en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

刘仪,E-mail:jsliuyu@163.com

中图分类号:R681

文献标识码:A

文章编号:1007-4368(2023)11-1605-06

DOI:10.7655/NYDXBNS20231120

参考文献 1
ZENG Q,LI N,WANG Q Q,et al.The prevalence of osteoporosis in China,a nationwide,multicenter DXA sur⁃ vey[J].J Bone Miner Res,2019,34(10):1789-1797
参考文献 2
MAKITIE O,ZILLIKENS M C.Early ⁃ onset osteoporosis [J].Calcif Tissue Int,2022,110(5):546-561
参考文献 3
包钟元,季晶.铁死亡在颅脑外伤中的研究进展[J].南京医科大学学报(自然科学版),2022,42(2):270-278
参考文献 4
LE Y F.Ferroptotic cell death:new regulatory mecha⁃ nisms for metabolic diseases[J].Endocr Metab Immune Disord Drug Targets,2021,21(5):785-800
参考文献 5
MAO C,LIU X G,ZHANG Y L,et al.DHODH⁃mediated ferroptosis defence is a targetable vulnerability in cancer [J].Nature,2021,593(7860):586-590
参考文献 6
NI S,YUAN Y,KUANG Y B,et al.Iron metabolism and immune regulation[J].Front Immunol,2022,13:816282
参考文献 7
JIANG X J,STOCKWELL B R,CONRAD M.Ferroptosis:mechanisms,biology and role in disease[J].Nat Rev Mol Cell Biol,2021,22(4):266-282
参考文献 8
MOU Y H,WANG J,WU J C,et al.Ferroptosis,a new form of cell death:opportunities and challenges in cancer [J].J Hematol Oncol,2019,12(1):1-16
参考文献 9
LI J,CAO F,YIN H L,et al.Ferroptosis:past,present and future[J].Cell Death Dis,2020,11(2):88
参考文献 10
TANG D L,CHEN X,KANG R,et al.Ferroptosis:molecu⁃ lar mechanisms and health implications[J].Cell Res,2021,31(2):107-125
参考文献 11
VOGT A C S,ARSIWALA T,MOHSEN M,et al.On iron metabolism and its regulation[J].Int J Mol Sci,2021,22(9):4591
参考文献 12
LEDESMA⁃COLUNGA M G,WEIDNER H,VUJIC SPA⁃ SIC M,et al.Shaping the bone through iron and iron⁃relat⁃ ed proteins[J].Semin Hematol,2021,58(3):188-200
参考文献 13
ZHANG Y J,LU Y,JIN L P.Iron metabolism and ferrop⁃ tosis in physiological and pathological pregnancy[J].Int J Mol Sci,2022,23(16):9395
参考文献 14
JIANG Z X,WANG H,QI G B,et al.Iron overload ⁃in⁃ duced ferroptosis of osteoblasts inhibits osteogenesis and promotes osteoporosis:an in vitro and in vivo study[J].IUBMB Life,2022,74(11):1052-1069
参考文献 15
FENG Y,HE P Y,KONG W D,et al.Apoptosis ⁃promo ⁃ ting properties of miR⁃3074⁃5p in MC3T3⁃E1 cells under iron overload conditions[J].Cell Mol Biol Lett,2021,26(1):1-15
参考文献 16
YANG J C,DONG D D,LUO X L,et al.Iron overload⁃in⁃ duced osteocyte apoptosis stimulates osteoclast differenti⁃ ation through increasing osteocytic RANKL production in vitro[J].Calcif Tissue Int,2020,107(5):499-509
参考文献 17
YAN H F,ZOU T,TUO Q Z,et al.Ferroptosis:mecha⁃ nisms and links with diseases[J].Sig Transduct Target Ther,2021,6:49
参考文献 18
LIANG D,MINIKES A M,JINAG X.Ferroptosis at the intersection of lipid metabolism and cellular signaling[J].Mol Cell,2022,82(12):2215-2227
参考文献 19
LIU J,KANG R,TANG D L.Signaling pathways and defense mechanisms of ferroptosis[J].FEBS J,2022,289(22):7038-7050
参考文献 20
YUAN H,PRATTE J,GIARDINA C.Ferroptosis and its potential as a therapeutic target[J].Biochem Pharmacol,2021,186:114486
参考文献 21
WANG Y,WEI Z H,PAN K R,et al.The function and mechanism of ferroptosis in cancer[J].Apoptosis,2020,25(11/12):786-798
参考文献 22
LIN Y F,SHEN X M,KE Y Z,et al.Activation of osteo⁃ blast ferroptosis via the METTL3/ASK1 ⁃ p38 signaling pathway in high glucose and high fat(HGHF)⁃ induced diabetic bone loss[J].FASEB J,2022,36(3):e22147
参考文献 23
XU Y M,SANG W L,ZHONG Y M,et al.CoCrMo ⁃ nanoparticles induced peri ⁃implant osteolysis by promo ⁃ ting osteoblast ferroptosis via regulating Nrf2⁃ARE signal⁃ ling pathway[J].Cell Prolif,2021,54(12):e13142
参考文献 24
KANAPATHIPILLAI M.Treating p53 mutant aggregation⁃ associated cancer[J].Cancers,2018,10(6):154
参考文献 25
LEI G,ZHANG Y L,HONG T,et al.Ferroptosis as a mechanism to mediate p53 function in tumor radiosensi⁃ tivity[J].Oncogene,2021,40(20):3533-3547
参考文献 26
