en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

厉廷有,E-mail:l_tingyou@njmu.edu.cn

中图分类号:R914.4

文献标识码:A

文章编号:1007-4368(2023)12-1756-08

DOI:10.7655/NYDXBNS20231223

参考文献 1
SIRAKI A G.The many roles of myeloperoxidase:from in⁃ flammation and immunity to biomarkers,drug metabolism and drug discovery[J].Redox Biol,2021,46:102109
参考文献 2
TANGETEN C,BOUDJELTIA K Z,DELPORTE C,et al.Unexpected role of MPO ⁃ oxidized LDLs in atherosclero⁃ sis:in between inflammation and its resolution[J].Anti⁃ oxidants,2022,11(5):874
参考文献 3
WRIGHT H L,LYON M,CHAPMAN E A,et al.Rheuma⁃ toid arthritis synovial fluid neutrophils drive inflammation through production of chemokines,reactive oxygen spe⁃ cies,and neutrophil extracellular traps[J].Front Immu⁃ nol,2021,11:584116
参考文献 4
ROUSSELLE A,SONNEMANN J,AMANN K,et al.CSF2 ⁃ dependent monocyte education in the pathogenesis of ANCA ⁃induced glomerulonephritis[J].Ann Rheum Dis,2022,81(8):1162-1172
参考文献 5
SMYTH L C D,MURRAY H C,HILL M,et al.Neutrophil ⁃ vascular interactions drive myeloperoxidase accumula⁃ tion in the brain in Alzheimer’s disease[J].Acta Neuro⁃ pathol Commun,2022,10(1):38
参考文献 6
NESSLER K,GRZYBCZAK R,NESSLER M,et al.Asso⁃ ciations between myeloperoxidase and paraoxonase⁃1 and type 2 diabetes in patients with ischemic heart disease [J].BMC Cardiovasc Disord,2022,22(1):521
参考文献 7
LEITGEB U,FURTMUELLER P G,HOFBAUER S,et al.The staphylococcal inhibitory protein SPIN binds to hu⁃ man myeloperoxidase with picomolar affinity but only dampens halide oxidation[J].J Biol Chem,2022,298(11):102514
参考文献 8
NDREPEPA G.Myeloperoxidase⁃a bridge linking inflam⁃ mation and oxidative stress with cardiovascular disease [J].Clinica Chimica Acta,2019.493:36-51
参考文献 9
KARGAPOLOVA Y,GEISSEN S,ZHENG R Y,et al.The enzymatic and non⁃enzymatic function of myeloperoxidase(MPO)in inflammatory communication[J].Antioxidants(Basel),2021,10(4):562
参考文献 10
KRAWCZYK L,SEMWAL S,SOUBHYE J,et al.Native glycosylation and binding of the antidepressant parox⁃ etine in a low⁃resolution crystal structure of human myelo⁃ peroxidase[J].Acta Crystallogr D Struct Biol,2022,78:1099-1109
参考文献 11
SAYLAM M,KOSE F A,PABUCCUOGLU A,et al.De⁃ sign,synthesis,and biological activity studies on benz⁃ imidazole derivatives targeting myeloperoxidase[J].Eur J Med Chem Chemistry,2023,248:115083
参考文献 12
HAWKINS C L,DAVIES M J.Role of myeloperoxidase and oxidant formation in the extracellular environment in inflammation⁃induced tissue damage[J].Free Radic Biol Med,2021,172:633-651
参考文献 13
FRANCK T,ALDIB I,BOUDJELTIA K Z,et al.The solu⁃ ble curcumin derivative NDS27 inhibits superoxide anion production by neutrophils and acts as substrate and re⁃ versible inhibitor of myeloperoxidase[J].Chem Biol Inter⁃ act,2019,297:34-43
参考文献 14
NYSSEN P,MAHO A,MALEMPRE R,et al.Propofol in⁃ hibits the myeloperoxidase activity by acting as substrate through a redox process[J].Biochim Biophys Acta Gen Subj,2022,1866(5):130100
参考文献 15
ANDRES C M C,DE LA LASTRA J M P,JUAN C A,et al.Hypochlorous acid chemistry in mammalian cells⁃influ⁃ ence on infection and role in various pathologies[J].Int J Mol Sci,2022,23(18):10735
参考文献 16
XU S Q,CHUANG C Y,MALLE E,et al.Influence of plasma halide,pseudohalide and nitrite ions on myeloper⁃ oxidase⁃mediated protein and extracellular matrix damage [J].Free Radic Biol Med,2022,188:162-174
参考文献 17
NYBO T,DAVIES M J,ROGOWSKA⁃WRZESINSKA A.Analysis of protein chlorination by mass spectrometry[J].Redox Biol,2019,26:101236
参考文献 18
VIGDER N,SUARNA C,CORCILIUS L,et al.An im⁃ proved method for the detection of myeloperoxidase chlori⁃ nating activity in biological systems using the redox probe hydroethidine[J].Free Radic Biol Med,2023,195:23-35
参考文献 19
RAMACHANDRA C J A,KP M M J,CHUA J,et al.In⁃ hibiting cardiac myeloperoxidase alleviates the relaxation defect in hypertrophic cardiomyocytes[J].Cardiovasc Res,2022,118(2):517-530
参考文献 20
GUZMAN⁃MARTINEZ L,MACCIONI R B,FARIAS G A,et al.Biomarkers for Alzheimer’s disease[J].Curr Al⁃ zheimer Res,2019,16(6):518-528
参考文献 21
CHAMI B,SAN GABRIEL P T,KUM ⁃JEW S,et al.The nitroxide 4 ⁃ methoxy ⁃ tempo inhibits the pathogenesis of dextran sodium sulfate ⁃ stimulated experimental colitis [J].Redox Biol,2020,28:101333
参考文献 22
SOUBHYE J,FURTMÜLLER P G,DUFRASNE F,et al.Inhibition of myeloperoxidase[J].Handb Exp Pharmacol,2021,264:261-285
参考文献 23
SOUBHYE J,CHIKH ALARD I,ALDIB I,et al.Discov⁃ ery of novel potent reversible and irreversible myeloperox⁃ idase inhibitors using virtual screening procedure[J].J Med Chem,2017,60(15):6563-6586
参考文献 24
TONG W,HUI H,SHANG W T,et al.Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase⁃targeted nanoparticles [J].Theranostics,2022,12(17):7641-7641
参考文献 25
TEO A,CHAN L L Y,CHEUNG C,et al.Myeloperoxi⁃ dase inhibition may protect against endothelial glycocalyx shedding induced by COVID ⁃ 19 plasma[J].Commun Med(Lond),2023,3(1):62
参考文献 26
KETTLE A J,GEDYE C A,HAMPTON M B,et al.Inhibi⁃ tion of myeloperoxidase by benzoic acid hydrazides[J].Biochem J,1995.308(Pt 2)(Pt 2):559-563
参考文献 27
ZIETZER A,NIEPMANN S T,CAMARA B,et al.Sodium thiocyanate treatment attenuates atherosclerotic plaque formation and improves endothelial regeneration in mice [J].PLoS One,2019,14(4):e0214476
参考文献 28
PANAGOPOULOS V,ZINONOS I,LEACH D A,et al.Uncovering a new role for peroxidase enzymes as drivers of angiogenesis[J].Int J Biochem Cell Biol,2015,68:128-138
参考文献 29
TIDEN A K,SJOGREN T,SVENSSON M,et al.2⁃Thio⁃ xanthines are mechanism⁃based inactivators of myeloper⁃ oxidase that block oxidative stress during inflammation [J].J Biol Chem,2011,286(43):37578-37589
参考文献 30
RUGGERI R B,BUCKBINDER L,BAGLEY S W,et al.Discovery of 2⁃(6⁃(5⁃chloro⁃2⁃methoxyphenyl)⁃4⁃oxo⁃2⁃ thioxo ⁃3,4⁃dihydropyrimidin ⁃1(2H)⁃yl)acetamide(PF ⁃ 06282999):a highly selective mechanism ⁃ based myelo⁃ peroxidase inhibitor for the treatment of cardiovascular diseases[J].J Med Chem,2015,58(21):8513-8528
参考文献 31
FLACH R J R,SU C Y,BOLLINGER E,et al.Myeloper⁃ oxidase inhibition in mice alters atherosclerotic lesion composition[J].PLoS One,2019,14(3):e0214150
参考文献 32
ZHENG W,WARNER R,RUGGERI R,et al.PF⁃1355,a mechanism⁃based myeloperoxidase inhibitor,prevents im⁃ mune complex vasculitis and anti ⁃ glomerular basement membrane glomerulonephritis [J].J Pharmacol Exp Ther,2015,353(2):288-298
参考文献 33
ZELLER M W G,WANG C,KELIHER E J,et al.Myelo⁃ peroxidase PET imaging tracks intracellular and extracel⁃ lular treatment changes in experimental myocardial infarc⁃ tion[J].Int J Mol Sci,2023,24(6):5704
参考文献 34
ALI M,PULLI B,COURTIES G,et al.Myeloperoxidase inhibition improves ventricular function and remodeling after experimental myocardial infarction[J].JACC Basic Transl Sci,2016,1(7):633-643
参考文献 35
IKEDA⁃SAITO M,SHELLEY D A,LU L,et al.Salicylhy⁃ droxamic acid inhibits myeloperoxidase activity[J].J Bi⁃ ol Chem,1991.266(6):3611-3616
参考文献 36
TENG R J,JING X,MARTIN D P,et al.N⁃acetyl⁃lysylty⁃ rosylcysteine amide,a novel systems pharmacology agent,reduces bronchopulmonary dysplasia in hyperoxic neona⁃ tal rat pups[J].Free Radic Biol Med,2021,166:73-89
参考文献 37
FORBES L V,SJOGREN T,AUCHERE F,et al.Potent reversible inhibition of myeloperoxidase by aromatic hy⁃ droxamates[J].J Biol Chem,2013,288(51):36636-36647
参考文献 38
DAVEY C A,FENNA R E.2.3 A resolution X⁃ray crystal structure of the bisubstrate analogue inhibitor salicylhy⁃ droxamic acid bound to human myeloperoxidase:a model for a prereaction complex with hydrogen peroxide[J].Bio⁃ chemistry,1996,35(33):10967-10973
参考文献 39
FORBES L V,KETTLE A J.A multi ⁃substrate assay for finding physiologically effective inhibitors of myeloperoxi⁃ dase[J].Anal Biochem,2018,544:13-21
参考文献 40
KEZIMANA P,DMITRIEV A A,KUDRYAVTSEVA A V,et al.Secoisolariciresinol diglucoside of flaxseed and its metabolites:biosynthesis and potential for nutraceuticals [J].Front Genet,2018,9:641
参考文献 41
PLAHA N S,AWASTHI S,SHARMA A,et al.Distribu⁃ tion,biosynthesis and therapeutic potential of lignans[J].3 Biotech,2022,12(10):255
参考文献 42
PIETROFESA R A,PARK K,MISHRA O P,et al.Cop⁃ per oxide nanoparticle ⁃ induced acute inflammatory re⁃ sponse and injury in murine lung is ameliorated by syn⁃ thetic secoisolariciresinol diglucoside(LGM2605)[J].Int J Mol Sci,2021,22(17):9477
参考文献 43
MISHRA O P,POPOV A V,PIETROFESA R A,et al.Synthetic secoisolariciresinol diglucoside(LGM2605)in⁃ hibits myeloperoxidase activity in inflammatory cells[J].Biochim Biophys Acta Gen Subj,2018,1862(6):1364-1375
参考文献 44
CHAIKIJURAJAI T,TANG W H W.Myeloperoxidase:a potential therapeutic target for coronary artery disease [J].Expert Opin Ther Targets,2020,24(7):695-705
参考文献 45
YU G L,LIANG Y,HUANG Z M,et al.Inhibition of my⁃ eloperoxidase oxidant production by N⁃acetyl lysyltyrosyl⁃ cysteine amide reduces brain damage in a murine model of stroke[J].J Neuroinflammation,2016,13(1):119
参考文献 46
GALIJASEVIC S,ABDULHAMID I,ABU ⁃ SOUD H M.Potential role of tryptophan and chloride in the inhibition of human myeloperoxidase[J].Free Radic Biol Med,2008,44(8):1570-1577
参考文献 47
CAMP O G,BAI D,GONULLU D C,et al.Melatonin in⁃ terferes with COVID ⁃ 19 at several distinct ROS ⁃ related steps[J].J Inorg Biochem,2021,223:111546
参考文献 48
ZHANG P,QIANG X,ZHANG M,et al.Demethyleneber⁃ berine,a natural mitochondria⁃targeted antioxidant,inhib⁃ its mitochondrial dysfunction,oxidative stress,and steato⁃ sis in alcoholic liver disease mouse model[J].J Pharma⁃ col Exp Ther,2015,352(1):139-147
参考文献 49
CHEN Y Y,LI R Y,SHI M J,et al.Demethyleneberber⁃ ine alleviates inflammatory bowel disease in mice through regulating NF⁃κB signaling and T⁃helper cell homeostasis [J].Inflamm Res,2017,66(2):187-196
参考文献 50
CHOUDHARY K,PRASAD S R,LOKHANDE K B,et al.4 ⁃ Methylesculetin ameliorates LPS ⁃induced depression ⁃ like behavior through the inhibition of NLRP3 inflamma⁃ some[J].Front Pharmacol,2023,14:1120508
参考文献 51
WITAICENIS A,DE OLIVEIRA E C S,TANIMOTO A,et al.4 ⁃ Methylesculetin,a coumarin derivative,amelio⁃ rates dextran sulfate sodium⁃induced intestinal inflamma⁃ tion[J].Chem Biol Interact,2018,280:59-63
参考文献 52
JIAO Y F,LU M,ZHAO Y P,et al.N⁃Methylcytisine ame⁃ liorates dextran⁃sulfate⁃sodium⁃induced colitis in mice by inhibiting the inflammatory response[J].Molecules,2018,23(3):510
参考文献 53
ZUO W,WANG Y C,SUN J L,et al.Effects and mecha⁃ nism of myeloperoxidase on microglia in the early stage of intracerebral hemorrhage[J].Front Neurosci,2022,16:1046244
目录contents

