarcinoma.

    关键词

    肺腺癌miR-449c细胞周期c-Myc

  • 肺癌是全球最常见、死亡率最高的恶性肿瘤[1-4]。肺腺癌是肺癌中最常见的一个组织学亚型,约占所有肺癌的40%[25-6]。尽管目前有手术、化疗、放疗、靶向治疗、免疫治疗等多种治疗手段,但仍有多数肺腺癌患者因治疗后出现肿瘤进展而死亡[7-11]。因此,阐明肺腺癌发生发展的分子机制和确定新的治疗靶点非常重要。

  • microRNA(miRNA)是一类长度为 17~24 nt 的短链、非编码 RNA,通过与 mRNA 内的互补序列结合,在转录过程后调节基因的表达[12-13]。miRNA可以调节多种正常生理过程以及调控恶性肿瘤的发生发展[14-15]。大量研究证明 miRNA 在肺癌中发挥着重要作用,如miR⁃205能够下调COMMD1基因促进肺腺癌生长[16],miR⁃218通过调节Slug/ZEB2 信号通路促进肺腺癌转移[17],miR⁃483⁃3p通过靶向整合素β3 促进表皮生长因子受体突变的非小细胞肺癌产生获得性吉非替尼耐药[18],但关于miR⁃449c在肺腺癌中的报道仍然有限。本研究通过生物信息学分析揭示了miR⁃449c在肺腺癌中的作用,并探索了 miR⁃449c对肺腺癌细胞株生长、细胞周期和凋亡以及相关基因表达的调控,旨在探讨miR⁃449c对肺腺癌发生发展的影响,并初步分析其可能机制。

  • 1 材料和方法

  • 1.1 材料

  • 1.1.1 组织标本和细胞系

  • 11 对肺腺癌组织(均经病理学确诊)及癌旁组织(距肺癌组织5 cm以外的肺组织)取自南京医科大学附属肿瘤医院,于2011年1月10日—12月15日在手术时采集。本研究得到了南京医科大学伦理委员会的批准[南医大伦审(2018)067 号],所有患者均在手术前签署知情同意书,同意病理标本供实验研究使用。肺腺癌细胞 PC9、A549、HCC827、 H1650和H358购自中国科学院上海生命科学研究所细胞资源中心。

  • 1.1.2 主要试剂

  • miR ⁃449c 和 U6 引物、miR ⁃449c 模拟物(miR ⁃ 449c⁃mimic)及其阴性对照(miR⁃NC)(广州市锐博生物科技有限公司),c⁃Myc、CDK6、MET 和β⁃actin 引物(Life Technologies 公司,美国),c⁃Myc 过表达质粒(pENTER⁃c⁃Myc)及其阴性对照(pENTER) (Vigene Biosciences 公司,美国);转染试剂 Lipo⁃ fectamine3000及提取细胞RNA的TRIzol试剂(Invit⁃ rogen 公司,美国),Prime⁃Script RT 试剂(TaKaRa 公司,日本),SYBR Select Master Mix 试剂、NuPAGE 10% Bis ⁃Tris 凝胶(Life Technologies 公司,美国); CCK⁃8试剂盒、RIPA 缓冲液、BCA蛋白质测定试剂盒、ECL Plus试剂盒(上海碧云天生物技术公司);兔 c⁃Myc多克隆抗体、兔CDK6多克隆抗体、兔MET多克隆抗体、兔Cyclin D1多克隆抗体、兔Cyclin D2多克隆抗体、兔Cyclin E2多克隆抗体、羊抗兔IgG⁃HRP 二抗(Cell Signaling Technology公司,美国),兔β⁃actin 多克隆抗体(Bioworld 公司,美国);FITC Annexin V 凋亡检测试剂盒(BD公司,美国)。

  • 1.2 方法

  • 1.2.1 差异表达基因筛选

  • 利用The Cancer Genome Atlas(TCGA)数据库获得520个肺腺癌组织和 46 个癌旁组织的 miRNA 表达数据和相应的临床信息,分析时剔除存在缺失数据的病例。本研究将半年内复发患者定义为高复发风险组[无病生存期(disease free survival,DFS)≤ 6 个月],5年内无复发的患者定义为低复发风险组 (DFS>60个月),利用R软件的Limma包筛选出两组差异表达的 miRNA(differentially expressed miRNA, DEM),筛选标准为P <0.05且|log2FC| >1 [19]

