en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

陈筱青,E-mail:chenxq2002@fox-mail.com

中图分类号:R722.6

文献标识码:A

文章编号:1007-4368(2024)01-138-07

DOI:10.7655/NYDXBNSN230397

参考文献 1
WALANI S R.Global burden of preterm birth[J].Int J Gynaecol Obstet,2020,150(1):31-33
参考文献 2
JEFFERSON K K.The bacterial etiology of preterm birth [J].Adv Appl Microbiol,2012,80:1-22
参考文献 3
THEBAUD B,GOSS K N,LAUGHON M,et al.Broncho⁃ pulmonary dysplasia[J].Nat Rev Dis Primers,2019,5(1):78
参考文献 4
RUAN W,ENGEVIK M A,SPINLER J K,et al.Healthy human gastrointestinal microbiome:composition and func⁃ tion after a decade of exploration[J].Dig Dis Sci,2020,65(3):695-705
参考文献 5
IHEKWEAZU F D,VERSALOVIC J.Development of the pediatric gut microbiome:impact on health and disease [J].Am J Med Sci,2018,356(5):413-423
参考文献 6
AAGAARD K,MA J,ANTONY K M,et al.The placenta harbors a unique microbiome[J].Sci Transl Med,2014,6(237):237ra65
参考文献 7
COLLADO M C,RAUTAVA S,AAKKO J,et al.Human gut colonisation may be initiated in utero by distinct mi⁃ crobial communities in the placenta and amniotic fluid [J].Sci Rep,2016,6:23129
参考文献 8
ORTIZ MOYANO R,RAYA TONETTI F,TOMOKIYO M,et al.The ability of respiratory commensal bacteria to beneficially modulate the lung innate immune response is a strain dependent characteristic[J].Microorganisms,2020,8(5):E727
参考文献 9
LEIBY J S,MCCORMICK K,SHERRILL ⁃MIX S,et al.Lack of detection of a human placenta microbiome in sam⁃ ples from preterm and term deliveries[J].Microbiome,2018,6(1):196
参考文献 10
DE GOFFAU M C,LAGER S,SOVIO U,et al.Human placenta has no microbiome but can contain potential pathogens[J].Nature,2019,572(7769):329-334
参考文献 11
TAUCHI H,YAHAGI K,YAMAUCHI T,et al.Gut mi⁃ crobiota development of preterm infants hospitalised in intensive care units[J].Benef Microbes,2019,10(6):641-651
参考文献 12
GUITTAR J,SHADE A,LITCHMAN E.Trait ⁃ based community assembly and succession of the infant gut microbiome[J].Nat Commun,2019,10(1):512
参考文献 13
LA ROSA P S,WARNER B B,ZHOU Y J,et al.Patterned progression of bacterial populations in the premature infant gut[J].Proc Natl Acad Sci USA,2014,111(34):12522-12527
参考文献 14
KORPELA K,BLAKSTAD E W,MOLTU S J,et al.Intes⁃ tinal microbiota development and gestational age in preterm neonates[J].Sci Rep,2018,8(1):2453
参考文献 15
BRESESTI I,SALVATORE S,VALETTI G,et al.The mi⁃ crobiota ⁃ gut axis in premature infants:physio ⁃ pathologi⁃ cal implications[J].Cells,2022,11(3):379
参考文献 16
STEWART C J,AJAMI N J,O’BRIEN J L,et al.Temporal development of the gut microbiome in early childhood from the TEDDY study[J].Nature,2018,562(7728):583-588
参考文献 17
BÄCKHED F,ROSWALL J,PENG Y,et al.Dynamics and stabilization of the human gut microbiome during the first year of life[J].Cell Host Microbe,2015,17(5):690-703
参考文献 18
LYONS K E,RYAN C A,DEMPSEY E M,et al.Breast milk,a source of beneficial microbes and associated bene⁃fits for infant health[J].Nutrients,2020,12(4):1039
参考文献 19
QUIGLEY M,EMBLETON N D,MCGUIRE W.Formula versus donor breast milk for feeding preterm or low birth weight infants[J].Cochrane Database Syst Rev,2018,6(6):CD002971
参考文献 20
AGUILAR⁃LOPEZ M,DINSMOOR A M,HO T T B,et al.A systematic review of the factors influencing microbial colonization of the preterm infant gut[J].Gut Microbes,2021,13(1):1-33
参考文献 21
RAMIREZ J,GUARNER F,BUSTOS FERNANDEZ L,et al.Antibiotics as major disruptors of gut microbiota[J].Front Cell Infect Microbiol,2020,10:572912
参考文献 22
KALBERMATTER C,FERNANDEZ TRIGO N,CHRIS⁃ TENSEN S,et al.Maternal microbiota,early life coloniza⁃ tion and breast milk drive immune development in the newborn[J].Front Immunol,2021,12:683022
参考文献 23
YANG D,XING Y,SONG X,et al.The impact of lung mi⁃ crobiota dysbiosis on inflammation[J].Immunology,2020,159(2):156-166
参考文献 24
BOSI A,BANFI D,BISTOLETTI M,et al.Tryptophan Metabolites along the microbiota⁃gut⁃brain axis:an inter⁃ kingdom communication system influencing the gut in health and disease[J].Int J Tryptophan Res,2020,13:1178646920928984
参考文献 25
LOHMANN P,LUNA R A,HOLLISTER E B,et al.The airway microbiome of intubated premature infants:charac⁃ teristics and changes that predict the development of bronchopulmonary dysplasia[J].Pediatr Res,2014,76(3):294-301