JIANG L,HICKMAN J H,WANG S J,et al.Dynamic roles of p53 ⁃ mediated metabolic activities in ROS ⁃ in⁃ duced stress responses[J].Cell Cycle,2015,14(18):2881-2885
参考文献 27
LIU X,WANG T H,WANG W,et al.Emerging potential therapeutic targets of ferroptosis in skeletal diseases[J].Oxidative Med Cell Longev,2022,2022:1-19
参考文献 28
DUAN J Y,LIN X,XU F,et al.Ferroptosis and its poten⁃ tial role in metabolic diseases:a curse or revitalization?[J].Front Cell Dev Biol,2021,9:701788
参考文献 29
URSINI F,MAIORINO M.Lipid peroxidation and ferrop⁃ tosis:the role of GSH and GPx4[J].Free Radic Biol Med,2020,152:175-185
参考文献 30
CHEN X,YU C H,KANG R,et al.Cellular degradation systems in ferroptosis[J].Cell Death Differ,2021,28(4):1135-1148
参考文献 31
ZHAO Y T,DU Y X,GAO Y J,et al.ATF3 regulates osteogenic function by mediating osteoblast ferroptosis in type 2 diabetic osteoporosis[J].Dis Markers,2022,2022:1-17
参考文献 32
HE Q,YANG J Z,PAN Z F,et al.Biochanin A protects against iron overload associated knee osteoarthritis via regulating iron levels and NRF2/System Xc ⁃/GPX4 axis [J].Biomed Pharmacother,2023,157:113915
参考文献 33
CHE J M,YANG J C,ZHAO B,et al.The effect of abnor⁃ mal iron metabolism on osteoporosis[J].Biol Trace Elem Res,2020,195(2):353-365
参考文献 34
D’AMELIO P,CRISTOFARO M A,TAMONE C,et al.Role of iron metabolism and oxidative damage in post⁃ menopausal bone loss[J].Bone,2008,43(6):1010-1015
参考文献 35
HU Y X,HAN J,DING S Q,et al.Identification of ferrop⁃ tosis ⁃ associated biomarkers for the potential diagnosis and treatment of postmenopausal osteoporosis[J].Front Endocrinol,2022,13:986384
参考文献 36
WU J,WANG A,WANG X,et al.Rapamycin improves bone mass in high⁃turnover osteoporosis with iron accumu⁃ lation through positive effects on osteogenesis and angio⁃ genesis[J].Bone,2019,121:16-28
参考文献 37
JIN Y Q,WU S G,ZHANG L Y,et al.Artesunate inhibits osteoclast differentiation by inducing ferroptosis and pre⁃ vents iron overload ⁃ induced bone loss[J].Basic Clin Pharma Tox,2023,132(2):144-153
参考文献 38
LI Y,BAI B,ZHANG Y.Bone abnormalities in young male rats with iron intervention and possible mechanisms [J].Chem Biol Interact,2018,279:21-26
参考文献 39
YANG R Z,XU W N,ZHENG H L,et al.Exosomes de⁃ rived from vascular endothelial cells antagonize glucocor⁃ ticoid ⁃ induced osteoporosis by inhibiting ferritinophagy with resultant limited ferroptosis of osteoblasts[J].J Cell Physiol,2021,236(9):6691-6705
参考文献 40
LU J S,YANG J Z,ZHENG Y S,et al.Extracellular vesi⁃ cles from endothelial progenitor cells prevent steroid ⁃in⁃ duced osteoporosis by suppressing the ferroptotic pathway in mouse osteoblasts based on bioinformatics evidence [J].Sci Rep,2019,9:16130
参考文献 41
MIAO W,HE L,ZHANG Y,et al.Ferroptosis is partially responsible for dexamethasone ⁃ induced T cell ablation,but not osteoporosis in larval zebrafish[J].Ecotoxicol En⁃ viron Saf,2022,242:113872
参考文献 42
LI M,YANG N,HAO L,et al.Melatonin inhibits the fer⁃ roptosis pathway in rat bone marrow mesenchymal stem cells by activating the PI3K/AKT/mTOR signaling axis to attenuate steroid⁃induced osteoporosis[J].Oxidative Med Cell Longev,2022,2022:1-22
参考文献 43
YANG Y Q,LIN Y X,WANG M Q,et al.Targeting ferrop⁃ tosis suppresses osteocyte glucolipotoxicity and alleviates diabetic osteoporosis[J].Bone Res,2022,10:26
参考文献 44
GE W W,JIE J,YAO J,et al.Advanced glycation end products promote osteoporosis by inducing ferroptosis in osteoblasts[J].Mol Med Rep,2022,25(4):140
参考文献 45
MA H D,WANG X D,ZHANG W L,et al.Melatonin sup⁃ presses ferroptosis induced by high glucose via activation of the Nrf2/HO⁃1 signaling pathway in type 2 diabetic osteoporosis[J].Oxidative Med Cell Longev,2020,2020:1-18
参考文献 46
JIN C,TAN K,YAO Z,et al.A novel anti ⁃ osteoporosis mechanism of VK2:interfering with ferroptosis via AMPK/SIRT1 pathway in type 2 diabetic osteoporosis[J].J Agric Food Chem,2023,71(6):2745-2761
目录contents