  • 1.2.2 miR⁃449c 与临床病理特征的相关性分析及生存分析

  • 利用R软件分析11例肺腺癌患者miR⁃449c表达与肿瘤分期、淋巴结状态等临床病理数据的关系,并进一步利用 R 软件 survival 程序包分析 miR⁃ 449c 对 DFS 和疾病特异性生存期(disease specific survival,DSS)的影响[20]

  • 1.2.3 体细胞突变分析及富集分析

  • 通过 Maftools R/Bioconductor 软件从 MAF 文件中提取miR⁃449c低表达患者详细的突变信息并进行分析[21]。利用GSEA软件和edgeR包进行单基因富集分析,筛选显著富集的信号通路,P <0.05为筛选标准。利用 TargetScan(http://www.targetscan.org)、 miRanda (http://www.microrna.org) 和 mirTarBase (http://mirtarbase.mbc.nctu.edu.tw)网站预测miR⁃449c 的靶基因。进行KEGG和GO通路分析和功能注释,评估识别候选靶基因中重要的信号转导通路和富集通路,P <0.05为筛选标准。

  • 1.2.4 细胞培养及转染

  • 将细胞置于 37℃、5% CO2的培养箱中用含有 10%胎牛血清的RPMI 1640培养基培养,每隔3~4 d 传代。取对数生长期细胞接种于6孔板,24 h后根据 Lipofectamine3000 说明书的步骤,将 miR⁃449c⁃ mimic及miR⁃NC和/或pENTER⁃c⁃Myc及pENTER转染肺腺癌细胞。

  • 1.2.5 RT⁃PCR实验

  • 根据说明书,使用TRIzol试剂从细胞中提取总 RNA,使用 Prime⁃Script RT 试剂进行逆转录反应。实时荧光定量 PCR 使用 SYBR Select Master Mix 在 7300 Real⁃Time PCR 系统上进行。引物序列见表1。以 2-ΔCt 计算组织标本和细胞中 miR⁃449c 相对表达量,以 2-ΔΔCt 计算转染后细胞中基因相对表达水平。

  • 表1 用于RT⁃PCR的引物序列

  • Table1 Primers used for RT⁃PCR

  • 1.2.6 CCK⁃8实验

  • 取对数生长期细胞以 5 000 个/孔接种于 96 孔板中,24 h后转染,每组设6个平行孔,分别在转染后1、2、3 d加入CCK⁃8试剂孵育1 h,用酶标仪测定 450 nm处吸光度。

  • 1.2.7 流式细胞术分析细胞周期

  • 细胞转染 3 d 后,收集细胞,1 000 r/min 离心 5 min,PBS清洗细胞2次,在-20℃下置于70%乙醇中固定。固定后,PBS 洗涤2次,加入含有RNase A的 50 mg/mL PI 染色溶液,室温下避光孵育 30 min。 FACScan流式细胞仪分析细胞周期。

  • 1.2.8 流式细胞术检测细胞凋亡

  • 细胞转染 3 d 后,收集细胞,1 000 r/min 离心 5 min;PBS洗涤2次,Binding Buffer重悬细胞,分别加入 FITC ⁃Annexin V 和 PI 各 5 μL,避光孵育 20 min。用 Binding Buffer补足体积至500 μL,FACScan流式细胞仪检测细胞凋亡率。

  • 1.2.9 Western blot分析

  • 转染3 d后细胞用预冷PBS清洗2次,加入预冷 RIPA缓冲液裂解,收集裂解液,于4℃、14 000 g离心 15 min,取上清液用BCA蛋白质测定试剂盒测定蛋白质浓度。蛋白变性后在NuPAGE 10% Bis⁃Tris凝胶上电泳,电泳完毕后用300 mA湿转2 h,待蛋白转移到 PVDF 膜上后,用 5%脱脂奶粉溶液封闭 1 h。加入一抗在4℃下孵育过夜,TBST清洗后常温孵育二抗1 h。TBST清洗后ECL化学发光法显影后经化学发光成像系统曝光检测目的条带。