    摘要

    髓过氧化物酶(myeloperoxidase,MPO)是血红素过氧化物酶-环氧化酶超家族的重要成员。MPO在多种炎症细胞,包括中性粒细胞、活化的小胶质细胞和单核/巨噬细胞等,以及星形胶质细胞和神经元中表达,在免疫监视和宿主防御机制中起着重要作用。然而,研究发现MPO的表达和活性的增加与包括帕金森病、阿尔茨海默病、脑卒中、心血管疾病等多种重大疾病的发生和进展相关。多年来,多家医药公司和科研单位在MPO抑制剂的研发中取得大量进展,文章综述了MPO蛋白的结构、催化机制、抑制剂的研发进展等,旨在为MPO抑制剂的研发提供参考。

    Abstract

    Myeloperoxidase(MPO)is an important member of the haemoglobin peroxidase - cyclooxygenase superfamily. It is expressed in a variety of inflammatory cells,including neutrophils,activated microglia,monocytes/macrophages,as well as astrocytes and neurons,and plays an important role in immune surveillance and host defense mechanisms. However,studies have found that the increased expression and activity of MPO is associated with the development and progression of several major diseases,including Parkinson’s disease,Alzheimer’s disease,stroke,and cardiovascular disease. Over the years,several pharmaceutical companies and research institutes have made a lot of progress in the development of MPO inhibitors. This review mainly summrizes the structure of MPO protein,its catalytic mechanism and the progress of inhibitor development,aiming to provide a reference for the development of this enzyme inhibitors.