    摘要

    骨质疏松症是老年人的一种常见病,其主要特征为骨强度降低、骨密度减少及骨折风险增加。铁死亡是一种新的铁依赖性程序性细胞死亡过程,在调节骨质疏松的发生发展方面至关重要,但其潜在机制较为复杂。本文讨论了铁死亡在骨质疏松症中的分子机制及其相关研究进展,以期为今后关于铁死亡与骨质疏松的研究提供新的参考。

    Abstract

    Osteoporosis(OP)is a common disease in the elderly,characterized by decreased bone strength,decreased bone density, and increased risk of fractures. Ferroptosis is a novel iron -dependent programmed cell death process that is critical in regulating the development of osteoporosis,but its underlying mechanism is complex. This article discusses the molecular mechanism of ferroptosis in osteoporosis and related research progress,in order to provide new references for future research on ferroptosis and osteoporosis.

    关键词

    铁死亡骨质疏松机制相关性

  • 骨质疏松症是一种全身性骨病,中国50岁及以上的男性和女性骨质疏松症的患病率分别为6.46% 及29.13%[1]。年龄的增长及机体生理性衰退会引起骨生成与骨破坏平衡失调,从而导致骨代谢失衡[2]。铁死亡由脂质过氧化物和活性氧(reactive oxygen⁃ species,ROS)的积累直接介导[3],许多研究发现糖尿病、动脉粥样硬化及骨质疏松等疾病都与铁死亡有关[4-5],铁死亡有可能是诊治相关疾病新的研究方向。

  • 1 铁死亡的特征

  • 铁是天然生物中具有氧化还原活性的微量元素,参与调节细胞活动及机体代谢[6]。铁积累促进 ROS以及脂质相关自由基的产生增加,最终引发铁死亡[7]。铁死亡是一种新型细胞死亡模式,不同于细胞凋亡、坏死及自噬等[8]。在用铁死亡诱导剂 Erastin处理的人表皮成纤维细胞中观察到线粒体数量减少,膜密度增加,线粒体嵴的正常结构被破坏,这些形态学特征有助于区分铁死亡与其他细胞死亡模式[9]。在生物学特性方面表现为胱氨酸摄取减少、谷胱甘肽(glutathione,GSH)消耗、胱氨酸/谷氨酸反向转运体(cystine/glutamate antiporter,又称 System Xc⁃)活性降低以及铁离子和 ROS 异常积聚[10]

  • 2 铁死亡在骨细胞中的作用机制

  • 铁死亡的发生涉及铁的代谢异常及 ROS 和脂质过氧化物的异常堆积,还受多种信号通路的调控,目前已有的研究主要通过以下关键通路展开 (图1)。

  • 2.1 铁代谢紊乱

  • 铁是生命活动必需的微量元素之一,维持人体的各种生理功能。细胞铁主要以Fe2+ 或Fe3+ 形式储存于细胞中,Fe2+ 能与蛋白质结合,参与各种生理反应,而Fe3+ 是人体铁运输的主要形式[11]。全身铁调节主要通过铁调素(hepcidin)和铁转运蛋白(ferro⁃ portin)之间的相互作用调控,包括细胞内铁蛋白 (ferritin)、二价金属转运蛋白1(divalent metal trans⁃ porter 1,DMT1)、转铁蛋白受体(transferrin receptor, TfR)和转铁蛋白(transferrin,Tf)等[12]。在体内,细胞外的 Fe3+ 经转铁蛋白受体 1(transferrin receptor 1, TfR1)运输至细胞内,再被还原酶前列腺六跨膜上皮抗原3(six transmembrane epithelial antigen of pros⁃ tate3,STEAP3)进一步转化为 Fe2+ 并储存起来。铁蛋白还可与核受体辅激活因子 4(nuclear receptor coactivator 4,NCOA4)结合释放出游离铁,大量的铁离子通过芬顿反应(Fenton reaction)促进脂质过氧化反应,最终引发铁死亡。

  • 铁代谢在骨骼稳态中起着关键作用,铁代谢异常引起的铁超负荷是铁死亡的主要特征之一[13]。铁超负荷降低了细胞活力以及超氧化物歧化酶和 GSH水平,增加了脂质过氧化物、铁死亡相关蛋白以及ROS的生成,并诱导线粒体的微观结构变化[14]。成骨细胞中DMT1的过表达可引起铁超负荷,增强氧化应激反应,最终导致成骨细胞的成骨功能下降。铁超负荷会降低小鼠胚胎成骨细胞前体细胞 (MC3T3⁃E1)活力并诱导细胞凋亡,说明铁超负荷可能在一定程度上抑制成骨细胞增殖并促进成骨细胞凋亡[15]。铁超负荷还可促进核因子κB受体活化因子配体(receptor activator of nuclear factor⁃κB ligand, RANKL)的产生增加,从而提高骨细胞中RANKL/骨保护素(osteoprotegerin,OPG)的比例,最终增强破骨细胞的分化和破骨功能,诱导骨细胞凋亡[16]。因此,铁代谢在骨细胞铁死亡过程中起着关键的调节作用,调节铁代谢相关信号通路可以有效去除铁代谢紊乱产生的ROS,可能成为未来骨质疏松药物开发的重要基础。

  • 2.2 脂质过氧化物累积

  • 脂质代谢异常会引起铁死亡,生物膜成分磷脂酰乙醇胺(phosphatidyl ethanolamine,PE)和多不饱和脂肪酸(polyunsaturated fatty acid,PUFA)可以诱导脂质过氧化(lipid peroxidation,LPO)。PUFA在双烯丙基位具有较弱的C⁃H键,因此容易氧化[17]。游离的PUFA 是LPO 的重要底物,可酯化为磷脂双层并导致过度氧化,引发铁死亡[18]。溶血磷脂酰胆碱酰基转移酶3(lysophosphatidylcholine acyltransferase3,LPCAT3)和酰基辅酶 A 合成酶长链家族成员 4 (acyl⁃CoA synthetase long⁃chain family member 4,AC⁃ SL4)通过将 PUFA 掺入细胞磷脂尤其是 PE 中生成 PUFA⁃PE,并进一步被脂氧合酶(lipoxygenase,LOX) 氧化成脂质过氧化物,在铁死亡中起着关键作用[19]。通过减少LPCAT3及ACSL4的产生可以降低脂质过氧化物的生成,从而抑制铁死亡。

  • LPO与许多疾病相关,例如心血管疾病、肿瘤、骨质疏松等[20]。脂质过氧化物的异常堆积会激活并影响细胞内与细胞活动相关的信号通路[21]。研究表明通过激活METTL3/ASK1⁃p38(methyltransfera⁃ selike3/apoptosis signal ⁃ regulating kinase1⁃ p38)信号通路可以诱导糖尿病性骨质疏松症(diabetic osteoporosis,DOP)中的成骨细胞铁死亡[22]。此外,转录因子核因子 ⁃E2 相关因子 2(nuclear factor erythroid 2⁃related factor 2,Nrf2)是抗氧化反应的核心元素,CoCrMo ⁃纳米颗粒(CoNP)通过显著下调 Nrf2的表达也可促进成骨细胞铁死亡[23]。因此,脂质过氧化物的累积在骨细胞铁死亡的发生中起着重要作用。

  • 2.3 p53介导的铁死亡

  • p53 是一种肿瘤抑制基因,通过促进细胞凋亡和组织修复来调节细胞生长[24]。许多研究表明, p53 也与铁死亡密切相关。 System Xc ⁃ 轻链 SLC7A11(solute carrier family 7 member 11)可能是 p53基因的新靶点,p53能够通过拮抗SLC7A11的产生来减少 System Xc⁃对胱氨酸的转运,进而降低谷胱甘肽过氧化物酶 4(glutathione peroxidase4, GPX4)的活性,增加细胞ROS及脂质过氧化物的产生,最终导致细胞铁死亡[25]。在单独用ROS处理的细胞中没有检测到细胞死亡,然而,当用p53诱导与 ROS结合处理细胞时会有超过90%的细胞死亡。当再用铁死亡抑制剂铁生长素⁃1(Fer⁃1)处理细胞后,细胞死亡率降低至40%,表明p53可诱导铁死亡[26]