参考文献 26
MOURANI P M,HARRIS J K,SONTAG M K,et al.Mo⁃ lecular identification of bacteria in tracheal aspirate fluid from mechanically ventilated preterm infants[J].PLoS One,2011,6(10):e25959
参考文献 27
PAMMI M,LAL C V,WAGNER B D,et al.Airway micro⁃ biome and development of bronchopulmonary dysplasia in preterm infants:a systematic review[J].J Pediatr,2019,204:126-133
参考文献 28
LAL C V,TRAVERS C,AGHAI Z H,et al.The airway microbiome at birth[J].Sci Rep,2016,6:31023
参考文献 29
LI Z,LI Y,SUN Q,et al.Targeting the pulmonary micro⁃ biota to fight against respiratory diseases[J].Cells,2022,11(5):916
参考文献 30
MIRALLES R,HODGE R,MCPARLAND P C,et al.Re⁃ lationship between antenatal inflammation and antenatal infection identified by detection of microbial genes by polymerase chain reaction[J].Pediatr Res,2005,57(4):570-577
参考文献 31
GALLACHER D,MITCHELL E,ALBER D,et al.Dissimi⁃ larity of the gut ⁃lung axis and dysbiosis of the lower air⁃ ways in ventilated preterm infants[J].Eur Respir J,2020,55(5):1901909
参考文献 32
STRICKER S,HAIN T,CHAO C M,et al.Respiratory and intestinal microbiota in pediatric lung diseases ⁃ cur⁃ rent evidence of the gut ⁃ lung axis[J].Int J Mol Sci,2022,23(12):6791
参考文献 33
BERBERS R M,MOHAMED HOESEIN F A A,ELLER⁃ BROEK P M,et al.Low IgA associated with oropharyn⁃ geal microbiota changes and lung disease in primary anti⁃ body deficiency[J].Front Immunol,2020,11:1245
参考文献 34
DANG A T,MARSLAND B J.Microbes,metabolites,and the gut ⁃ lung axis[J].Mucosal Immunol,2019,12(4):843-850
参考文献 35
ENAUD R,PREVEL R,CIARLO E,et al.The gut ⁃lung axis in health and respiratory diseases:a place for inter ⁃ organ and inter ⁃kingdom crosstalks[J].Front Cell Infect Microbiol,2020,10:9
参考文献 36
LAUER T,BEHNKE J,OEHMKE F,et al.Bacterial colo⁃ nization within the first six weeks of life and pulmonary outcome in preterm infants <1000 g[J].J Clin Med,2020,9(7):2240
参考文献 37
ASHLEY S L,SJODING M W,POPOVA A P,et al.Lung and gut microbiota are altered by hyperoxia and contribute to oxygen ⁃ induced lung injury in mice[J].Sci Transl Med,2020,12(556):eaau9959
参考文献 38
CHEN C M,CHOU H C,YANG Y S H,et al.Predicting hyperoxia ⁃induced lung injury from associated intestinal and lung dysbiosis in neonatal mice[J].Neonatology,2021,118(2):163-173
参考文献 39
WEDGWOOD S,GERARD K,HALLORAN K,et al.In⁃ testinal dysbiosis and the developing lung:the role of toll⁃ like receptor 4 in the gut ⁃lung axis[J].Front Immunol,2020,11:357
参考文献 40
HUMBERG A,FORTMANN I,SILLER B,et al.Preterm birth and sustained inflammation:consequences for the neonate[J].Semin Immunopathol,2020,42(4):451-468
参考文献 41
SUN T,YU H Y,FU J H.Respiratory tract microecology and bronchopulmonary dysplasia in preterm infants[J].Front Pediatr,2021,9:762545
参考文献 42
CHEN X,HUANG X,LIN Y,et al.Association of Urea⁃ plasma infection pattern and azithromycin treatment effect with bronchopulmonary dysplasia in Ureaplasma positive infants:a cohort study[J].BMC Pulm Med,2023,23(1):229
参考文献 43
IMAMURA T,SATO M,GO H,et al.The microbiome of the lower respiratory tract in premature infants with and without severe bronchopulmonary dysplasia[J].Am J Per⁃inatol,2017,34(1):80-87
参考文献 44
YUN Y,SRINIVAS G,KUENZEL S,et al.Environmentally determined differences in the murine lung microbiota and their relation to alveolar architecture[J].PLoS One,2014,9(12):e113466
参考文献 45
WILLIS K A,SIEFKER D T,AZIZ M M,et al.Perinatal maternal antibiotic exposure augments lung injury in off⁃ spring in experimental bronchopulmonary dysplasia[J].Am J Physiol Lung Cell Mol Physiol,2020,318(2):L407-L418
参考文献 46
RYAN F J,DREW D P,DOUGLAS C,et al.Changes in the composition of the gut microbiota and the blood tran⁃ scriptome in preterm infants at less than 29 weeks gesta⁃ tion diagnosed with bronchopulmonary dysplasia[J].mSystems,2019,4(5):e00484-e00419
参考文献 47
ZHANG Z,JIANG J,LI Z,et al.The change of cytokines and gut microbiome in preterm infants for bronchopulmo⁃ nary dysplasia[J].Front Microbiol,2022,13:804887
参考文献 48
CHEN S M,LIN C P,JAN M S.Early gut microbiota changes in preterm infants with bronchopulmonary dys⁃ plasia:a pilot case ⁃ control study[J].Am J Perinatol,2021,38(11):1142-1149
目录contents