  • 1.3 统计学方法

  • 使用GraphPad Prism第8版进行统计分析。计量资料采用均数±标准差(x-±s)表示。Student’s t⁃ 检验或 Wilcoxon 秩和检验评估组间差异。所有实验均重复3次,P <0.05为差异有统计学意义。

  • 2 结果

  • 2.1 肺腺癌患者miR⁃449c表达与临床病理学特征和预后的关系

  • 共有25个显著差异表达的miRNA,其中肺腺癌高复发风险组中有 18 个 miRNA 下调(包括 miR ⁃ 449c),7 个 miRNA 上调(图1A)。miR⁃449c 的表达与肿瘤分期(Ⅲ/Ⅳ期与Ⅰ/Ⅱ期比较,P=0.006,图1B)和淋巴结状态(阳性与阴性比较,P=0.03,图1C) 相关,肿瘤分期高的患者miR⁃449c表达低,淋巴结阳性患者 miR⁃449c 表达低。生存分析显示,miR⁃ 449 与肺腺癌患者的 DFS 和 DSS 相关(P=0.012 和 P=0.011,图1D、E),低表达提示预后不良。

  • 2.2 突变和富集分析

  • 在 miR⁃449c 低表达肺腺癌病例的外显子组中分析了多种体细胞突变。引起复发和转移高风险的前 10 个突变基因是:TP53(39%)、TTN(36%)、 MUC16(34%)、CSMD3(33%)、RYR2(30%)、ZFHX4 (29%)、LRP1B(26%)、USH2A(26%)、SPTA1(23%) 和 XIRP2(23%)(图2A)。

  • 图1 miR⁃449c的表达水平、miR⁃449c与临床病理特征的相关性和生存分析

  • Figure1 The expression of miR⁃449c,correlation between miR⁃449c and clinicopathological features,and survival analysis

  • 显著富集的信号通路(图2B),包括细胞周期、 ECM受体相互作用、黏着斑、同源重组、紧密连接。 miR⁃449c的靶基因预测及通路(图2C)和功能分析结果(图2D)表明肺腺癌中miR⁃449c可能通过靶向 c⁃Myc 和 CDK6 参与调控细胞周期,靶向 MET 基因参与细胞凋亡。

  • 2.3 miR⁃449c在肺腺癌组织和细胞中低表达

  • 通过RT⁃PCR检测了11对肺腺癌组织和癌旁组织中 miR⁃449c 的表达,发现肺腺癌组织中的 miR⁃ 449c水平显著低于癌旁组织(图3A)。与该结果一致,miR⁃449c在肺腺癌细胞系PC9、A549、HCC827、 H1650 和 H358 中的表达均较低(图3B)。选取表达较低的 PC9、A549 和 HCC827 细胞株进行下一步研究。

  • 2.4 miR⁃449c上调导致肺腺癌细胞周期阻滞

  • 将 miR⁃449c⁃mimic 和 miR⁃NC 分别转染 PC9、 A549 和 HCC827 细胞后,RT⁃PCR 结果均显示 miR⁃ 449c⁃mimic 组细胞 miR⁃449c表达量显著高于miR⁃ NC 组(P 均<0.001),说明 miR⁃449c 均成功过表达 (图4A~C)。CCK⁃8实验结果表明miR⁃449c过表达显著抑制了 PC9、A549 和 HCC827 细胞增殖(图4D~F)。

  • 进一步取PC9和A549细胞系进行流式细胞术分析,结果显示两株细胞中,miR⁃449c⁃mimic组与对照 miR ⁃NC 组间细胞凋亡率均未见显著差异(图4G);而细胞周期结果显示两株细胞中 miR⁃449c⁃ mimic组G1期细胞均显著增加,S期细胞均显著减少 (图4H),说明miR⁃449c过表达后PC9和A549细胞被阻滞于G1期。