  • 2.4 System Xc⁃/GSH/GPX4抗氧化系统的破坏

  • System Xc⁃是一种广泛分布在磷脂双分子层中的抗转运体,由轻链SLC7A11和重链SLC3A2(solute carrier family 3 member 2)两个亚基组成,它是细胞抗氧化系统不可或缺的一部分[27]。它可以将细胞外胱氨酸运输至细胞内作为半胱氨酸的生产原料,然后进一步合成GSH[28]。GSH主要由半胱氨酸、甘氨酸和谷氨酸组成,其中含量最少的半胱氨酸限制了 GSH 的合成速度[29]。GSH 作为 GPX4 的辅助因子,能够降低脂质过氧化物的毒性,保护生物膜系统免受铁死亡的损伤。GPX4 是一种中枢调节因子,也是人体抗氧化系统的重要成分,GSH在GPX4 的作用下与氧化型谷胱甘肽(oxidized glutathione, GSSH)处于动态平衡。

  • 铁死亡受多种信号通路的调节,尤其是System Xc⁃/GSH/GPX4信号通路,通过阻断下调System Xc⁃/ GSH/GPX4抗氧化系统会导致细胞铁死亡[30]。激活转录因子3(activating transcription factor 3,ATF3)是一种编码可调节转录因子的基因,它可以通过抑制 System Xc⁃活性来介导高糖环境中的成骨细胞铁死亡,从而诱发骨质疏松症[31]。He等[32] 建立了铁过载小鼠模型,结果发现Biochanin A(BCA)可以通过抑制TfR1和促进铁转运蛋白(ferroportin)直接降低细胞内铁浓度,还可以通过增强转录因子Nrf2来调控System Xc⁃/GPX4的表达,进而减少软骨细胞铁死亡。因此,System Xc⁃/GSH/GPX4抗氧化系统在骨细胞铁死亡的发生发展中起着核心作用。

  • 图1 骨质疏松症中铁死亡的发生机制

  • Figure1 The mechanisms of ferroptosis in osteoporosis

  • 3 铁死亡与骨质疏松

  • 正常的骨骼通过成骨细胞介导的骨形成和破骨细胞介导的骨吸收处于不断重塑的状态。各种原因导致的骨生成减少或骨吸收增加均会导致骨质疏松症的发生。近年来,人们越来越关注铁死亡与骨质疏松症的关系[33-34]

  • 3.1 铁死亡与绝经后骨质疏松症

  • 绝经后骨质疏松症主要是因为绝经后妇女雌激素水平降低,雌激素对破骨细胞的抑制作用减弱,引起破骨细胞数量增加、凋亡减少,最终导致骨吸收功能增加。铁死亡相关基因可用于绝经后骨质疏松症的早期诊断和个体化治疗[35]。Wu等[36] 构建了敲除全身铁调素基因的双侧卵巢切除小鼠模型和腹腔注射铁剂的小鼠模型,从中发现哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)在铁蓄积的骨质疏松症中起关键作用,铁蓄积通过影响骨细胞的mTOR/STAT1/Cxcl9通路减少骨细胞再生,导致骨量减少。铁超负荷会降低 MC3T3⁃E1 细胞活力并诱导细胞凋亡,说明铁超负荷可能在一定程度上抑制成骨细胞增殖并促进成骨细胞凋亡,从而导致骨质疏松症的发生。青蒿素是一种有机化合物,可以通过诱导铁死亡来抑制铁摄取刺激的破骨细胞分化,起到抗骨质疏松的作用,可能成为治疗铁超负荷引起的骨质疏松症的潜在药物[37]。铁超负荷会引起骨组织的钙含量和股骨骨密度明显下降,破骨细胞微观结构受损。此外,在铁超负荷大鼠的骨组织中还观察到 RANKL 表达增加以及OPG表达降低,这表明骨吸收增加可能是通过ROS介导的RANK/RANKL/OPG途径引起 [38]。RANKL是铁死亡调节骨吸收的关键靶点,有可能为骨质疏松症的治疗提供新的理论依据。

  • 3.2 铁死亡与激素性骨质疏松症

  • 大量使用糖皮质激素会引起骨质疏松症,从而引起人体骨量及骨形成的减少。内皮细胞分泌外泌体(endothelial cells secrete exosome,EC ⁃Exos)是细胞间相互联系的必要介质,是机体生命活动的重要组成部分。EC⁃Exos通过抑制铁死亡对糖皮质激素诱导的骨质疏松症具有保护作用,为激素性骨质疏松症的治疗提供了新的替代方法[39]。有研究者采用大剂量糖皮质激素建立小鼠激素性骨质疏松症模型,从中发现骨髓来源的内皮祖细胞微囊泡(endothelial progenitor cell ⁃ extracellular vesicle, EPC⁃EV)不仅可以在一定程度上增加骨小梁的数量和骨密度,减少股骨头坏死组织的形成,而且能够逆转糖皮质激素引起的几种氧化损伤标志物的改变,如丙二醛(malondialdehyde,MDA)和 GSH 等。此外,EPC⁃EV 还可以通过减少成骨细胞的铁死亡防止激素性骨质疏松症的发生,这也为激素性骨质疏松症的治疗提供了新的方法[40]。Miao 等[41] 对斑马鱼幼体进行地塞米松暴露实验。48 h接触地塞米松的斑马鱼幼体出现骨质疏松。转录组分析、生化参数和基因表达谱揭示了铁死亡可能在地塞米松引起的斑马鱼幼体毒性效应中起作用。与上述研究结果相似,在一项关于激素性骨质疏松症的研究中发现糖皮质激素诱导的铁死亡与激素性骨质疏松症密切相关,褪黑素(melatonin,MT)通过激活 PI3K/AKT/mTOR 信号通路显著缓解糖皮质激素诱导的骨髓间充质干细胞的铁死亡,从而减少激素性骨质疏松症的发生。因此,MT 可能成为预防和治疗激素性骨质疏松症的新型药物[42]