  • 髓过氧化物酶(myeloperoxidase,MPO)是血红素过氧化物酶⁃环氧化酶超家族的重要成员。MPO 在多种炎症细胞中表达,包括中性粒细胞、活化的小胶质细胞、单核/巨噬细胞、星形胶质细胞和神经元,在免疫监视和宿主防御机制中起着重要作用[1]。多项研究表明,MPO在促进动脉粥样硬化和心血管疾病[2]、肾小球肾炎、类风湿性关节炎[3]、皮肤炎症和损伤[4]、神经退行性疾病(如阿尔茨海默病)[5]、代谢综合征(如糖尿病)[6] 等疾病中起重要作用。本文综述了MPO的蛋白结构、催化机制、抑制剂的分类及其在临床试验中的应用。

  • 1 MPO的蛋白结构

  • 编码人类MPO的基因位于17号染色体的长臂上(片段q23.1),由11个内含子和12个外显子组成,大小约为 11 kb[7]。MPO 基因的 mRNA 在成熟阶段的骨髓母细胞和前骨髓细胞表达,在完全分化的骨髓细胞中停止表达[8]。成熟的 MPO 单体是一种功能性二聚体,由 2 个相同的糖基化单体 proMPO 组成,包含共价结合的血红素,其中proMPO含有1个 14.5 kDa轻肽(L链)和1个59 kDa重肽(H链),2个 H 链通过单个 Cys⁃319⁃Cys⁃319 键桥共价连接组成成熟的MPO二聚体(图1A),proMPO表现出与成熟 MPO单体相同的特异性过氧化物酶活性[9]

  • 每个proMPO单体都有1个含血红素的中心,由 6个α螺旋(H2、H6、H7、H9、H10和H14)组成,其中5 个α螺旋来自重链,1个来自轻链,棕色表示轻链,绿色表示重链(图1B)。重链的大部分折叠形成 5 个独立的结构域和1个围绕上述中心的开环。轻链包裹在分子表面,位于其碳端的α螺旋(H2)穿透 proMPO的内部核心。其中2个较长的α螺旋(H6和 H7)由位于分子表面的短链连接,形成具有大的疏水相互作用的中央核心。血红素口袋的远端表面由轻链的H2形成,而近端表面由重链的螺旋H9和 H10形成[10]

  • 2 MPO的催化机制

  • MPO是血红素过氧化物酶⁃环氧化酶超家族的重要成员,可以利用H2O2将卤离子(Cl、Br、I)或假卤化离子(SCN)分别催化产生次氯酸(hypochlo⁃ rous acid,HClO)、次溴酸(hypobromous acid,HBrO)、次碘酸(hypoiodous acid,HIO)或次硫氰酸(hypothio⁃ cyanous acid,HSCNO)。该酶能够催化两种类型的氧化还原反应,卤化循环和过氧化物酶循环[11]。卤化循环和过氧化物酶循环的第一步是相同的[12]。在此步骤中,H2O2与native MPO(proFe3+ )反应,形成 CompoundⅠ(porFe3+ =0)。CompoundⅠ通过氧化卤离子生成HClO(图2)[13]。Cl作为血液中含量最丰富的卤化物,HClO 被确定为 MPO 与 H2O2反应的主要产物。CompoundⅠ还可以氧化多个有机和无机分子,得到相应自由基以及酶的非活性形式 Com⁃pound Ⅱ(PorFe4 + ⁃O),随后 Compound Ⅱ反应生成 native MPO。在这两步反应中,由于Compound Ⅱ生成native MPO是稳态催化过程中的限速步骤,因此 Compound Ⅱ被认为一种更持久的中间体[14]

  • 图1 MPO的结构

  • Figure1 Structures of MPO

  • 3 MPO的抑制剂分类

  • MPO抑制剂从抑制机制上可以分为:①不可逆抑制剂,MPO 利用H2O2氧化不可逆抑制剂,导致卤化循环中HClO的产生减少,而HClO会氧化许多重要的生物大分子,如巯基和硫醚分子、质膜三磷酸腺苷(adenosine⁃triphosphate,ATP)酶、胶原蛋白、抗坏血酸、蛋白质、核苷酸和DNA修复酶[14],以及氯化 DNA碱基[15] 和氨基酸酪氨酸,形成MPO氧化指纹生物标志物3⁃氯酪氨酸(3⁃chlorotyrosine,3⁃ClTyr)[16]。3 ⁃ClTyr 作为一种生物标志物[17],在动脉粥样硬化[18]、心肌肥大[19] 和阿尔茨海默病[20] 患者中检测到水平升高。因此,不可逆MPO抑制剂通过减少HClO的生成,减少3⁃ClTyr的生成,从而抑制氧化应激,减少炎症发生[21]。②可逆结合MPO活性位点的化合物,可逆抑制剂会占据结合MPO活性入口处的疏水远端血红素腔,与血红素配体的结合位点进行高亲和力和低解离率的相互作用,从而阻断MPO介导的卤化循环,抑制酶活性[22]。③促进 Compound Ⅱ积累而不与活性位点结合的化合物,可以与Cl-竞争并促进形成Compound Ⅱ的合成,并且由于Compound Ⅱ 生成 native MPO 速度缓慢,从而造成 Compound Ⅱ 积累,达到MPO抑制效果[22]

  • 图2 MPO的卤化循环和过氧化物酶循环

  • Figure2 Halogenation cycle and peroxidase cycle of MPO

  • 3.1 不可逆抑制剂

  • 目前代表性的不可逆抑制剂主要有 Soubhye 等[23] 虚拟筛选得到的MPO⁃in⁃28,Tong 等[24] 报道的含有酰肼结构的4⁃氨基苯甲酸酰肼(4⁃aminobenzo⁃ hydrazide,4⁃ABAH)、阿斯利康主导研发的以2⁃硫黄嘌呤作为核心基团的AZD5904和AZD3241,以及辉瑞公司研发的含硫脲嘧啶骨架的PF⁃06282999和PF⁃ 1355(图3)。

  • 2017 年,Soubhye 等[23] 基于 MPO 活性位点结合的药效团建模,通过虚拟筛选得到了多个具有MPO 抑制活性的化合物,其中 IC50 小于 1 μmol/L 的有 MPO ⁃ IN ⁃28(44 nmol/L)、hydralazine(0.9 μmol/L)、 MPO⁃IN⁃42(0.05 μmol/L)、MPO⁃IN⁃43(0.35 μmol/L)、 primaquine(0.3 μmol/L)、mefenamic acid(0.89 μmol/L)、 MPO ⁃ IN ⁃55(0.13 μmol/L)。其中含有胍基结构的 MPO⁃IN⁃28 对 MPO 抑制活性最强。新冠病毒感染重症患者中,中性粒细胞MPO活性增加,促进内皮细胞糖复合物(endothelial glycocalyx,EG)降解,从导致内皮功能障碍,在体外新冠病毒感染原发性人主动脉内皮细胞中,MPO⁃IN⁃28可以抑制MPO活性减少EG的降解[25]