  • 图2 突变和富集分析

  • Figure2 Mutates and enrichment analysis

  • 2.5 miR⁃449c可以调节肺腺癌细胞中c⁃Myc、CDK6 和MET基因的表达

  • 为了验证在肺腺癌细胞中 miR⁃449c 是否在 c⁃Myc、CDK6和MET信号转导通路中发挥着相应的作用,首先检测了miR⁃449c过表达后c⁃Myc、CDK6和 MET mRNA水平的变化。结果显示,与对照miR⁃NC 组相比,miR⁃449c过表达后A549和PC9细胞中c⁃Myc 和 MET mRNA 表达显著降低(图5A、B),但 CDK6 mRNA表达显著升高(图5C),差异均有统计学意义。

  • 进一步 Western blot 检测蛋白表达,结果显示 miR⁃449c过表达后,PC9和A549细胞中c⁃Myc及其下游细胞周期调节因子 Cyclin D1、Cyclin D2 和 Cyclin E2蛋白表达均显著降低;miR⁃449c过表达后 MET蛋白表达在两株细胞中结果并不一致;在PC9细胞中,miR⁃449c过表达后CDK6蛋白表达显著增加,但A549细胞中CDK6蛋白表达量均较低(图5D),因此选择c⁃Myc进行下一步研究。

  • 图3 miR⁃449c在肺腺癌组织和细胞中的表达水平

  • Figure3 Expression of miR⁃449c in lung adenocarcinoma tissues and cells

  • 图4 miR⁃449c对肺腺癌细胞凋亡和周期的影响

  • Figure4 The effects of miR⁃449c on apoptosis and cell cycle of lung adenocarcinoma cells

  • 图5 miR⁃449c调控c⁃Myc、CDK6和MET基因并影响周期蛋白表达

  • Figure5 miR⁃449c regulates c⁃Myc,CDK6 and MET and affects cyclin expression

  • 2.6 共转染对肺腺癌细胞周期蛋白的影响

  • 将c⁃Myc质粒和miR⁃449c⁃mimic共转染到PC9 细胞中,RT⁃PCR 结果显示转染 miR⁃449c⁃mimic 后上调 c ⁃ Myc 降低了 miR ⁃ 449c 的过表达水平(图6A)。Western blot结果(图6B)显示与转染miR⁃NC 和pENTER的对照组相比,c⁃Myc单基因过表达后, Cyclin D1、Cyclin D2 和 Cyclin E2 的表达显著上调,共转染miR⁃449c⁃mimic后逆转了c⁃Myc 引起的细胞周期蛋白表达量的上调;然而与共转染 miR⁃449c⁃ mimic和pENTER的细胞相比,转染miR⁃449c⁃mimic 和pENTER⁃c⁃Myc的细胞中仅Cyclin E2的表达显著升高,说明c⁃Myc过表达逆转了miR⁃449c过表达引起的Cyclin E2的下调。

  • 3 讨论

  • miRNA 在不同类型肿瘤中受到多系统调控, miRNA失调不可避免地会改变细胞中的mRNA谱,进一步通过反馈回路影响miRNA的表达和功能,最终影响其靶标mRNA的基因表达调控网络[1522]

  • 本研究通过生物信息学分析发现高复发风险肺腺癌患者的miR⁃449c表达水平显著低于低复发风险患者,miR⁃449c在临床分期晚期和淋巴结阳性患者中表达水平较低,并且低表达提示患者预后不良。既往研究表明,miR ⁃ 449c 能通过靶向抑制 SOX4基因抑制肝癌细胞的增殖和迁移,诱导细胞凋亡,并减少肿瘤生长,然而这种靶向作用较弱[12]。在胃癌中,miR⁃449c可以通过靶向抑制PFKFB3基因抑制胃癌细胞的侵袭和迁移[23]。与正常肺组织相比,非小细胞肺癌组织中的miR⁃449c显著下调,其过表达后非小细胞肺癌细胞增殖和侵袭能力下降并抑制了肿瘤的生长[24]。因此,miR⁃449c表达水平可能与肺腺癌的进展以及侵袭转移相关,这仍需后续临床研究证实。