  • 3.3 铁死亡与DOP

  • DOP是糖尿病患者骨骼方面的主要并发症,其主要的致病因素是骨细胞活力丧失。铁死亡是 DOP 中骨细胞死亡的重要机制。糖尿病的微环境会引起LPO、铁过载及铁死亡途径的异常激活,从而增加骨细胞的铁死亡。血红素加氧酶⁃1(heme oxy⁃ genase⁃1,HO⁃1)对 DOP 中的骨细胞铁死亡至关重要,其启动子活性由上游Nrf2和c⁃JUN转录因子的相互作用控制。靶向铁死亡或HO⁃1通过破坏LPO 和 HO⁃1 激活之间的恶性循环,有效减少 DOP 中的骨细胞死亡,防止 DOP 的发生[43]。Ge 等[44] 测定了骨质疏松患者和健康个体的骨密度(bone mineral density,BMD)、血清晚期糖基化终产物(advanced glycation end product,AGE)和空腹血糖(fasting blood glucose,FBG)水平,结果发现骨质疏松患者的血清AGE水平比健康个体更高。血清AGE显著促进了细胞凋亡和铁死亡,通过诱导铁死亡来破坏成骨细胞的功能,从而导致DOP的发生。高葡萄糖水平可通过增加DOP中的ROS/LPO/GSH 消耗来诱导铁死亡[45]。此外,MT 不仅可以有效预防卵巢切除大鼠的骨质疏松症,促进骨形成,防止围绝经期妇女的骨质流失,还与 DOP 中自噬细胞的铁死亡有关,通过影响 Nrf2/HO⁃1 信号通路增加对氧化应激的抵抗力,从而增强成骨细胞的成骨能力。有研究者在高葡萄糖中培养细胞并敲低了其 ATF3 水平,结果发现抑制 ATF3 的功能增加了 GPX4 水平并减少了ROS和脂质过氧化物的产生,从而抑制了成骨细胞的铁死亡并改善了其成骨功能[31]。此外,高葡萄糖可通过诱导 ATF3 上调,导致 SLC7A11 表达降低,从而引起细胞内 GSH 和细胞外谷氨酸水平降低,最终导致 DOP 的发生。维生素 K2 是一种脂溶性维生素,临床上用于预防骨质疏松症和改善凝血。在腹腔注射链脲佐菌素溶液和高脂肪高糖饮食建立的小鼠 DOP 模型中发现,维生素 K2 通过激活 AMPK/SIRT1 信号通路来抑制铁死亡,从而减少 DOP的发生[46]。与上述方法相似,另一项研究通过高糖高脂肪喂养建立了糖尿病大鼠模型,结果表明高糖高脂肪诱导的成骨细胞铁死亡可能与 METTL3/ ASK1⁃p38信号通路导致DOP有关。因此,抑制成骨细胞铁死亡可能为DOP提供潜在的治疗策略[22]

  • 4 总结与展望

  • 铁死亡是一种铁依赖性细胞死亡过程,与骨质疏松的发生发展密切相关。本文综述了铁死亡在骨质疏松症中的分子机制及其相关研究进展。阐明铁死亡在骨质疏松症中的分子机制可以为骨代谢提供实质性的见解,从而找出疗效更佳的方法来预防和治疗骨质疏松症。目前关于铁死亡在骨质疏松症中的相关机制及信号通路尚不完全清楚,科研人员需要进行更深层次的探索,以期找到更多新型有效的诊疗骨质疏松症的方法。关于骨相关细胞铁死亡信号通路的干扰措施,如DNA修复蛋白及类黄酮等的研究,可能成为治疗骨质疏松症的重要靶点。此外,铁死亡还与其他肌肉骨骼疾病有密切联系,深入了解铁死亡在其他肌肉骨骼疾病中的发病机制将有助于相关疾病的精准治疗。

  • 参考文献

    • [1] ZENG Q,LI N,WANG Q Q,et al.The prevalence of osteoporosis in China,a nationwide,multicenter DXA sur⁃ vey[J].J Bone Miner Res,2019,34(10):1789-1797

    • [2] MAKITIE O,ZILLIKENS M C.Early ⁃ onset osteoporosis [J].Calcif Tissue Int,2022,110(5):546-561

    • [3] 包钟元,季晶.铁死亡在颅脑外伤中的研究进展[J].南京医科大学学报(自然科学版),2022,42(2):270-278

    • [4] LE Y F.Ferroptotic cell death:new regulatory mecha⁃ nisms for metabolic diseases[J].Endocr Metab Immune Disord Drug Targets,2021,21(5):785-800

    • [5] MAO C,LIU X G,ZHANG Y L,et al.DHODH⁃mediated ferroptosis defence is a targetable vulnerability in cancer [J].Nature,2021,593(7860):586-590

    • [6] NI S,YUAN Y,KUANG Y B,et al.Iron metabolism and immune regulation[J].Front Immunol,2022,13:816282

    • [7] JIANG X J,STOCKWELL B R,CONRAD M.Ferroptosis:mechanisms,biology and role in disease[J].Nat Rev Mol Cell Biol,2021,22(4):266-282

    • [8] MOU Y H,WANG J,WU J C,et al.Ferroptosis,a new form of cell death:opportunities and challenges in cancer [J].J Hematol Oncol,2019,12(1):1-16

    • [9] LI J,CAO F,YIN H L,et al.Ferroptosis:past,present and future[J].Cell Death Dis,2020,11(2):88

    • [10] TANG D L,CHEN X,KANG R,et al.Ferroptosis:molecu⁃ lar mechanisms and health implications[J].Cell Res,2021,31(2):107-125

    • [11] VOGT A C S,ARSIWALA T,MOHSEN M,et al.On iron metabolism and its regulation[J].Int J Mol Sci,2021,22(9):4591