    摘要

    随着围产期综合救治水平的提高,早产儿的存活率不断提高。多种围产期因素影响着早产儿未成熟的肺,造成肺损伤。支气管肺发育不良是早产儿最常见的慢性肺损伤性疾病,严重威胁早产儿的生命健康。人体微生物群对人类生命过程有着复杂且持久的影响。随着二代测序技术的出现,越来越多的人体微生物及其功能被揭秘。目前有很多证据表明,在早产儿的肺发育过程中,肠道及肺部菌群扮演着重要的角色,菌群失调和支气管肺发育不良有着密切的联系。目前对菌群与支气管肺发育不良的发病机制仍知之甚少,还需要更多的研究来揭示其中的奥秘。本文综述了早产儿肠道菌群和肺部菌群的特点,以及在支气管肺发育不良中的变迁,为支气管肺发育不良的治疗提供更多更好的选择。

    Abstract

    With the improvement of perinatal comprehensive treatment,the survival rate of premature infants is continuously improved. The immature lungs of prematurity are susceptible to a variety of perinatal factors,resulting in lung damage. Bronchopulmonary dysplasia(BPD)is known as the most common chronic lung disease in premature infants,threatening the life and health of them seriously. Microbiota has a complex and persistent influence on human life. More and more microbiota and their functions had been discovered with the emergence of next -generation sequencing technology. Currently,numerous evidences proved that intestinal microbiota and lung microbiota played important roles in the lung development of premature infants,and the microbiota dysbiosis was closely related to BPD. However,the mechanism is still poorly understood,and more researches are needed to uncover the pathogenesis. This review summarized the characteristics of lung and intestinal microbiota in premature infants and the changes in BPD to provide optimization scheme for the treatment of BPD in the future.

  • 早产儿的出生率约占新生儿的 11%[1]。早产与75%的新生儿疾病、70%的新生儿死亡直接或间接相关[2]。近年来,早产儿的死亡率有所下降,但早产儿的发病率并没有下降,支气管肺发育不良 (bronchopulmonary dysplasia,BPD)仍然是超早产儿最常见的并发症[3]。健康的人体微生物群由 30 多万亿个微生物组成,重量为体重的 1%~3%[4],大部分是细菌,其中70%~80%存在于肠道中。共生菌在为人类供给营养、免疫稳定、调节神经内分泌、调节器官功能等方面发挥着重要作用,被称为“被遗忘的器官”[5]。菌群的多样性及稳定性与人类健康息息相关。早产儿作为一个特殊群体,肠道及肺部菌群多样性低、机会致病菌多、稳定性差、易受多种围产期因素的影响。肠道及肺部的菌群失调与多种疾病的发生发展密切相关,其中就包括 BPD,严重影响着早产儿的短期和长期预后。表观遗传学揭示新生儿肠道菌群的早期定植会影响远期健康,在这个菌群发育的脆弱时期,认识早产儿菌群的构成和发展,以及构建一个相对“正常”的菌群对早产儿十分重要,这也为治疗BPD提供了一个新的方向。

  • 与早产有关的因素较多,其中包括母亲生殖道的微生物群。子宫微生物会破坏母体免疫平衡、破坏胎膜完整性,从而诱发早产。引起早产的因素同样也会影响早产儿菌群。菌群的发展还和许多产后因素密切相关,且肠道菌群和肺部菌群的发展有着各自的特点。

  • 1 早产儿肠道菌群

  • 在人类生命早期,肠道菌群是不断发展的,2~3岁以后肠道菌群的数量和组成接近于成人。目前对肠道何时有菌定植仍有争议,传统观点认为胎儿、胎盘是无菌的,但随着检测技术的提高,有研究者发现胎盘中有着独特的细菌群落,其中包括软壁菌门、厚壁菌门、拟杆菌门、变形菌门和梭杆菌门各种共生菌群[6]。Collado等[7] 也发现羊水中有一个以变形菌门为主的独特细菌群落,并且成功地从健康孕妇的胎盘中培养出细菌。羊水和胎盘拥有自己的微生物群,表明胎儿可能在宫内就有细菌定植,这可能对早期免疫细胞的成熟有帮助[8]。但也有研究者提出相反意见,认为检测到的细菌群落来源于污染[9-10]

  • 早产儿生后的胎便中即可检测到细菌,胎便中的葡萄球菌丰度高于健康足月儿,且双歧杆菌定植延迟。早产儿的肠道菌群并没有一个特定的“表型”,肠道菌群的发展接近于健康足月儿由革兰阳性球菌向肠杆菌再向双歧杆菌逐步衍变的过程[11]。在发展初期,需氧菌和一些兼性厌氧菌会逐步消耗肠腔内的氧气,专性厌氧菌随即获得竞争优势,逐步成为优势菌群,细菌群落的α多样性逐步增加,β 多样性逐步减少[12]。早产儿肠道菌群的发展过程受到多种围产期因素的影响,其中最重要的是胎龄、生产方式、喂养方式和抗生素。早产儿粪便样本并不能直接代表肠道微生物定植的所有菌群种类及定植的范围,但是鉴于在新生儿中直接取肠道黏膜非常困难,目前粪便检仍然是肠道微生态的常规研究方法,未来应有更好的措施解决这一问题。

  • 1.1 胎龄

  • 对于早产儿来说,肠道菌群的发展主要由胎龄决定。有研究表明,早产儿的肠道菌群按照一定的模式进展,从杆菌到γ变形杆菌,再到梭状芽孢杆菌,但不同个体间进展的速度有所不同。当纠正胎龄在 33~36 周时,肠道中厌氧菌已经很好地定植。抗生素、分娩方式、喂养方式和生后年龄会影响发展的速度,但不会影响发展的顺序[13]。Korpela等[14] 把早产儿肠道菌群的发展分为 4 个阶段,前 3 个阶段分别以葡萄球菌、肠球菌、肠杆菌为主,最后阶段以双歧杆菌为主,处于何种阶段主要和纠正胎龄有关,他们还发现母乳喂养的早产儿和剖宫产的足月儿也可以发展出与顺产足月儿类似的肠道菌群。与正常足月儿相比,早产儿的肠道菌群多样性较低,肠球菌、肠杆菌、葡萄球菌、链球菌和梭状芽孢杆菌等条件致病菌增多,而双歧杆菌、拟杆菌等有益菌的定植延迟[15]