  • 图6 miR⁃449c和c⁃Myc共转染结果

  • Figure6 Results of co⁃transfection of miR⁃449c and c⁃Myc

  • 本研究分析了11对肺腺癌及癌旁组织中miR⁃ 449c 的表达,结果显示相对于癌旁组织,miR⁃449c 在肺腺癌组织中的表达显著下调;肺腺癌细胞过表达miR⁃449c后细胞增殖活性显著低于对照组,这与非小细胞肺癌中研究结果一致[24]。通路和功能分析表明miR⁃449c与细胞周期进程显著相关,细胞学结果同样显示miR⁃449c过表达后细胞被阻滞于G1 期,细胞周期蛋白(Cyclin D1、Cyclin D2 和 Cyclin E2)显著下调,说明miR⁃449c过表达通过调控细胞周期而不是细胞凋亡来抑制肺腺癌细胞增殖。

  • 以往研究已证实c⁃Myc表达水平与细胞周期密切相关,c⁃Myc 的下调或失活会导致细胞周期进程阻滞[25-26]。MET基因也在细胞增殖和干细胞调控中起着重要作用[27-28]。靶基因预测及通路和功能分析显示肺腺癌中miR⁃449c可能通过靶向c⁃Myc参与调控细胞周期,靶向MET基因参与细胞凋亡。实验结果显示在两株肺腺癌细胞中,过表达miR⁃449c对细胞凋亡并无显著影响,对MET基因的调控作用也并不一致,但均显著抑制了c⁃Myc表达,而c⁃Myc过表达逆转了 miR ⁃449c 过表达引起的 Cyclin E2 的下调。进一步发现c⁃Myc基因能通过反作用抑制miR⁃ 449c的表达,miR⁃449c过表达也能逆转c⁃Myc引起的细胞周期蛋白的上调。说明miR⁃449c通过c⁃Myc 抑制肺腺癌细胞周期从而影响细胞增殖。这与骨肉瘤中的研究结果一致,在体外骨肉瘤细胞中研究发现DNA 甲基化介导 miR⁃449c下调,miR⁃449c 通过直接靶向c⁃Myc抑制骨肉瘤细胞周期从而影响细胞增殖和集落形成能力[29]。然而与Miao 等[24] 的研究结果并不一致,该研究结果显示,过表达 miR ⁃ 449c后通过直接靶向c⁃Myc促进非小细胞肺癌细胞 NCI⁃H23和NCI⁃H838凋亡,该研究未进行细胞周期实验以及细胞周期或凋亡相关蛋白验证,也可能与细胞株不同相关,因此结果仍需进一步验证。

  • CDK6 是另一种与细胞周期相关的癌基因,根据靶基因预测结果,它同样可能在miR⁃449c抑制肺腺癌细胞的生长过程中发挥潜在作用。以往多项研究证实,CDK6能够加快细胞周期进程,促进肿瘤的发生发展[30]。实验结果表明,与对照组相比,miR ⁃449c过表达后A549和PC9细胞中CDK6 mRNA 水平均显著升高,但两株细胞中尤其在 A549 细胞中 CDK6蛋白表达量均较低。据此推测CDK6可能并不是miR⁃449c参与调控肺腺癌细胞周期、抑制细胞增殖的主要分子。

  • 综上所述,miR⁃449c低表达的肺腺癌患者预后较差,miR⁃449c过表达通过下调c⁃Myc调控细胞周期而不是细胞凋亡来抑制肺腺癌细胞增殖,提示 miR⁃449c与肺腺癌的发生发展以及预后显著相关,并可能成为肺腺癌潜在的治疗靶标之一。

  • 参考文献

    • [1] THAI A A,SOLOMON B J,SEQUIST L V,et al.Lung cancer[J].Lancet,2021,398(10299):535-554

    • [2] TOUMAZIS I,BASTANI M,HAN S S,et al.Risk ⁃based lung cancer screening:a systematic review[J].Lung Can⁃ cer,2020,147:154-186

    • [3] ALEXANDER M,KIM S Y,CHENG H Y.Update 2020:management of non ⁃ small cell lung cancer[J].Lung,2020,198(6):897-907