  • 图3 代表性MPO不可逆抑制剂

  • Figure3 Representative MPO irreversible inhibitors

  • 4 ⁃ABAH是Kettle等[26] 在1995年发现的含有酰肼结构的抑制剂,其对MPO具有选择性,不抑制过氧化氢酶或谷胱甘肽过氧化物酶,IC50为 0.3 μmol/L。在动脉粥样硬化的动物模型中,4⁃ABAH 可以通过抑制MPO活性来保护血管,促进血管损伤后新生内膜形成[27]。4⁃ABAH还可以减弱由MPO介导的体外和体内促血管生成作用[28]

  • AZD5904 和 AZD3241 是由阿斯利康公司研发的以 2⁃硫黄嘌呤作为核心基团改造的抑制剂,与 MPO进行共价结合,形成不可逆的抑制效果,IC50值分别为 140 nmol/L 和 630 nmol/L[29]。AZD5904 目前已经完成多发性硬化、慢性阻塞性肺疾病的Ⅱ期临床试验。Ramachandre等[19] 发现并证明AZD5904可以通过抑制心肌细胞中的MPO来缓解心肌肥厚症 (hypertrophic cardiomyopathy,HCM)的舒张功能障碍。2019年,AZD3241获得了美国食品药品监督管理局(Food and Drug Administration,FDA)和欧盟欧洲药品管理局委员会的孤儿药认定。拜奥新医药公司(Biohaven)获得了该药的独家开发和推广使用权,改名为BHV3241缓释片,并于2019年12月完成新药审评,2023年2月已经完成了Ⅲ期临床实验。

  • PF⁃06282999和PF⁃1355是Ruggeri等[30] 推出的硫脲嘧啶衍生物,通过共价、不可逆机制以时间依赖性抑制 MPO 活性,PF ⁃06282999 的 IC50 值为 1.9 μmol/L,PF⁃1355的EC50值为1.47 μmol/L。研究发现动脉粥样硬化低密度脂蛋白受体小鼠模型中, PF⁃06282999 可以促进动脉粥样硬化病变稳定和防止动脉粥样硬化斑块破裂[31]。临床前研究表明, PF⁃06282999在小鼠、大鼠、狗和猴子体内吸收迅速且良好,口服生物利用度分别为100%、86%、75%和 76%[30]。评估健康成人受试者口服PF⁃06282999的安全性、耐受性和药代动力学的研究 (NCT01626976)和在健康超重成人中的安全性、用量和效果的研究,以及测试 PF⁃06282999 对健康成人中咪达唑仑用量影响的研究(NCT01707082)已经完成Ⅰ期临床研究。而由于对内毒素给药的安全性问题以及未来内毒素批次的可用性不确定,Ⅰ期临床研究(NCT01965600)(用于评估研究药物对炎症标志物的影响)被终止。在此治疗过程中引发的主要不良反应为心动过速、发冷发热、肌痛头痛,其他不良反应有眼睛疼痛、皮炎多汗和恶心呕吐。2016 年,Zheng等[32] 首次证明了PF⁃1355早期使用可以改善和重塑实验性心肌梗死后的心脏功能,具有对冠状动脉疾病(coronary artery disease,CAD)和缺血性心肌病中早期和后期心脏保护作用[33],在心肌梗死及缺血再灌注损伤的模型中可以减少炎症和减缓病情加重[34]。在血管炎的小鼠模型中,口服 PF ⁃ 1355可降低疾病严重程度和炎症水平,减少水肿和中性粒细胞积累[32]

  • 3.2 可逆性抑制剂

  • 目前代表性的可逆抑制剂主要有含羟肟酸酯结构水杨基异羟肟酸(salicylhydroxamic acid,SHA) 及其衍生物 HX1 [35],天然产物异噻唑啉酮二葡糖苷(secoisolariciresinoldiglucoside,SDG)和 N⁃乙酰赖酸⁃酪氨酰⁃半胱氨酸酰胺(N⁃acetyl lysyltyrosylcyste⁃ ine amide,KYC)[36](图4)。

  • SHA 是含有羟肟酸酯结构的 MPO 抑制剂,最早由 Forbes 等[37] 发现,通过占据血红素结合口袋与 MPO 底物竞争的从而使酶可逆性失活,IC50为 25 μmol/L。抑制剂的芳香环与血红素吡咯环在侧链之间的远端血红素口袋入口处的疏水区域结合。羟肟酸基团与远端组氨酸95和邻近的谷氨酰胺91酰胺基团都能形成氢键,但没有与血红素铁配位。SHA 结合使 3 个水分子从远端血红素腔中移出,并使第4个水分子的位置发生小的移动。除此之外,复合物的活性位点区域和本地酶之间没有明显的构象差异[38]。2013年,Forbes等[39] 基于SHA合成含有芳香基异羟肟酸酯结构的可逆性MPO抑制剂 HX1、HX2、HX3,这 3 种化合物均具有高效的 MPO抑制活性,其中HX1活性最强,IC50值为5 nmol/L。 2018年,Forbes等[39] 开发了一种多底物的MPO抑制实验,进一步验证了HX1的高效力,筛选得到其他MPO抑制剂,抑制活性较好的有色胺(tryptophan)、 4⁃溴苯胺和BCH,IC50分别为0.5 μmol/L、0.3 μmol/L 和0.2 μmol/L。

  • 图4 代表性MPO不可逆抑制剂

  • Figure4 Representative MPO irreversible inhibitors

  • SDG是一种天然生物活性剂,具有很强的抗氧化和清除自由基[羟基、过氧化物和2⁃2二苯基肼(2⁃ 2 diphenyl hydrazy,DPPH)]的特性[40-41],还可以清除生理溶液辐射诱导的活性氯类化合物(active chlorine species,ACS)活性氯[42]。SDG通过与MPO活性位点近端结合,干扰H2O2进入MPO的活性位点而不影响 Cl-的进入,从而抑制 H2O2依赖性的 MPO 活性[42]; SDG 还可以清除抑制自由基 compoundⅠ[43],其 IC50 为63.47 μmol/L。

  • KYC含有Tyr、Lys和Cys三肽,是一种强效、可逆、特异和无毒的MPO抑制剂[44],其IC50为7 μmol/L。Yu 等[45] 研究发现,KYC治疗可明显减少大脑中动脉闭塞(middle cerebral artery occlusion,MCAO)小鼠大脑中的神经系统严重程度评分、梗死大小、IgG 外渗、中性粒细胞浸润、神经元损失、细胞凋亡和小胶质细胞/巨噬细胞激活,还可以促进体内 MPO 氧化指纹生物标志物ClTyr减少。

  • 3.3 促进compoundⅡ(PorFe4+ ⁃O)累积的抑制剂

  • 目前已知的促进 compoundⅡ累积的抑制剂有氨苯砜、色胺、色氨酸及其类似物、吲哚(indole)及其类似物[46] (图5)。2005 年,Camp 等[47] 发现褪黑素作为抗氧化剂和抗炎剂,可以抑制中性粒细胞中 MPO 活性,从而减轻 HClO 依赖性炎症组织损伤。 2008 年,Galijasevic 等[46] 发现并验证色氨酸与褪黑素以类似形式抑制 MPO 活性,同时发现其补充剂可以作为抗抑郁药保持身体健康,缓解情绪不佳和易被激怒,减少对碳水化合物的渴望,缓解慢性疼痛和躁狂行为症状,并使睡眠正常化。2009年, Galijasevic 等[46] 发现叠氮化合物 4⁃胺⁃2,2,6,6⁃四甲基二苯哌酯(4⁃amino⁃TEMPO)抑制 MPO 和中性粒细胞催化产生 HClO 的 IC50值分别为约 1 μmol/L 和6 μmol/L。