    • [12] LEDESMA⁃COLUNGA M G,WEIDNER H,VUJIC SPA⁃ SIC M,et al.Shaping the bone through iron and iron⁃relat⁃ ed proteins[J].Semin Hematol,2021,58(3):188-200

    • [13] ZHANG Y J,LU Y,JIN L P.Iron metabolism and ferrop⁃ tosis in physiological and pathological pregnancy[J].Int J Mol Sci,2022,23(16):9395

    • [14] JIANG Z X,WANG H,QI G B,et al.Iron overload ⁃in⁃ duced ferroptosis of osteoblasts inhibits osteogenesis and promotes osteoporosis:an in vitro and in vivo study[J].IUBMB Life,2022,74(11):1052-1069

    • [15] FENG Y,HE P Y,KONG W D,et al.Apoptosis ⁃promo ⁃ ting properties of miR⁃3074⁃5p in MC3T3⁃E1 cells under iron overload conditions[J].Cell Mol Biol Lett,2021,26(1):1-15

    • [16] YANG J C,DONG D D,LUO X L,et al.Iron overload⁃in⁃ duced osteocyte apoptosis stimulates osteoclast differenti⁃ ation through increasing osteocytic RANKL production in vitro[J].Calcif Tissue Int,2020,107(5):499-509

    • [17] YAN H F,ZOU T,TUO Q Z,et al.Ferroptosis:mecha⁃ nisms and links with diseases[J].Sig Transduct Target Ther,2021,6:49

    • [18] LIANG D,MINIKES A M,JINAG X.Ferroptosis at the intersection of lipid metabolism and cellular signaling[J].Mol Cell,2022,82(12):2215-2227

    • [19] LIU J,KANG R,TANG D L.Signaling pathways and defense mechanisms of ferroptosis[J].FEBS J,2022,289(22):7038-7050

    • [20] YUAN H,PRATTE J,GIARDINA C.Ferroptosis and its potential as a therapeutic target[J].Biochem Pharmacol,2021,186:114486

    • [21] WANG Y,WEI Z H,PAN K R,et al.The function and mechanism of ferroptosis in cancer[J].Apoptosis,2020,25(11/12):786-798

    • [22] LIN Y F,SHEN X M,KE Y Z,et al.Activation of osteo⁃ blast ferroptosis via the METTL3/ASK1 ⁃ p38 signaling pathway in high glucose and high fat(HGHF)⁃ induced diabetic bone loss[J].FASEB J,2022,36(3):e22147

    • [23] XU Y M,SANG W L,ZHONG Y M,et al.CoCrMo ⁃ nanoparticles induced peri ⁃implant osteolysis by promo ⁃ ting osteoblast ferroptosis via regulating Nrf2⁃ARE signal⁃ ling pathway[J].Cell Prolif,2021,54(12):e13142

    • [24] KANAPATHIPILLAI M.Treating p53 mutant aggregation⁃ associated cancer[J].Cancers,2018,10(6):154

    • [25] LEI G,ZHANG Y L,HONG T,et al.Ferroptosis as a mechanism to mediate p53 function in tumor radiosensi⁃ tivity[J].Oncogene,2021,40(20):3533-3547

    • [26] JIANG L,HICKMAN J H,WANG S J,et al.Dynamic roles of p53 ⁃ mediated metabolic activities in ROS ⁃ in⁃ duced stress responses[J].Cell Cycle,2015,14(18):2881-2885

    • [27] LIU X,WANG T H,WANG W,et al.Emerging potential therapeutic targets of ferroptosis in skeletal diseases[J].Oxidative Med Cell Longev,2022,2022:1-19

    • [28] DUAN J Y,LIN X,XU F,et al.Ferroptosis and its poten⁃ tial role in metabolic diseases:a curse or revitalization?[J].Front Cell Dev Biol,2021,9:701788

    • [29] URSINI F,MAIORINO M.Lipid peroxidation and ferrop⁃ tosis:the role of GSH and GPx4[J].Free Radic Biol Med,2020,152:175-185

    • [30] CHEN X,YU C H,KANG R,et al.Cellular degradation systems in ferroptosis[J].Cell Death Differ,2021,28(4):1135-1148

    • [31] ZHAO Y T,DU Y X,GAO Y J,et al.ATF3 regulates osteogenic function by mediating osteoblast ferroptosis in type 2 diabetic osteoporosis[J].Dis Markers,2022,2022:1-17

    • [32] HE Q,YANG J Z,PAN Z F,et al.Biochanin A protects against iron overload associated knee osteoarthritis via regulating iron levels and NRF2/System Xc ⁃/GPX4 axis [J].Biomed Pharmacother,2023,157:113915

    • [33] CHE J M,YANG J C,ZHAO B,et al.The effect of abnor⁃ mal iron metabolism on osteoporosis[J].Biol Trace Elem Res,2020,195(2):353-365

    • [34] D’AMELIO P,CRISTOFARO M A,TAMONE C,et al.Role of iron metabolism and oxidative damage in post⁃ menopausal bone loss[J].Bone,2008,43(6):1010-1015

    • [35] HU Y X,HAN J,DING S Q,et al.Identification of ferrop⁃ tosis ⁃ associated biomarkers for the potential diagnosis and treatment of postmenopausal osteoporosis[J].Front Endocrinol,2022,13:986384

    • [36] WU J,WANG A,WANG X,et al.Rapamycin improves bone mass in high⁃turnover osteoporosis with iron accumu⁃ lation through positive effects on osteogenesis and angio⁃ genesis[J].Bone,2019,121:16-28

    • [37] JIN Y Q,WU S G,ZHANG L Y,et al.Artesunate inhibits osteoclast differentiation by inducing ferroptosis and pre⁃ vents iron overload ⁃ induced bone loss[J].Basic Clin Pharma Tox,2023,132(2):144-153

    • [38] LI Y,BAI B,ZHANG Y.Bone abnormalities in young male rats with iron intervention and possible mechanisms [J].Chem Biol Interact,2018,279:21-26

    • [39] YANG R Z,XU W N,ZHENG H L,et al.Exosomes de⁃ rived from vascular endothelial cells antagonize glucocor⁃ ticoid ⁃ induced osteoporosis by inhibiting ferritinophagy with resultant limited ferroptosis of osteoblasts[J].J Cell Physiol,2021,236(9):6691-6705