    • [4] JONNA S,SUBRAMANIAM D S.Molecular diagnostics and targeted therapies in non ⁃ small cell lung cancer(NSCLC):an update[J].Discov Med,2019,27(148):167-170

    • [5] SCHABATH M B,COTE M L.Cancer progress and priori⁃ ties:lung cancer[J].Cancer Epidemiol Biomark Prev,2019,28(10):1563-1579

    • [6] DELA CRUZ C S,TANOUE L T,MATTHAY R A.Lung cancer:epidemiology,etiology,and prevention[J].Clin Chest Med,2011,32(4):605-644

    • [7] PASCOE H M,KNIPE H C,PASCOE D,et al.The many faces of lung adenocarcinoma:a pictorial essay[J].J Med Imaging Radiat Oncol,2018,62(5):654-661

    • [8] BUTNOR K J.Controversies and challenges in the histo⁃ logic subtyping of lung adenocarcinoma[J].Transl Lung Cancer Res,2020,9(3):839-846

    • [9] HOY H,LYNCH T,BECK M.Surgical treatment of lung cancer[J].Crit Care Nurs Clin N Am,2019,31(3):303-313

    • [10] VINOD S K,HAU E.Radiotherapy treatment for lung can⁃ cer:current status and future directions[J].Respirology,2020,25(S2):61-71

    • [11] RUIZ⁃CORDERO R,DEVINE W P.Targeted therapy and checkpoint immunotherapy in lung cancer[J].Surg Pathol Clin,2020,13(1):17-33

    • [12] SANDBOTHE M,BUURMAN R,REICH N,et al.The micro RNA ⁃ 449 family inhibits TGF ⁃β⁃ mediated liver cancer cell migration by targeting SOX4[J].J Hepatol,2017,66(5):1012-1021

    • [13] WINTER J,JUNG S,KELLER S,et al.Many roads to ma⁃ turity:microRNA biogenesis pathways and their regulation [J].Nat Cell Biol,2009,11(3):228-234

    • [14] IQBAL M A,ARORA S,PRAKASAM G,et al.MicroRNA in lung cancer:role,mechanisms,pathways and therapeu⁃ tic relevance[J].Mol Aspects Med,2019,70:3-20

    • [15] HILL M,TRAN N.miRNA interplay:mechanisms and consequences in cancer[J].Dis Models Mech,2021,14(4):047662

    • [16] YEH D W,CHEN Y S,LAI C Y,et al.Downregulation of COMMD1 by miR⁃205 promotes a positive feedback loop for amplifying inflammatory ⁃ and stemness ⁃ associated properties of cancer cells[J].Cell Death Differ,2016,23(5):841-852

    • [17] SHI Z M,WANG L,SHEN H,et al.Downregulation of miR⁃218 contributes to epithelial⁃mesenchymal transition and tumor metastasis in lung cancer by targeting Slug/ZEB2 signaling[J].Oncogene,2017,36(18):2577-2588

    • [18] YUE J N,LV D C,WANG C Y,et al.Epigenetic silenc⁃ ing of miR⁃483⁃3p promotes acquired gefitinib resistance and EMT in EGFR⁃mutant NSCLC by targeting integrin β 3[J].Oncogene,2018,37(31):4300-4312

    • [19] YOLDI G,PELLEGRINI P,TRINIDAD E M,et al.RANK signaling blockade reduces breast cancer recurrence by inducing tumor cell differentiation[J].Cancer Res,2016,76(19):5857-5869

    • [20] OGŁUSZKA M,ORZECHOWSKA M,JEDROSZKA D,et al.Evaluate Cutpoints:adaptable continuous data distribu⁃ tion system for determining survival in Kaplan⁃Meier esti⁃ mator[J].Comput Methods Programs Biomed,2019,177:133-139

    • [21] MAYAKONDA A,LIN D C,ASSENOV Y,et al.Maftools:efficient and comprehensive analysis of somatic variants in cancer[J].Genome Res,2018,28(11):1747-1756

    • [22] BUDAKOTI M,PANWAR A S,MOLPA D,et al.Micro ⁃ RNA:the darkhorse of cancer[J].Cell Signal,2021,83:109995