  • 3.4 作用机制不明确的天然产物来源的MPO抑制剂

  • 除了以上两类抑制剂外,也有一些作用机制不明确的天然产物也表现出MPO抑制活性,如亚甲基小檗碱(demethyleneberberine,DMB)、4⁃甲基七叶皂苷(4 ⁃ methylesculetin,4 ⁃ ME)、N ⁃甲基胞嘧啶(N⁃ methylcytisine,NMC)等(图6)。DMB 是一种天然线粒体靶向的抗氧化剂,具有阳离子和邻苯二酚结构[48]。Chen等[49] 发现在炎症性肠病(inflammato⁃ ry bowel disease,IBD)中,DMB可以降低MPO活性,显著缓解体重减轻,减少白细胞介素⁃6(interleukin⁃ 6,IL⁃6)和肿瘤坏死因子⁃α(tumor necrosis factor⁃α, TNF⁃α)等促炎细胞因子的产生,并抑制了核因子κB (nuclear factor kappa⁃B,NF⁃κB)信号通路的激活从而抑制炎症反应。4⁃ME是香豆素衍生物之一,具有很强的抗氧化和抗炎活性[50]。Witaicenis 等[51] 证明在葡聚糖硫酸钠(dextran sulfate sodium salt,DSS)诱导的IBD模型中,4⁃ME可以降低MPO活性,降低了结肠 IL⁃6 的水平,并抵消了谷胱甘肽(glutathione, GSH)的消耗。NMC是从紫薇和苦参的种子中提取的三环喹嗪类生物碱,具有多种药理活性,如降血糖、镇痛和抗炎活性。DSS诱导小鼠结肠炎模型中, NMC可以有效抑制MPO活性的显著增加,减少局部炎症[52]

  • 图5 促进化合物Ⅱ积累的代表性MPO抑制剂

  • Figure5 Representative MPO inhibitors that promote the accumulation of compound Ⅱ

  • 图6 作用机制不明的天然产物来源MPO抑制剂

  • Figure6 MPO inhibitors representing a natural product source with an unclear mechanism of action

  • 4 小结与展望

  • MPO 抑制剂的研究是药物研发的热点。目前 MPO 不可逆抑制剂主要包括 MPO ⁃in ⁃ 28[23]、4 ⁃ ABAH[26]、AZD5904、AZD3241[29]、PF⁃06282999[30] 和 PF⁃1355等;可逆结合MPO活性位点的化合物包括 SHA[35]、SDG[43]、KYC[44] 等;促进化合物Ⅱ积累而不与活性位点结合的化合物包括色胺、色氨酸及其类似物、吲哚及其类似物等;作用机制不明确的天然活性化合物包括DMB[48]、4⁃ME、NMC[52] 等。这些抑制剂由于抑制了各种损伤中MPO的催化活性,在各种炎症疾病中均能起到促进恢复的作用,如动脉粥样硬化[37]、心肌肥厚[30]、缺血性脑卒中[53] 等。这些研究表明,MPO 是具有很高研究价值的作用靶点,也进一步证明了针对MPO抑制机制进行药物开发的可行性。

  • 参考文献

    • [1] SIRAKI A G.The many roles of myeloperoxidase:from in⁃ flammation and immunity to biomarkers,drug metabolism and drug discovery[J].Redox Biol,2021,46:102109

    • [2] TANGETEN C,BOUDJELTIA K Z,DELPORTE C,et al.Unexpected role of MPO ⁃ oxidized LDLs in atherosclero⁃ sis:in between inflammation and its resolution[J].Anti⁃ oxidants,2022,11(5):874

    • [3] WRIGHT H L,LYON M,CHAPMAN E A,et al.Rheuma⁃ toid arthritis synovial fluid neutrophils drive inflammation through production of chemokines,reactive oxygen spe⁃ cies,and neutrophil extracellular traps[J].Front Immu⁃ nol,2021,11:584116

    • [4] ROUSSELLE A,SONNEMANN J,AMANN K,et al.CSF2 ⁃ dependent monocyte education in the pathogenesis of ANCA ⁃induced glomerulonephritis[J].Ann Rheum Dis,2022,81(8):1162-1172

    • [5] SMYTH L C D,MURRAY H C,HILL M,et al.Neutrophil ⁃ vascular interactions drive myeloperoxidase accumula⁃ tion in the brain in Alzheimer’s disease[J].Acta Neuro⁃ pathol Commun,2022,10(1):38

    • [6] NESSLER K,GRZYBCZAK R,NESSLER M,et al.Asso⁃ ciations between myeloperoxidase and paraoxonase⁃1 and type 2 diabetes in patients with ischemic heart disease [J].BMC Cardiovasc Disord,2022,22(1):521

    • [7] LEITGEB U,FURTMUELLER P G,HOFBAUER S,et al.The staphylococcal inhibitory protein SPIN binds to hu⁃ man myeloperoxidase with picomolar affinity but only dampens halide oxidation[J].J Biol Chem,2022,298(11):102514

    • [8] NDREPEPA G.Myeloperoxidase⁃a bridge linking inflam⁃ mation and oxidative stress with cardiovascular disease [J].Clinica Chimica Acta,2019.493:36-51

    • [9] KARGAPOLOVA Y,GEISSEN S,ZHENG R Y,et al.The enzymatic and non⁃enzymatic function of myeloperoxidase(MPO)in inflammatory communication[J].Antioxidants(Basel),2021,10(4):562

    • [10] KRAWCZYK L,SEMWAL S,SOUBHYE J,et al.Native glycosylation and binding of the antidepressant parox⁃ etine in a low⁃resolution crystal structure of human myelo⁃ peroxidase[J].Acta Crystallogr D Struct Biol,2022,78:1099-1109

    • [11] SAYLAM M,KOSE F A,PABUCCUOGLU A,et al.De⁃ sign,synthesis,and biological activity studies on benz⁃ imidazole derivatives targeting myeloperoxidase[J].Eur J Med Chem Chemistry,2023,248:115083

    • [12] HAWKINS C L,DAVIES M J.Role of myeloperoxidase and oxidant formation in the extracellular environment in inflammation⁃induced tissue damage[J].Free Radic Biol Med,2021,172:633-651

    • [13] FRANCK T,ALDIB I,BOUDJELTIA K Z,et al.The solu⁃ ble curcumin derivative NDS27 inhibits superoxide anion production by neutrophils and acts as substrate and re⁃ versible inhibitor of myeloperoxidase[J].Chem Biol Inter⁃ act,2019,297:34-43

    • [14] NYSSEN P,MAHO A,MALEMPRE R,et al.Propofol in⁃ hibits the myeloperoxidase activity by acting as substrate through a redox process[J].Biochim Biophys Acta Gen Subj,2022,1866(5):130100

    • [15] ANDRES C M C,DE LA LASTRA J M P,JUAN C A,et al.Hypochlorous acid chemistry in mammalian cells⁃influ⁃ ence on infection and role in various pathologies[J].Int J Mol Sci,2022,23(18):10735

    • [16] XU S Q,CHUANG C Y,MALLE E,et al.Influence of plasma halide,pseudohalide and nitrite ions on myeloper⁃ oxidase⁃mediated protein and extracellular matrix damage [J].Free Radic Biol Med,2022,188:162-174

    • [17] NYBO T,DAVIES M J,ROGOWSKA⁃WRZESINSKA A.Analysis of protein chlorination by mass spectrometry[J].Redox Biol,2019,26:101236

    • [18] VIGDER N,SUARNA C,CORCILIUS L,et al.An im⁃ proved method for the detection of myeloperoxidase chlori⁃ nating activity in biological systems using the redox probe hydroethidine[J].Free Radic Biol Med,2023,195:23-35