  • 1.2 分娩方式

  • 经阴道分娩的早产儿的肠道菌群主要来源于母亲阴道定植菌,包括乳酸杆菌、普雷沃氏菌、斯尼思菌属等,而剖宫产出生的早产儿的肠道菌群与母亲皮肤和环境菌群更接近,主要为葡萄球菌、棒状杆菌和丙酸杆菌属,乳酸杆菌、双歧杆菌和拟杆菌的肠道定植延迟[16]。这种差异会在出生后的4个月和12个月时逐步减小[17]

  • 1.3 喂养方式

  • 喂养方式同样影响着早产儿肠道菌群的组成,母乳喂养的早产儿拥有更好的菌群多样性。母乳中含有多种微生物群和母乳寡聚糖(human milk oligosaccharide,HMO),HMO 可以促进双歧杆菌的生长,母乳喂养的早产儿肠道主要由双歧杆菌和乳酸杆菌定植,而配方奶喂养的早产儿肠道中,拟杆菌和梭状芽孢杆菌居多[18]。值得注意的是,巴氏消毒法处理后的捐赠母乳可以促使早产儿发展出与母乳喂养的健康新生儿相似的肠道菌群,使早产儿更快地获得菌群多样性[19]

  • 1.4 抗生素

  • 抗生素对肠道菌群有着重要的影响。早产不是一种生理状态,相比于足月儿,早产儿往往在围产期接受更长时间的抗生素治疗,其中部分早产儿接受了长期抗生素治疗,抗生素可以使肠道菌群的数量和生物多样性明显降低,导致乳酸杆菌、双歧杆菌和拟杆菌数量减少[20]。长期使用抗生素还会促使大肠埃希菌、志贺氏菌、肠杆菌和肠球菌等数量增加,同时会导致抗生素耐药的细菌增多[21]

  • 肠道菌群对早产儿的健康至关重要。肠道菌群维持着肠道的免疫稳态,机制是通过模式识别受体(pattern recognition receptor,PRR)和微生物相关分子模式(microbe associated molecular pattern, MAMP)之间的信号通路,PRR由宿主的先天性免疫细胞表达,如树突状细胞(dendritic cell,DC)、巨噬细胞和自然杀伤细胞,PRR可以识别肠道菌群表达的MAMP,MAMP 通过刺激先天性免疫细胞对其进行编程。先天性免疫细胞可以非特异性地识别病原体、激活免疫应答,同时也维持着对共生菌群的免疫耐受。肠道菌群对于刺激B细胞产生IgA和促进记忆B细胞形成也是必需的,乳酸菌和双歧杆菌是肠道免疫系统发育的关键微生物,共生菌群和健全的免疫系统是建立免疫防御和免疫耐受的关键,而菌群失调可能导致免疫系统功能紊乱[22]

  • 肠道菌群还参与人体的营养物质代谢,菌群失调可导致营养不良或肥胖。拟杆菌与多种氨基酸及脂肪酸的代谢密切相关,而普雷沃氏菌与碳水化合物的代谢密切相关[23]。肠道菌群还可以将膳食纤维代谢为短链脂肪酸(short chain fatty acid, SCFA)和各种生物活性物质,如γ ⁃氨基丁酸、色氨酸代谢物和组胺等[4]。SCFA可直接作用于微生物与宿主的信号通路,从而在控制感染中发挥作用。双歧杆菌占优势的早产儿肠道内有较高浓度的醋酸盐和较低的 pH 值,有利于肠道健康的维持[11]。乳酸杆菌可以分解色氨酸,其代谢产物可以产生白细胞介素(interleukin,IL)⁃22,从而抑制免疫反应,并促进调节性T细胞发育,抑制炎症反应,保护肠道和肺部[24]。肠道菌群失调会增加早产儿发生坏死性小肠结肠炎和晚发型败血症的风险,还与炎症性肠病、特应性疾病和免疫功能低下等密切相关。

  • 2 早产儿肺部菌群

  • 随着检测技术的提高,肺部已被证实拥有自己独特的微生物群,肺部细菌数量相对较少,标本不易获得,且与肺部菌群相关的数据也较少。对于肺部菌群何时开始定植仍有争论,羊水和胎盘拥有自己的微生物群,肺部菌群定植可能始于宫内。 Lohmann等[25] 报道在25例生后第1天即气管插管的早产儿中,插管后立即吸出的所有分泌物标本均可检测到细菌,其中最主要的是不动杆菌属。但 Mourani 等[26] 报道在 10 例气管插管的早产儿中,生后72 h内的气管吸出物只有2份检测到细菌,而第7 天的所有气管分泌物样本均呈阳性,虽然不同批次样品的优势菌群不同,但主要是脲原体或葡萄球菌。Pammi等[27] 也发现在早产儿生后数天,肺部菌群主要由葡萄球菌和脲原体组成。Lal等[28] 通过分析早产儿生后第1天的气管吸出物,发现厚壁菌门和变形菌门为优势菌群,此外还检测到放线菌门、拟杆菌门、软壁菌门、梭杆菌门、蓝藻菌门和疣微菌门等菌群。