    • [23] CHEN X,WANG A P,YUE X X.miR-449c inhibits mi⁃ gration and invasion of gastric cancer cells by targeting PFKFB[3 J].Oncol Lett,2018,16(1):417-424

    • [24] MIAO L J,HUANG S F,SUN Z T,et al.Retracted:MiR⁃ 449c targets c ⁃Myc and inhibits NSCLC cell progression [J].FEBS Lett,2013,587(9):1359-1365

    • [25] DUFFY M J,O'GRADY S,TANG M H,et al.MYC as a target for cancer treatment[J].Cancer Treat Rev,2021,94:102154

    • [26] LOURENCO C,RESETCA D,REDEL C,et al.MYC pro⁃ tein interactors in gene transcription and cancer[J].Nat Rev Cancer,2021,21(9):579-591

    • [27] COMOGLIO P M,TRUSOLINO L,BOCCACCIO C.Known and novel roles of the MET oncogene in cancer:a coherent approach to targeted therapy[J].Nat Rev Can⁃ cer,2018,18(6):341-358

    • [28] RECONDO G,CHE J W,JÄNNE P A,et al.Targeting⁃ MET dysregulation in cancer[J].Cancer Discov,2020,10(7):922-934

    • [29] LI Q,LI H,ZHAO X L,et al.DNA methylation mediated downregulation of miR ⁃ 449c controls osteosarcoma cell cycle progression by directly targeting oncogene c ⁃ myc [J].Int J Biol Sci,2017,13(8):1038-1050

    • [30] PETRONI G,FORMENTI S C,CHEN⁃KIANG S,et al.Im⁃ munomodulation by anticancer cell cycle inhibitors[J].Nat Rev Immunol,2020,20(11):669-679

  • 参考文献

    • [1] THAI A A,SOLOMON B J,SEQUIST L V,et al.Lung cancer[J].Lancet,2021,398(10299):535-554

    • [2] TOUMAZIS I,BASTANI M,HAN S S,et al.Risk ⁃based lung cancer screening:a systematic review[J].Lung Can⁃ cer,2020,147:154-186

    • [3] ALEXANDER M,KIM S Y,CHENG H Y.Update 2020:management of non ⁃ small cell lung cancer[J].Lung,2020,198(6):897-907

    • [4] JONNA S,SUBRAMANIAM D S.Molecular diagnostics and targeted therapies in non ⁃ small cell lung cancer(NSCLC):an update[J].Discov Med,2019,27(148):167-170

    • [5] SCHABATH M B,COTE M L.Cancer progress and priori⁃ ties:lung cancer[J].Cancer Epidemiol Biomark Prev,2019,28(10):1563-1579

    • [6] DELA CRUZ C S,TANOUE L T,MATTHAY R A.Lung cancer:epidemiology,etiology,and prevention[J].Clin Chest Med,2011,32(4):605-644

    • [7] PASCOE H M,KNIPE H C,PASCOE D,et al.The many faces of lung adenocarcinoma:a pictorial essay[J].J Med Imaging Radiat Oncol,2018,62(5):654-661

    • [8] BUTNOR K J.Controversies and challenges in the histo⁃ logic subtyping of lung adenocarcinoma[J].Transl Lung Cancer Res,2020,9(3):839-846

    • [9] HOY H,LYNCH T,BECK M.Surgical treatment of lung cancer[J].Crit Care Nurs Clin N Am,2019,31(3):303-313

    • [10] VINOD S K,HAU E.Radiotherapy treatment for lung can⁃ cer:current status and future directions[J].Respirology,2020,25(S2):61-71

    • [11] RUIZ⁃CORDERO R,DEVINE W P.Targeted therapy and checkpoint immunotherapy in lung cancer[J].Surg Pathol Clin,2020,13(1):17-33

    • [12] SANDBOTHE M,BUURMAN R,REICH N,et al.The micro RNA ⁃ 449 family inhibits TGF ⁃β⁃ mediated liver cancer cell migration by targeting SOX4[J].J Hepatol,2017,66(5):1012-1021