    • [19] RAMACHANDRA C J A,KP M M J,CHUA J,et al.In⁃ hibiting cardiac myeloperoxidase alleviates the relaxation defect in hypertrophic cardiomyocytes[J].Cardiovasc Res,2022,118(2):517-530

    • [20] GUZMAN⁃MARTINEZ L,MACCIONI R B,FARIAS G A,et al.Biomarkers for Alzheimer’s disease[J].Curr Al⁃ zheimer Res,2019,16(6):518-528

    • [21] CHAMI B,SAN GABRIEL P T,KUM ⁃JEW S,et al.The nitroxide 4 ⁃ methoxy ⁃ tempo inhibits the pathogenesis of dextran sodium sulfate ⁃ stimulated experimental colitis [J].Redox Biol,2020,28:101333

    • [22] SOUBHYE J,FURTMÜLLER P G,DUFRASNE F,et al.Inhibition of myeloperoxidase[J].Handb Exp Pharmacol,2021,264:261-285

    • [23] SOUBHYE J,CHIKH ALARD I,ALDIB I,et al.Discov⁃ ery of novel potent reversible and irreversible myeloperox⁃ idase inhibitors using virtual screening procedure[J].J Med Chem,2017,60(15):6563-6586

    • [24] TONG W,HUI H,SHANG W T,et al.Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase⁃targeted nanoparticles [J].Theranostics,2022,12(17):7641-7641

    • [25] TEO A,CHAN L L Y,CHEUNG C,et al.Myeloperoxi⁃ dase inhibition may protect against endothelial glycocalyx shedding induced by COVID ⁃ 19 plasma[J].Commun Med(Lond),2023,3(1):62

    • [26] KETTLE A J,GEDYE C A,HAMPTON M B,et al.Inhibi⁃ tion of myeloperoxidase by benzoic acid hydrazides[J].Biochem J,1995.308(Pt 2)(Pt 2):559-563

    • [27] ZIETZER A,NIEPMANN S T,CAMARA B,et al.Sodium thiocyanate treatment attenuates atherosclerotic plaque formation and improves endothelial regeneration in mice [J].PLoS One,2019,14(4):e0214476

    • [28] PANAGOPOULOS V,ZINONOS I,LEACH D A,et al.Uncovering a new role for peroxidase enzymes as drivers of angiogenesis[J].Int J Biochem Cell Biol,2015,68:128-138

    • [29] TIDEN A K,SJOGREN T,SVENSSON M,et al.2⁃Thio⁃ xanthines are mechanism⁃based inactivators of myeloper⁃ oxidase that block oxidative stress during inflammation [J].J Biol Chem,2011,286(43):37578-37589

    • [30] RUGGERI R B,BUCKBINDER L,BAGLEY S W,et al.Discovery of 2⁃(6⁃(5⁃chloro⁃2⁃methoxyphenyl)⁃4⁃oxo⁃2⁃ thioxo ⁃3,4⁃dihydropyrimidin ⁃1(2H)⁃yl)acetamide(PF ⁃ 06282999):a highly selective mechanism ⁃ based myelo⁃ peroxidase inhibitor for the treatment of cardiovascular diseases[J].J Med Chem,2015,58(21):8513-8528

    • [31] FLACH R J R,SU C Y,BOLLINGER E,et al.Myeloper⁃ oxidase inhibition in mice alters atherosclerotic lesion composition[J].PLoS One,2019,14(3):e0214150

    • [32] ZHENG W,WARNER R,RUGGERI R,et al.PF⁃1355,a mechanism⁃based myeloperoxidase inhibitor,prevents im⁃ mune complex vasculitis and anti ⁃ glomerular basement membrane glomerulonephritis [J].J Pharmacol Exp Ther,2015,353(2):288-298

    • [33] ZELLER M W G,WANG C,KELIHER E J,et al.Myelo⁃ peroxidase PET imaging tracks intracellular and extracel⁃ lular treatment changes in experimental myocardial infarc⁃ tion[J].Int J Mol Sci,2023,24(6):5704

    • [34] ALI M,PULLI B,COURTIES G,et al.Myeloperoxidase inhibition improves ventricular function and remodeling after experimental myocardial infarction[J].JACC Basic Transl Sci,2016,1(7):633-643

    • [35] IKEDA⁃SAITO M,SHELLEY D A,LU L,et al.Salicylhy⁃ droxamic acid inhibits myeloperoxidase activity[J].J Bi⁃ ol Chem,1991.266(6):3611-3616

    • [36] TENG R J,JING X,MARTIN D P,et al.N⁃acetyl⁃lysylty⁃ rosylcysteine amide,a novel systems pharmacology agent,reduces bronchopulmonary dysplasia in hyperoxic neona⁃ tal rat pups[J].Free Radic Biol Med,2021,166:73-89

    • [37] FORBES L V,SJOGREN T,AUCHERE F,et al.Potent reversible inhibition of myeloperoxidase by aromatic hy⁃ droxamates[J].J Biol Chem,2013,288(51):36636-36647

    • [38] DAVEY C A,FENNA R E.2.3 A resolution X⁃ray crystal structure of the bisubstrate analogue inhibitor salicylhy⁃ droxamic acid bound to human myeloperoxidase:a model for a prereaction complex with hydrogen peroxide[J].Bio⁃ chemistry,1996,35(33):10967-10973

    • [39] FORBES L V,KETTLE A J.A multi ⁃substrate assay for finding physiologically effective inhibitors of myeloperoxi⁃ dase[J].Anal Biochem,2018,544:13-21

    • [40] KEZIMANA P,DMITRIEV A A,KUDRYAVTSEVA A V,et al.Secoisolariciresinol diglucoside of flaxseed and its metabolites:biosynthesis and potential for nutraceuticals [J].Front Genet,2018,9:641

    • [41] PLAHA N S,AWASTHI S,SHARMA A,et al.Distribu⁃ tion,biosynthesis and therapeutic potential of lignans[J].3 Biotech,2022,12(10):255

    • [42] PIETROFESA R A,PARK K,MISHRA O P,et al.Cop⁃ per oxide nanoparticle ⁃ induced acute inflammatory re⁃ sponse and injury in murine lung is ameliorated by syn⁃ thetic secoisolariciresinol diglucoside(LGM2605)[J].Int J Mol Sci,2021,22(17):9477

    • [43] MISHRA O P,POPOV A V,PIETROFESA R A,et al.Synthetic secoisolariciresinol diglucoside(LGM2605)in⁃ hibits myeloperoxidase activity in inflammatory cells[J].Biochim Biophys Acta Gen Subj,2018,1862(6):1364-1375

    • [44] CHAIKIJURAJAI T,TANG W H W.Myeloperoxidase:a potential therapeutic target for coronary artery disease [J].Expert Opin Ther Targets,2020,24(7):695-705

    • [45] YU G L,LIANG Y,HUANG Z M,et al.Inhibition of my⁃ eloperoxidase oxidant production by N⁃acetyl lysyltyrosyl⁃ cysteine amide reduces brain damage in a murine model of stroke[J].J Neuroinflammation,2016,13(1):119

    • [46] GALIJASEVIC S,ABDULHAMID I,ABU ⁃ SOUD H M.Potential role of tryptophan and chloride in the inhibition of human myeloperoxidase[J].Free Radic Biol Med,2008,44(8):1570-1577

    • [47] CAMP O G,BAI D,GONULLU D C,et al.Melatonin in⁃ terferes with COVID ⁃ 19 at several distinct ROS ⁃ related steps[J].J Inorg Biochem,2021,223:111546

    • [48] ZHANG P,QIANG X,ZHANG M,et al.Demethyleneber⁃ berine,a natural mitochondria⁃targeted antioxidant,inhib⁃ its mitochondrial dysfunction,oxidative stress,and steato⁃ sis in alcoholic liver disease mouse model[J].J Pharma⁃ col Exp Ther,2015,352(1):139-147