  • 肺部菌群在出生时数量少且不太复杂,在生后的几个月内会不断进化,多样性逐步增加,并趋于动态平衡。早产儿肺部菌群的主要来源之一是上呼吸道,但上呼吸道菌群能否在肺部定植还取决于呼吸道的机械清除和免疫清除,例如存在于上呼吸道的棒状杆菌属和狡诈菌属,在下呼吸道则明显减少[29]。此外,上消化道也可能对肺部菌群产生一定影响。早产儿肺部菌群的发展同样受到多种围产期因素的影响。宫内因素中最重要的就是绒毛膜羊膜炎,这也是早产的关键原因,这类早产儿的肺部乳酸杆菌减少,α多样性降低,且肺部细菌总量增多的状态持续到生后数周[2830]。抗生素同样对肺部菌群有很大的影响,抗生素可能清除有益菌,为机会致病菌的生长提供条件。在生命早期,抗生素可破坏肺部脆弱的菌群,可导致脲原体增多,还会降低SCFA的浓度[31]。肺部菌群也受出生方式和喂养方式的影响,但这两个因素的影响似乎都远小于对肠道菌群的影响[32]

  • 肺部菌群和肺的相互作用对于早产儿免疫系统的发育和稳态是必要的。肺部菌群的建立有助于免疫发育、免疫成熟和免疫耐受,肺在出生时发育并不完全,尤其在早产儿中,肺的免疫系统成熟同样是一个复杂的多阶段过程,肺发育、免疫成熟与肺部菌群的建立三者同时进行。肺部菌群可以调节黏膜免疫反应,有研究表明肺部菌群的异常与 IgA缺乏有关[33],肺部菌群还可以与肺泡巨噬细胞、 DC、自然杀伤T细胞和调节性T细胞互动,诱导中性粒细胞迁移并干预炎症。肺部菌群的紊乱可伴随着免疫功能异常和肺损伤,导致多种免疫疾病和肺部疾病的发生。早产儿的肺发育时期也是微生物定植的脆弱时期,也可以作为干预的时间窗口。

  • 3 早产儿的肠⁃肺轴

  • 肠道和肺都起源于胚胎期的前肠,且两者的特征都是黏膜免疫与组织发育有很强的相关性。肠⁃ 肺轴描述了局部微生物群与远端免疫机制的相互影响,肠⁃肺轴的提出是为了更好地理解疾病内在的生理病理基础,从菌群的角度诠释相关疾病的发生发展。黏膜免疫可能是构成肠道和肺之间的桥梁[34],机制是肠系膜淋巴组织中的DC向T细胞提呈细菌抗原,导致T细胞活化,活化的T细胞在归巢分子的驱动下到达呼吸道黏膜,同时影响促炎因子和抗炎因子的分泌,并进一步促进T细胞向肺募集,在肺部发挥抗炎和保护的作用[32]。在病理状态下,肠道菌群可以移位到肺,引起和加重肺损伤[35]。肠道与肺之间还通过血液循环交换菌群分泌的SCFA等生物活性代谢物。SCFA 到达血液后,可以随血流进入肺,发挥预防肺部感染的作用,也可以进入骨髓,促进造血和刺激造血干细胞向抗炎方向分化,抗炎细胞进一步迁移到呼吸道,发挥肺保护作用。

  • 4 菌群和BPD的关联

  • BPD是一种多因素的异质性疾病,发病机制是感染、机械通气和高氧等对未成熟肺造成反复的损伤以及异常修复。阐明菌群参与 BPD 的潜在机制可能为BPD的病理生理学提供新的理解。

  • 高氧暴露下,与正常小鼠相比,无菌小鼠的肺部显示出较轻的结构和功能性损伤,有着较弱的炎症浸润,肺部菌群和肠道菌群都可以影响 BPD,肺部菌群比肠道菌群更有可能影响 BPD 的严重程度[36]。高氧引起肺损伤的其中一个解释是高氧改变了微生物群生长的环境,导致金黄色葡萄球菌等需氧菌群的过度生长,从而加重肺损伤,且菌群改变早于肺损伤[37]。高氧暴露后,新生小鼠肺部变形菌门的数量减少,放线菌门的数量增加,菌群α多样性降低,导致肠道菌群向肺部移位,激活肺部炎症反应[38]。高氧还使得小鼠肠道中肠杆菌科和变形菌门数量增加,其中多为机会致病菌[39]

  • 超过50%的超早产儿有绒毛膜羊膜炎的组织学证据,脲原体是绒毛膜羊膜炎最常见的病原体[40]。脲原体也是早产儿呼吸道常见的致病菌,包括解脲脲原体和微小脲原体,呼吸道脲原体的定植与BPD 的发生相关[41]。也有研究表明阿奇霉素可降低早产儿BPD的风险,特别是那些有脲原体定植的早产儿,这可能是BPD与绒毛膜羊膜炎具有相关性的重要发现[42]。棒状杆菌是一种条件致病菌,在免疫缺陷的宿主中可引起各种感染。Imamura 等[43] 观察到,严重BPD患儿的肺部,棒状杆菌数量增多,且重度BPD患儿机械通气时间越长,肺部棒状杆菌的检出率越高。Lohmann 等[25] 研究发现,BPD 患儿肺部菌群中厚壁菌门数量增加,变形菌门数量减少,在属水平上,葡萄球菌属和克雷伯杆菌属增多。在 BPD 组和非 BPD 组中,不动杆菌属均为优势菌属,但其相对丰度在 BPD 组中呈下降趋势。最近的一项系统综述表明,早产儿肺部变形菌门、厚壁菌门和乳酸杆菌水平随着BPD的进展而变化,肺部菌群失调可能导致更严重的 BPD 表型[27]。BPD 患儿肺部的乳酸杆菌含量明显降低。动物实验表明,乳酸杆菌对肺发育有益,向无菌小鼠肺部注射乳酸杆菌可改善肺泡发育[44]