    • [13] WINTER J,JUNG S,KELLER S,et al.Many roads to ma⁃ turity:microRNA biogenesis pathways and their regulation [J].Nat Cell Biol,2009,11(3):228-234

    • [14] IQBAL M A,ARORA S,PRAKASAM G,et al.MicroRNA in lung cancer:role,mechanisms,pathways and therapeu⁃ tic relevance[J].Mol Aspects Med,2019,70:3-20

    • [15] HILL M,TRAN N.miRNA interplay:mechanisms and consequences in cancer[J].Dis Models Mech,2021,14(4):047662

    • [16] YEH D W,CHEN Y S,LAI C Y,et al.Downregulation of COMMD1 by miR⁃205 promotes a positive feedback loop for amplifying inflammatory ⁃ and stemness ⁃ associated properties of cancer cells[J].Cell Death Differ,2016,23(5):841-852

    • [17] SHI Z M,WANG L,SHEN H,et al.Downregulation of miR⁃218 contributes to epithelial⁃mesenchymal transition and tumor metastasis in lung cancer by targeting Slug/ZEB2 signaling[J].Oncogene,2017,36(18):2577-2588

    • [18] YUE J N,LV D C,WANG C Y,et al.Epigenetic silenc⁃ ing of miR⁃483⁃3p promotes acquired gefitinib resistance and EMT in EGFR⁃mutant NSCLC by targeting integrin β 3[J].Oncogene,2018,37(31):4300-4312

    • [19] YOLDI G,PELLEGRINI P,TRINIDAD E M,et al.RANK signaling blockade reduces breast cancer recurrence by inducing tumor cell differentiation[J].Cancer Res,2016,76(19):5857-5869

    • [20] OGŁUSZKA M,ORZECHOWSKA M,JEDROSZKA D,et al.Evaluate Cutpoints:adaptable continuous data distribu⁃ tion system for determining survival in Kaplan⁃Meier esti⁃ mator[J].Comput Methods Programs Biomed,2019,177:133-139

    • [21] MAYAKONDA A,LIN D C,ASSENOV Y,et al.Maftools:efficient and comprehensive analysis of somatic variants in cancer[J].Genome Res,2018,28(11):1747-1756

    • [22] BUDAKOTI M,PANWAR A S,MOLPA D,et al.Micro ⁃ RNA:the darkhorse of cancer[J].Cell Signal,2021,83:109995

    • [23] CHEN X,WANG A P,YUE X X.miR-449c inhibits mi⁃ gration and invasion of gastric cancer cells by targeting PFKFB[3 J].Oncol Lett,2018,16(1):417-424

    • [24] MIAO L J,HUANG S F,SUN Z T,et al.Retracted:MiR⁃ 449c targets c ⁃Myc and inhibits NSCLC cell progression [J].FEBS Lett,2013,587(9):1359-1365

    • [25] DUFFY M J,O'GRADY S,TANG M H,et al.MYC as a target for cancer treatment[J].Cancer Treat Rev,2021,94:102154

    • [26] LOURENCO C,RESETCA D,REDEL C,et al.MYC pro⁃ tein interactors in gene transcription and cancer[J].Nat Rev Cancer,2021,21(9):579-591

    • [27] COMOGLIO P M,TRUSOLINO L,BOCCACCIO C.Known and novel roles of the MET oncogene in cancer:a coherent approach to targeted therapy[J].Nat Rev Can⁃ cer,2018,18(6):341-358

    • [28] RECONDO G,CHE J W,JÄNNE P A,et al.Targeting⁃ MET dysregulation in cancer[J].Cancer Discov,2020,10(7):922-934

    • [29] LI Q,LI H,ZHAO X L,et al.DNA methylation mediated downregulation of miR ⁃ 449c controls osteosarcoma cell cycle progression by directly targeting oncogene c ⁃ myc [J].Int J Biol Sci,2017,13(8):1038-1050

    • [30] PETRONI G,FORMENTI S C,CHEN⁃KIANG S,et al.Im⁃ munomodulation by anticancer cell cycle inhibitors[J].Nat Rev Immunol,2020,20(11):669-679