    • [49] CHEN Y Y,LI R Y,SHI M J,et al.Demethyleneberber⁃ ine alleviates inflammatory bowel disease in mice through regulating NF⁃κB signaling and T⁃helper cell homeostasis [J].Inflamm Res,2017,66(2):187-196

    • [50] CHOUDHARY K,PRASAD S R,LOKHANDE K B,et al.4 ⁃ Methylesculetin ameliorates LPS ⁃induced depression ⁃ like behavior through the inhibition of NLRP3 inflamma⁃ some[J].Front Pharmacol,2023,14:1120508

    • [51] WITAICENIS A,DE OLIVEIRA E C S,TANIMOTO A,et al.4 ⁃ Methylesculetin,a coumarin derivative,amelio⁃ rates dextran sulfate sodium⁃induced intestinal inflamma⁃ tion[J].Chem Biol Interact,2018,280:59-63

    • [52] JIAO Y F,LU M,ZHAO Y P,et al.N⁃Methylcytisine ame⁃ liorates dextran⁃sulfate⁃sodium⁃induced colitis in mice by inhibiting the inflammatory response[J].Molecules,2018,23(3):510

    • [53] ZUO W,WANG Y C,SUN J L,et al.Effects and mecha⁃ nism of myeloperoxidase on microglia in the early stage of intracerebral hemorrhage[J].Front Neurosci,2022,16:1046244

  • 参考文献

    • [1] SIRAKI A G.The many roles of myeloperoxidase:from in⁃ flammation and immunity to biomarkers,drug metabolism and drug discovery[J].Redox Biol,2021,46:102109

    • [2] TANGETEN C,BOUDJELTIA K Z,DELPORTE C,et al.Unexpected role of MPO ⁃ oxidized LDLs in atherosclero⁃ sis:in between inflammation and its resolution[J].Anti⁃ oxidants,2022,11(5):874

    • [3] WRIGHT H L,LYON M,CHAPMAN E A,et al.Rheuma⁃ toid arthritis synovial fluid neutrophils drive inflammation through production of chemokines,reactive oxygen spe⁃ cies,and neutrophil extracellular traps[J].Front Immu⁃ nol,2021,11:584116

    • [4] ROUSSELLE A,SONNEMANN J,AMANN K,et al.CSF2 ⁃ dependent monocyte education in the pathogenesis of ANCA ⁃induced glomerulonephritis[J].Ann Rheum Dis,2022,81(8):1162-1172

    • [5] SMYTH L C D,MURRAY H C,HILL M,et al.Neutrophil ⁃ vascular interactions drive myeloperoxidase accumula⁃ tion in the brain in Alzheimer’s disease[J].Acta Neuro⁃ pathol Commun,2022,10(1):38

    • [6] NESSLER K,GRZYBCZAK R,NESSLER M,et al.Asso⁃ ciations between myeloperoxidase and paraoxonase⁃1 and type 2 diabetes in patients with ischemic heart disease [J].BMC Cardiovasc Disord,2022,22(1):521

    • [7] LEITGEB U,FURTMUELLER P G,HOFBAUER S,et al.The staphylococcal inhibitory protein SPIN binds to hu⁃ man myeloperoxidase with picomolar affinity but only dampens halide oxidation[J].J Biol Chem,2022,298(11):102514

    • [8] NDREPEPA G.Myeloperoxidase⁃a bridge linking inflam⁃ mation and oxidative stress with cardiovascular disease [J].Clinica Chimica Acta,2019.493:36-51

    • [9] KARGAPOLOVA Y,GEISSEN S,ZHENG R Y,et al.The enzymatic and non⁃enzymatic function of myeloperoxidase(MPO)in inflammatory communication[J].Antioxidants(Basel),2021,10(4):562

    • [10] KRAWCZYK L,SEMWAL S,SOUBHYE J,et al.Native glycosylation and binding of the antidepressant parox⁃ etine in a low⁃resolution crystal structure of human myelo⁃ peroxidase[J].Acta Crystallogr D Struct Biol,2022,78:1099-1109

    • [11] SAYLAM M,KOSE F A,PABUCCUOGLU A,et al.De⁃ sign,synthesis,and biological activity studies on benz⁃ imidazole derivatives targeting myeloperoxidase[J].Eur J Med Chem Chemistry,2023,248:115083

    • [12] HAWKINS C L,DAVIES M J.Role of myeloperoxidase and oxidant formation in the extracellular environment in inflammation⁃induced tissue damage[J].Free Radic Biol Med,2021,172:633-651

    • [13] FRANCK T,ALDIB I,BOUDJELTIA K Z,et al.The solu⁃ ble curcumin derivative NDS27 inhibits superoxide anion production by neutrophils and acts as substrate and re⁃ versible inhibitor of myeloperoxidase[J].Chem Biol Inter⁃ act,2019,297:34-43

    • [14] NYSSEN P,MAHO A,MALEMPRE R,et al.Propofol in⁃ hibits the myeloperoxidase activity by acting as substrate through a redox process[J].Biochim Biophys Acta Gen Subj,2022,1866(5):130100

    • [15] ANDRES C M C,DE LA LASTRA J M P,JUAN C A,et al.Hypochlorous acid chemistry in mammalian cells⁃influ⁃ ence on infection and role in various pathologies[J].Int J Mol Sci,2022,23(18):10735

    • [16] XU S Q,CHUANG C Y,MALLE E,et al.Influence of plasma halide,pseudohalide and nitrite ions on myeloper⁃ oxidase⁃mediated protein and extracellular matrix damage [J].Free Radic Biol Med,2022,188:162-174

    • [17] NYBO T,DAVIES M J,ROGOWSKA⁃WRZESINSKA A.Analysis of protein chlorination by mass spectrometry[J].Redox Biol,2019,26:101236

    • [18] VIGDER N,SUARNA C,CORCILIUS L,et al.An im⁃ proved method for the detection of myeloperoxidase chlori⁃ nating activity in biological systems using the redox probe hydroethidine[J].Free Radic Biol Med,2023,195:23-35

    • [19] RAMACHANDRA C J A,KP M M J,CHUA J,et al.In⁃ hibiting cardiac myeloperoxidase alleviates the relaxation defect in hypertrophic cardiomyocytes[J].Cardiovasc Res,2022,118(2):517-530

    • [20] GUZMAN⁃MARTINEZ L,MACCIONI R B,FARIAS G A,et al.Biomarkers for Alzheimer’s disease[J].Curr Al⁃ zheimer Res,2019,16(6):518-528

    • [21] CHAMI B,SAN GABRIEL P T,KUM ⁃JEW S,et al.The nitroxide 4 ⁃ methoxy ⁃ tempo inhibits the pathogenesis of dextran sodium sulfate ⁃ stimulated experimental colitis [J].Redox Biol,2020,28:101333

    • [22] SOUBHYE J,FURTMÜLLER P G,DUFRASNE F,et al.Inhibition of myeloperoxidase[J].Handb Exp Pharmacol,2021,264:261-285

    • [23] SOUBHYE J,CHIKH ALARD I,ALDIB I,et al.Discov⁃ ery of novel potent reversible and irreversible myeloperox⁃ idase inhibitors using virtual screening procedure[J].J Med Chem,2017,60(15):6563-6586

    • [24] TONG W,HUI H,SHANG W T,et al.Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase⁃targeted nanoparticles [J].Theranostics,2022,12(17):7641-7641

    • [25] TEO A,CHAN L L Y,CHEUNG C,et al.Myeloperoxi⁃ dase inhibition may protect against endothelial glycocalyx shedding induced by COVID ⁃ 19 plasma[J].Commun Med(Lond),2023,3(1):62