  • 抗生素的使用可导致菌群的数量和生物多样性明显降低,而早产儿肺部菌群多样性下降与BPD 的发展之间存在很强的相关性,一项队列研究显示,接受抗生素治疗的超低出生体重儿的死亡或 BPD 风险与抗生素的暴露时间呈正相关。母亲接受抗生素而导致共生菌群的破坏,可导致早产儿发生更严重的BPD表型[45]

  • 肠道菌群与 BPD 的发生发展也密切相关。研究人员发现,在阴道分娩的早产儿中,BPD 组相比于非BPD组,肠道菌群中大肠埃希菌和志贺氏菌的相对丰度增加,而克雷伯杆菌和沙门氏菌的相对丰度下降[46]。Zhang等[47] 报道BPD患儿血液中IL⁃1β、 IL⁃4、IL⁃6、IL⁃8和肿瘤坏死因子α水平升高,而IL⁃10 水平下降,Shannon多样性指数较低,还发现在生后第14~28天,BPD组肠道菌群中变形菌门的丰度显著高于对照组,而厚壁菌门的丰度显著低于对照组。Chen等[48] 研究表明,在生后第28天,BPD组的肠道菌群多样性明显低于对照组。肠道菌群失调不仅可以损害肠道屏障功能,导致菌群移位、炎症反应、代谢紊乱和营养不良,还可通过改变肠⁃肺轴而影响BPD。

  • 5 治疗

  • BPD 和早产儿的死亡和长期预后密切相关。针对 BPD、菌群失调和肠⁃肺轴的研究还在持续进行,相关的治疗方案也在不断发展:①胎龄是影响菌群和肺发育最重要的因素,如何避免早产是围产期临床治疗的一个重要目的。对于不可避免的早产,针对早产儿肺保护的围产期管理显得尤为重要。②抗生素对菌群失调的影响是显著的,抗生素对正常肠道菌群的破坏也是耐药菌株及特殊病原体(如艰难梭菌)感染的主要危险因素,粪菌移植可能成为一种有效的治疗方法。③母乳能够降低 BPD的发病率,这受益于母乳完善的营养和许多生物活性因子,其中包括母乳中的菌群、外泌体和 HMO。坚持母乳喂养和向配方奶中加入HMO是目前良好的喂养策略。④益生菌、益生元都可以用来维持肠道和肺的菌群稳态,可以作为预防和控制呼吸系统疾病的新策略。但到目前为止,传统的益生元和益生菌对肺部疾病的改善总体上没有显著效果,迫切需要开发针对特定疾病的下一代益生元和益生菌。⑤SCFA在BPD模型中表现出一定的保护作用,未来的研究可以利用 SCFA 来优化治疗策略。⑥针对 BPD 患儿呼吸道中特定微生物的过度生长,对特殊病原体的特异性治疗有一定的合理性,例如应用大环内酯类药物可以通过提高脲原体的清除率来降低BPD的发病率,但这还需要更多的研究来证实其有效性。⑦BPD 患儿肺部的常驻干细胞减少,这提示干细胞在 BPD 发病机制中起重要的作用,以干细胞为基础的治疗已经显示出应用前景。

  • 6 小结

  • BPD是一种异质性和多因素的疾病,单一的治疗未能取得显著进展。在早产儿的管理过程中,应该关注各种临床干预对未成熟肺的不良影响,同时也应该注意菌群在BPD中发挥的重要作用。如今,菌群研究已成为生命科学的重要热点之一,菌群、微生态组可能为环境与BPD构建认知的桥梁。

  • 细菌和人类的健康是密不可分的,需要重视菌群的健康发展,这在早产儿的免疫系统发育和肺发育过程中尤为重要。通过开展对早产儿菌群、微生态组与BPD的关联性研究,将更深入地探讨BPD的发病机制、寻求新的干预靶点,对进一步提高早产儿BPD的诊断、治疗和预防产生深远的影响。

  • 参考文献

    • [1] WALANI S R.Global burden of preterm birth[J].Int J Gynaecol Obstet,2020,150(1):31-33

    • [2] JEFFERSON K K.The bacterial etiology of preterm birth [J].Adv Appl Microbiol,2012,80:1-22

    • [3] THEBAUD B,GOSS K N,LAUGHON M,et al.Broncho⁃ pulmonary dysplasia[J].Nat Rev Dis Primers,2019,5(1):78

    • [4] RUAN W,ENGEVIK M A,SPINLER J K,et al.Healthy human gastrointestinal microbiome:composition and func⁃ tion after a decade of exploration[J].Dig Dis Sci,2020,65(3):695-705

    • [5] IHEKWEAZU F D,VERSALOVIC J.Development of the pediatric gut microbiome:impact on health and disease [J].Am J Med Sci,2018,356(5):413-423

    • [6] AAGAARD K,MA J,ANTONY K M,et al.The placenta harbors a unique microbiome[J].Sci Transl Med,2014,6(237):237ra65

    • [7] COLLADO M C,RAUTAVA S,AAKKO J,et al.Human gut colonisation may be initiated in utero by distinct mi⁃ crobial communities in the placenta and amniotic fluid [J].Sci Rep,2016,6:23129

    • [8] ORTIZ MOYANO R,RAYA TONETTI F,TOMOKIYO M,et al.The ability of respiratory commensal bacteria to beneficially modulate the lung innate immune response is a strain dependent characteristic[J].Microorganisms,2020,8(5):E727

    • [9] LEIBY J S,MCCORMICK K,SHERRILL ⁃MIX S,et al.Lack of detection of a human placenta microbiome in sam⁃ ples from preterm and term deliveries[J].Microbiome,2018,6(1):196

    • [10] DE GOFFAU M C,LAGER S,SOVIO U,et al.Human placenta has no microbiome but can contain potential pathogens[J].Nature,2019,572(7769):329-334