    • [40] LU J S,YANG J Z,ZHENG Y S,et al.Extracellular vesi⁃ cles from endothelial progenitor cells prevent steroid ⁃in⁃ duced osteoporosis by suppressing the ferroptotic pathway in mouse osteoblasts based on bioinformatics evidence [J].Sci Rep,2019,9:16130

    • [41] MIAO W,HE L,ZHANG Y,et al.Ferroptosis is partially responsible for dexamethasone ⁃ induced T cell ablation,but not osteoporosis in larval zebrafish[J].Ecotoxicol En⁃ viron Saf,2022,242:113872

    • [42] LI M,YANG N,HAO L,et al.Melatonin inhibits the fer⁃ roptosis pathway in rat bone marrow mesenchymal stem cells by activating the PI3K/AKT/mTOR signaling axis to attenuate steroid⁃induced osteoporosis[J].Oxidative Med Cell Longev,2022,2022:1-22

    • [43] YANG Y Q,LIN Y X,WANG M Q,et al.Targeting ferrop⁃ tosis suppresses osteocyte glucolipotoxicity and alleviates diabetic osteoporosis[J].Bone Res,2022,10:26

    • [44] GE W W,JIE J,YAO J,et al.Advanced glycation end products promote osteoporosis by inducing ferroptosis in osteoblasts[J].Mol Med Rep,2022,25(4):140

    • [45] MA H D,WANG X D,ZHANG W L,et al.Melatonin sup⁃ presses ferroptosis induced by high glucose via activation of the Nrf2/HO⁃1 signaling pathway in type 2 diabetic osteoporosis[J].Oxidative Med Cell Longev,2020,2020:1-18

    • [46] JIN C,TAN K,YAO Z,et al.A novel anti ⁃ osteoporosis mechanism of VK2:interfering with ferroptosis via AMPK/SIRT1 pathway in type 2 diabetic osteoporosis[J].J Agric Food Chem,2023,71(6):2745-2761

  • 参考文献

    • [1] ZENG Q,LI N,WANG Q Q,et al.The prevalence of osteoporosis in China,a nationwide,multicenter DXA sur⁃ vey[J].J Bone Miner Res,2019,34(10):1789-1797

    • [2] MAKITIE O,ZILLIKENS M C.Early ⁃ onset osteoporosis [J].Calcif Tissue Int,2022,110(5):546-561

    • [3] 包钟元,季晶.铁死亡在颅脑外伤中的研究进展[J].南京医科大学学报(自然科学版),2022,42(2):270-278

    • [4] LE Y F.Ferroptotic cell death:new regulatory mecha⁃ nisms for metabolic diseases[J].Endocr Metab Immune Disord Drug Targets,2021,21(5):785-800

    • [5] MAO C,LIU X G,ZHANG Y L,et al.DHODH⁃mediated ferroptosis defence is a targetable vulnerability in cancer [J].Nature,2021,593(7860):586-590

    • [6] NI S,YUAN Y,KUANG Y B,et al.Iron metabolism and immune regulation[J].Front Immunol,2022,13:816282

    • [7] JIANG X J,STOCKWELL B R,CONRAD M.Ferroptosis:mechanisms,biology and role in disease[J].Nat Rev Mol Cell Biol,2021,22(4):266-282

    • [8] MOU Y H,WANG J,WU J C,et al.Ferroptosis,a new form of cell death:opportunities and challenges in cancer [J].J Hematol Oncol,2019,12(1):1-16

    • [9] LI J,CAO F,YIN H L,et al.Ferroptosis:past,present and future[J].Cell Death Dis,2020,11(2):88

    • [10] TANG D L,CHEN X,KANG R,et al.Ferroptosis:molecu⁃ lar mechanisms and health implications[J].Cell Res,2021,31(2):107-125

    • [11] VOGT A C S,ARSIWALA T,MOHSEN M,et al.On iron metabolism and its regulation[J].Int J Mol Sci,2021,22(9):4591

    • [12] LEDESMA⁃COLUNGA M G,WEIDNER H,VUJIC SPA⁃ SIC M,et al.Shaping the bone through iron and iron⁃relat⁃ ed proteins[J].Semin Hematol,2021,58(3):188-200

    • [13] ZHANG Y J,LU Y,JIN L P.Iron metabolism and ferrop⁃ tosis in physiological and pathological pregnancy[J].Int J Mol Sci,2022,23(16):9395

    • [14] JIANG Z X,WANG H,QI G B,et al.Iron overload ⁃in⁃ duced ferroptosis of osteoblasts inhibits osteogenesis and promotes osteoporosis:an in vitro and in vivo study[J].IUBMB Life,2022,74(11):1052-1069

    • [15] FENG Y,HE P Y,KONG W D,et al.Apoptosis ⁃promo ⁃ ting properties of miR⁃3074⁃5p in MC3T3⁃E1 cells under iron overload conditions[J].Cell Mol Biol Lett,2021,26(1):1-15

    • [16] YANG J C,DONG D D,LUO X L,et al.Iron overload⁃in⁃ duced osteocyte apoptosis stimulates osteoclast differenti⁃ ation through increasing osteocytic RANKL production in vitro[J].Calcif Tissue Int,2020,107(5):499-509

    • [17] YAN H F,ZOU T,TUO Q Z,et al.Ferroptosis:mecha⁃ nisms and links with diseases[J].Sig Transduct Target Ther,2021,6:49

    • [18] LIANG D,MINIKES A M,JINAG X.Ferroptosis at the intersection of lipid metabolism and cellular signaling[J].Mol Cell,2022,82(12):2215-2227

    • [19] LIU J,KANG R,TANG D L.Signaling pathways and defense mechanisms of ferroptosis[J].FEBS J,2022,289(22):7038-7050

    • [20] YUAN H,PRATTE J,GIARDINA C.Ferroptosis and its potential as a therapeutic target[J].Biochem Pharmacol,2021,186:114486

    • [21] WANG Y,WEI Z H,PAN K R,et al.The function and mechanism of ferroptosis in cancer[J].Apoptosis,2020,25(11/12):786-798