    • [26] KETTLE A J,GEDYE C A,HAMPTON M B,et al.Inhibi⁃ tion of myeloperoxidase by benzoic acid hydrazides[J].Biochem J,1995.308(Pt 2)(Pt 2):559-563

    • [27] ZIETZER A,NIEPMANN S T,CAMARA B,et al.Sodium thiocyanate treatment attenuates atherosclerotic plaque formation and improves endothelial regeneration in mice [J].PLoS One,2019,14(4):e0214476

    • [28] PANAGOPOULOS V,ZINONOS I,LEACH D A,et al.Uncovering a new role for peroxidase enzymes as drivers of angiogenesis[J].Int J Biochem Cell Biol,2015,68:128-138

    • [29] TIDEN A K,SJOGREN T,SVENSSON M,et al.2⁃Thio⁃ xanthines are mechanism⁃based inactivators of myeloper⁃ oxidase that block oxidative stress during inflammation [J].J Biol Chem,2011,286(43):37578-37589

    • [30] RUGGERI R B,BUCKBINDER L,BAGLEY S W,et al.Discovery of 2⁃(6⁃(5⁃chloro⁃2⁃methoxyphenyl)⁃4⁃oxo⁃2⁃ thioxo ⁃3,4⁃dihydropyrimidin ⁃1(2H)⁃yl)acetamide(PF ⁃ 06282999):a highly selective mechanism ⁃ based myelo⁃ peroxidase inhibitor for the treatment of cardiovascular diseases[J].J Med Chem,2015,58(21):8513-8528

    • [31] FLACH R J R,SU C Y,BOLLINGER E,et al.Myeloper⁃ oxidase inhibition in mice alters atherosclerotic lesion composition[J].PLoS One,2019,14(3):e0214150

    • [32] ZHENG W,WARNER R,RUGGERI R,et al.PF⁃1355,a mechanism⁃based myeloperoxidase inhibitor,prevents im⁃ mune complex vasculitis and anti ⁃ glomerular basement membrane glomerulonephritis [J].J Pharmacol Exp Ther,2015,353(2):288-298

    • [33] ZELLER M W G,WANG C,KELIHER E J,et al.Myelo⁃ peroxidase PET imaging tracks intracellular and extracel⁃ lular treatment changes in experimental myocardial infarc⁃ tion[J].Int J Mol Sci,2023,24(6):5704

    • [34] ALI M,PULLI B,COURTIES G,et al.Myeloperoxidase inhibition improves ventricular function and remodeling after experimental myocardial infarction[J].JACC Basic Transl Sci,2016,1(7):633-643

    • [35] IKEDA⁃SAITO M,SHELLEY D A,LU L,et al.Salicylhy⁃ droxamic acid inhibits myeloperoxidase activity[J].J Bi⁃ ol Chem,1991.266(6):3611-3616

    • [36] TENG R J,JING X,MARTIN D P,et al.N⁃acetyl⁃lysylty⁃ rosylcysteine amide,a novel systems pharmacology agent,reduces bronchopulmonary dysplasia in hyperoxic neona⁃ tal rat pups[J].Free Radic Biol Med,2021,166:73-89

    • [37] FORBES L V,SJOGREN T,AUCHERE F,et al.Potent reversible inhibition of myeloperoxidase by aromatic hy⁃ droxamates[J].J Biol Chem,2013,288(51):36636-36647

    • [38] DAVEY C A,FENNA R E.2.3 A resolution X⁃ray crystal structure of the bisubstrate analogue inhibitor salicylhy⁃ droxamic acid bound to human myeloperoxidase:a model for a prereaction complex with hydrogen peroxide[J].Bio⁃ chemistry,1996,35(33):10967-10973

    • [39] FORBES L V,KETTLE A J.A multi ⁃substrate assay for finding physiologically effective inhibitors of myeloperoxi⁃ dase[J].Anal Biochem,2018,544:13-21

    • [40] KEZIMANA P,DMITRIEV A A,KUDRYAVTSEVA A V,et al.Secoisolariciresinol diglucoside of flaxseed and its metabolites:biosynthesis and potential for nutraceuticals [J].Front Genet,2018,9:641

    • [41] PLAHA N S,AWASTHI S,SHARMA A,et al.Distribu⁃ tion,biosynthesis and therapeutic potential of lignans[J].3 Biotech,2022,12(10):255

    • [42] PIETROFESA R A,PARK K,MISHRA O P,et al.Cop⁃ per oxide nanoparticle ⁃ induced acute inflammatory re⁃ sponse and injury in murine lung is ameliorated by syn⁃ thetic secoisolariciresinol diglucoside(LGM2605)[J].Int J Mol Sci,2021,22(17):9477

    • [43] MISHRA O P,POPOV A V,PIETROFESA R A,et al.Synthetic secoisolariciresinol diglucoside(LGM2605)in⁃ hibits myeloperoxidase activity in inflammatory cells[J].Biochim Biophys Acta Gen Subj,2018,1862(6):1364-1375

    • [44] CHAIKIJURAJAI T,TANG W H W.Myeloperoxidase:a potential therapeutic target for coronary artery disease [J].Expert Opin Ther Targets,2020,24(7):695-705

    • [45] YU G L,LIANG Y,HUANG Z M,et al.Inhibition of my⁃ eloperoxidase oxidant production by N⁃acetyl lysyltyrosyl⁃ cysteine amide reduces brain damage in a murine model of stroke[J].J Neuroinflammation,2016,13(1):119

    • [46] GALIJASEVIC S,ABDULHAMID I,ABU ⁃ SOUD H M.Potential role of tryptophan and chloride in the inhibition of human myeloperoxidase[J].Free Radic Biol Med,2008,44(8):1570-1577

    • [47] CAMP O G,BAI D,GONULLU D C,et al.Melatonin in⁃ terferes with COVID ⁃ 19 at several distinct ROS ⁃ related steps[J].J Inorg Biochem,2021,223:111546

    • [48] ZHANG P,QIANG X,ZHANG M,et al.Demethyleneber⁃ berine,a natural mitochondria⁃targeted antioxidant,inhib⁃ its mitochondrial dysfunction,oxidative stress,and steato⁃ sis in alcoholic liver disease mouse model[J].J Pharma⁃ col Exp Ther,2015,352(1):139-147

    • [49] CHEN Y Y,LI R Y,SHI M J,et al.Demethyleneberber⁃ ine alleviates inflammatory bowel disease in mice through regulating NF⁃κB signaling and T⁃helper cell homeostasis [J].Inflamm Res,2017,66(2):187-196

    • [50] CHOUDHARY K,PRASAD S R,LOKHANDE K B,et al.4 ⁃ Methylesculetin ameliorates LPS ⁃induced depression ⁃ like behavior through the inhibition of NLRP3 inflamma⁃ some[J].Front Pharmacol,2023,14:1120508

    • [51] WITAICENIS A,DE OLIVEIRA E C S,TANIMOTO A,et al.4 ⁃ Methylesculetin,a coumarin derivative,amelio⁃ rates dextran sulfate sodium⁃induced intestinal inflamma⁃ tion[J].Chem Biol Interact,2018,280:59-63

    • [52] JIAO Y F,LU M,ZHAO Y P,et al.N⁃Methylcytisine ame⁃ liorates dextran⁃sulfate⁃sodium⁃induced colitis in mice by inhibiting the inflammatory response[J].Molecules,2018,23(3):510

    • [53] ZUO W,WANG Y C,SUN J L,et al.Effects and mecha⁃ nism of myeloperoxidase on microglia in the early stage of intracerebral hemorrhage[J].Front Neurosci,2022,16:1046244