    • [11] TAUCHI H,YAHAGI K,YAMAUCHI T,et al.Gut mi⁃ crobiota development of preterm infants hospitalised in intensive care units[J].Benef Microbes,2019,10(6):641-651

    • [12] GUITTAR J,SHADE A,LITCHMAN E.Trait ⁃ based community assembly and succession of the infant gut microbiome[J].Nat Commun,2019,10(1):512

    • [13] LA ROSA P S,WARNER B B,ZHOU Y J,et al.Patterned progression of bacterial populations in the premature infant gut[J].Proc Natl Acad Sci USA,2014,111(34):12522-12527

    • [14] KORPELA K,BLAKSTAD E W,MOLTU S J,et al.Intes⁃ tinal microbiota development and gestational age in preterm neonates[J].Sci Rep,2018,8(1):2453

    • [15] BRESESTI I,SALVATORE S,VALETTI G,et al.The mi⁃ crobiota ⁃ gut axis in premature infants:physio ⁃ pathologi⁃ cal implications[J].Cells,2022,11(3):379

    • [16] STEWART C J,AJAMI N J,O’BRIEN J L,et al.Temporal development of the gut microbiome in early childhood from the TEDDY study[J].Nature,2018,562(7728):583-588

    • [17] BÄCKHED F,ROSWALL J,PENG Y,et al.Dynamics and stabilization of the human gut microbiome during the first year of life[J].Cell Host Microbe,2015,17(5):690-703

    • [18] LYONS K E,RYAN C A,DEMPSEY E M,et al.Breast milk,a source of beneficial microbes and associated bene⁃fits for infant health[J].Nutrients,2020,12(4):1039

    • [19] QUIGLEY M,EMBLETON N D,MCGUIRE W.Formula versus donor breast milk for feeding preterm or low birth weight infants[J].Cochrane Database Syst Rev,2018,6(6):CD002971

    • [20] AGUILAR⁃LOPEZ M,DINSMOOR A M,HO T T B,et al.A systematic review of the factors influencing microbial colonization of the preterm infant gut[J].Gut Microbes,2021,13(1):1-33

    • [21] RAMIREZ J,GUARNER F,BUSTOS FERNANDEZ L,et al.Antibiotics as major disruptors of gut microbiota[J].Front Cell Infect Microbiol,2020,10:572912

    • [22] KALBERMATTER C,FERNANDEZ TRIGO N,CHRIS⁃ TENSEN S,et al.Maternal microbiota,early life coloniza⁃ tion and breast milk drive immune development in the newborn[J].Front Immunol,2021,12:683022

    • [23] YANG D,XING Y,SONG X,et al.The impact of lung mi⁃ crobiota dysbiosis on inflammation[J].Immunology,2020,159(2):156-166

    • [24] BOSI A,BANFI D,BISTOLETTI M,et al.Tryptophan Metabolites along the microbiota⁃gut⁃brain axis:an inter⁃ kingdom communication system influencing the gut in health and disease[J].Int J Tryptophan Res,2020,13:1178646920928984

    • [25] LOHMANN P,LUNA R A,HOLLISTER E B,et al.The airway microbiome of intubated premature infants:charac⁃ teristics and changes that predict the development of bronchopulmonary dysplasia[J].Pediatr Res,2014,76(3):294-301

    • [26] MOURANI P M,HARRIS J K,SONTAG M K,et al.Mo⁃ lecular identification of bacteria in tracheal aspirate fluid from mechanically ventilated preterm infants[J].PLoS One,2011,6(10):e25959

    • [27] PAMMI M,LAL C V,WAGNER B D,et al.Airway micro⁃ biome and development of bronchopulmonary dysplasia in preterm infants:a systematic review[J].J Pediatr,2019,204:126-133

    • [28] LAL C V,TRAVERS C,AGHAI Z H,et al.The airway microbiome at birth[J].Sci Rep,2016,6:31023

    • [29] LI Z,LI Y,SUN Q,et al.Targeting the pulmonary micro⁃ biota to fight against respiratory diseases[J].Cells,2022,11(5):916

    • [30] MIRALLES R,HODGE R,MCPARLAND P C,et al.Re⁃ lationship between antenatal inflammation and antenatal infection identified by detection of microbial genes by polymerase chain reaction[J].Pediatr Res,2005,57(4):570-577

    • [31] GALLACHER D,MITCHELL E,ALBER D,et al.Dissimi⁃ larity of the gut ⁃lung axis and dysbiosis of the lower air⁃ ways in ventilated preterm infants[J].Eur Respir J,2020,55(5):1901909

    • [32] STRICKER S,HAIN T,CHAO C M,et al.Respiratory and intestinal microbiota in pediatric lung diseases ⁃ cur⁃ rent evidence of the gut ⁃ lung axis[J].Int J Mol Sci,2022,23(12):6791

    • [33] BERBERS R M,MOHAMED HOESEIN F A A,ELLER⁃ BROEK P M,et al.Low IgA associated with oropharyn⁃ geal microbiota changes and lung disease in primary anti⁃ body deficiency[J].Front Immunol,2020,11:1245

    • [34] DANG A T,MARSLAND B J.Microbes,metabolites,and the gut ⁃ lung axis[J].Mucosal Immunol,2019,12(4):843-850

    • [35] ENAUD R,PREVEL R,CIARLO E,et al.The gut ⁃lung axis in health and respiratory diseases:a place for inter ⁃ organ and inter ⁃kingdom crosstalks[J].Front Cell Infect Microbiol,2020,10:9

    • [36] LAUER T,BEHNKE J,OEHMKE F,et al.Bacterial colo⁃ nization within the first six weeks of life and pulmonary outcome in preterm infants <1000 g[J].J Clin Med,2020,9(7):2240