    • [22] LIN Y F,SHEN X M,KE Y Z,et al.Activation of osteo⁃ blast ferroptosis via the METTL3/ASK1 ⁃ p38 signaling pathway in high glucose and high fat(HGHF)⁃ induced diabetic bone loss[J].FASEB J,2022,36(3):e22147

    • [23] XU Y M,SANG W L,ZHONG Y M,et al.CoCrMo ⁃ nanoparticles induced peri ⁃implant osteolysis by promo ⁃ ting osteoblast ferroptosis via regulating Nrf2⁃ARE signal⁃ ling pathway[J].Cell Prolif,2021,54(12):e13142

    • [24] KANAPATHIPILLAI M.Treating p53 mutant aggregation⁃ associated cancer[J].Cancers,2018,10(6):154

    • [25] LEI G,ZHANG Y L,HONG T,et al.Ferroptosis as a mechanism to mediate p53 function in tumor radiosensi⁃ tivity[J].Oncogene,2021,40(20):3533-3547

    • [26] JIANG L,HICKMAN J H,WANG S J,et al.Dynamic roles of p53 ⁃ mediated metabolic activities in ROS ⁃ in⁃ duced stress responses[J].Cell Cycle,2015,14(18):2881-2885

    • [27] LIU X,WANG T H,WANG W,et al.Emerging potential therapeutic targets of ferroptosis in skeletal diseases[J].Oxidative Med Cell Longev,2022,2022:1-19

    • [28] DUAN J Y,LIN X,XU F,et al.Ferroptosis and its poten⁃ tial role in metabolic diseases:a curse or revitalization?[J].Front Cell Dev Biol,2021,9:701788

    • [29] URSINI F,MAIORINO M.Lipid peroxidation and ferrop⁃ tosis:the role of GSH and GPx4[J].Free Radic Biol Med,2020,152:175-185

    • [30] CHEN X,YU C H,KANG R,et al.Cellular degradation systems in ferroptosis[J].Cell Death Differ,2021,28(4):1135-1148

    • [31] ZHAO Y T,DU Y X,GAO Y J,et al.ATF3 regulates osteogenic function by mediating osteoblast ferroptosis in type 2 diabetic osteoporosis[J].Dis Markers,2022,2022:1-17

    • [32] HE Q,YANG J Z,PAN Z F,et al.Biochanin A protects against iron overload associated knee osteoarthritis via regulating iron levels and NRF2/System Xc ⁃/GPX4 axis [J].Biomed Pharmacother,2023,157:113915

    • [33] CHE J M,YANG J C,ZHAO B,et al.The effect of abnor⁃ mal iron metabolism on osteoporosis[J].Biol Trace Elem Res,2020,195(2):353-365

    • [34] D’AMELIO P,CRISTOFARO M A,TAMONE C,et al.Role of iron metabolism and oxidative damage in post⁃ menopausal bone loss[J].Bone,2008,43(6):1010-1015

    • [35] HU Y X,HAN J,DING S Q,et al.Identification of ferrop⁃ tosis ⁃ associated biomarkers for the potential diagnosis and treatment of postmenopausal osteoporosis[J].Front Endocrinol,2022,13:986384

    • [36] WU J,WANG A,WANG X,et al.Rapamycin improves bone mass in high⁃turnover osteoporosis with iron accumu⁃ lation through positive effects on osteogenesis and angio⁃ genesis[J].Bone,2019,121:16-28

    • [37] JIN Y Q,WU S G,ZHANG L Y,et al.Artesunate inhibits osteoclast differentiation by inducing ferroptosis and pre⁃ vents iron overload ⁃ induced bone loss[J].Basic Clin Pharma Tox,2023,132(2):144-153

    • [38] LI Y,BAI B,ZHANG Y.Bone abnormalities in young male rats with iron intervention and possible mechanisms [J].Chem Biol Interact,2018,279:21-26

    • [39] YANG R Z,XU W N,ZHENG H L,et al.Exosomes de⁃ rived from vascular endothelial cells antagonize glucocor⁃ ticoid ⁃ induced osteoporosis by inhibiting ferritinophagy with resultant limited ferroptosis of osteoblasts[J].J Cell Physiol,2021,236(9):6691-6705

    • [40] LU J S,YANG J Z,ZHENG Y S,et al.Extracellular vesi⁃ cles from endothelial progenitor cells prevent steroid ⁃in⁃ duced osteoporosis by suppressing the ferroptotic pathway in mouse osteoblasts based on bioinformatics evidence [J].Sci Rep,2019,9:16130

    • [41] MIAO W,HE L,ZHANG Y,et al.Ferroptosis is partially responsible for dexamethasone ⁃ induced T cell ablation,but not osteoporosis in larval zebrafish[J].Ecotoxicol En⁃ viron Saf,2022,242:113872

    • [42] LI M,YANG N,HAO L,et al.Melatonin inhibits the fer⁃ roptosis pathway in rat bone marrow mesenchymal stem cells by activating the PI3K/AKT/mTOR signaling axis to attenuate steroid⁃induced osteoporosis[J].Oxidative Med Cell Longev,2022,2022:1-22

    • [43] YANG Y Q,LIN Y X,WANG M Q,et al.Targeting ferrop⁃ tosis suppresses osteocyte glucolipotoxicity and alleviates diabetic osteoporosis[J].Bone Res,2022,10:26

    • [44] GE W W,JIE J,YAO J,et al.Advanced glycation end products promote osteoporosis by inducing ferroptosis in osteoblasts[J].Mol Med Rep,2022,25(4):140

    • [45] MA H D,WANG X D,ZHANG W L,et al.Melatonin sup⁃ presses ferroptosis induced by high glucose via activation of the Nrf2/HO⁃1 signaling pathway in type 2 diabetic osteoporosis[J].Oxidative Med Cell Longev,2020,2020:1-18

    • [46] JIN C,TAN K,YAO Z,et al.A novel anti ⁃ osteoporosis mechanism of VK2:interfering with ferroptosis via AMPK/SIRT1 pathway in type 2 diabetic osteoporosis[J].J Agric Food Chem,2023,71(6):2745-2761