    • [37] ASHLEY S L,SJODING M W,POPOVA A P,et al.Lung and gut microbiota are altered by hyperoxia and contribute to oxygen ⁃ induced lung injury in mice[J].Sci Transl Med,2020,12(556):eaau9959

    • [38] CHEN C M,CHOU H C,YANG Y S H,et al.Predicting hyperoxia ⁃induced lung injury from associated intestinal and lung dysbiosis in neonatal mice[J].Neonatology,2021,118(2):163-173

    • [39] WEDGWOOD S,GERARD K,HALLORAN K,et al.In⁃ testinal dysbiosis and the developing lung:the role of toll⁃ like receptor 4 in the gut ⁃lung axis[J].Front Immunol,2020,11:357

    • [40] HUMBERG A,FORTMANN I,SILLER B,et al.Preterm birth and sustained inflammation:consequences for the neonate[J].Semin Immunopathol,2020,42(4):451-468

    • [41] SUN T,YU H Y,FU J H.Respiratory tract microecology and bronchopulmonary dysplasia in preterm infants[J].Front Pediatr,2021,9:762545

    • [42] CHEN X,HUANG X,LIN Y,et al.Association of Urea⁃ plasma infection pattern and azithromycin treatment effect with bronchopulmonary dysplasia in Ureaplasma positive infants:a cohort study[J].BMC Pulm Med,2023,23(1):229

    • [43] IMAMURA T,SATO M,GO H,et al.The microbiome of the lower respiratory tract in premature infants with and without severe bronchopulmonary dysplasia[J].Am J Per⁃inatol,2017,34(1):80-87

    • [44] YUN Y,SRINIVAS G,KUENZEL S,et al.Environmentally determined differences in the murine lung microbiota and their relation to alveolar architecture[J].PLoS One,2014,9(12):e113466

    • [45] WILLIS K A,SIEFKER D T,AZIZ M M,et al.Perinatal maternal antibiotic exposure augments lung injury in off⁃ spring in experimental bronchopulmonary dysplasia[J].Am J Physiol Lung Cell Mol Physiol,2020,318(2):L407-L418

    • [46] RYAN F J,DREW D P,DOUGLAS C,et al.Changes in the composition of the gut microbiota and the blood tran⁃ scriptome in preterm infants at less than 29 weeks gesta⁃ tion diagnosed with bronchopulmonary dysplasia[J].mSystems,2019,4(5):e00484-e00419

    • [47] ZHANG Z,JIANG J,LI Z,et al.The change of cytokines and gut microbiome in preterm infants for bronchopulmo⁃ nary dysplasia[J].Front Microbiol,2022,13:804887

    • [48] CHEN S M,LIN C P,JAN M S.Early gut microbiota changes in preterm infants with bronchopulmonary dys⁃ plasia:a pilot case ⁃ control study[J].Am J Perinatol,2021,38(11):1142-1149

  • 参考文献

    • [1] WALANI S R.Global burden of preterm birth[J].Int J Gynaecol Obstet,2020,150(1):31-33

    • [2] JEFFERSON K K.The bacterial etiology of preterm birth [J].Adv Appl Microbiol,2012,80:1-22

    • [3] THEBAUD B,GOSS K N,LAUGHON M,et al.Broncho⁃ pulmonary dysplasia[J].Nat Rev Dis Primers,2019,5(1):78

    • [4] RUAN W,ENGEVIK M A,SPINLER J K,et al.Healthy human gastrointestinal microbiome:composition and func⁃ tion after a decade of exploration[J].Dig Dis Sci,2020,65(3):695-705

    • [5] IHEKWEAZU F D,VERSALOVIC J.Development of the pediatric gut microbiome:impact on health and disease [J].Am J Med Sci,2018,356(5):413-423

    • [6] AAGAARD K,MA J,ANTONY K M,et al.The placenta harbors a unique microbiome[J].Sci Transl Med,2014,6(237):237ra65

    • [7] COLLADO M C,RAUTAVA S,AAKKO J,et al.Human gut colonisation may be initiated in utero by distinct mi⁃ crobial communities in the placenta and amniotic fluid [J].Sci Rep,2016,6:23129

    • [8] ORTIZ MOYANO R,RAYA TONETTI F,TOMOKIYO M,et al.The ability of respiratory commensal bacteria to beneficially modulate the lung innate immune response is a strain dependent characteristic[J].Microorganisms,2020,8(5):E727

    • [9] LEIBY J S,MCCORMICK K,SHERRILL ⁃MIX S,et al.Lack of detection of a human placenta microbiome in sam⁃ ples from preterm and term deliveries[J].Microbiome,2018,6(1):196

    • [10] DE GOFFAU M C,LAGER S,SOVIO U,et al.Human placenta has no microbiome but can contain potential pathogens[J].Nature,2019,572(7769):329-334

    • [11] TAUCHI H,YAHAGI K,YAMAUCHI T,et al.Gut mi⁃ crobiota development of preterm infants hospitalised in intensive care units[J].Benef Microbes,2019,10(6):641-651

    • [12] GUITTAR J,SHADE A,LITCHMAN E.Trait ⁃ based community assembly and succession of the infant gut microbiome[J].Nat Commun,2019,10(1):512

    • [13] LA ROSA P S,WARNER B B,ZHOU Y J,et al.Patterned progression of bacterial populations in the premature infant gut[J].Proc Natl Acad Sci USA,2014,111(34):12522-12527

    • [14] KORPELA K,BLAKSTAD E W,MOLTU S J,et al.Intes⁃ tinal microbiota development and gestational age in preterm neonates[J].Sci Rep,2018,8(1):2453

    • [15] BRESESTI I,SALVATORE S,VALETTI G,et al.The mi⁃ crobiota ⁃ gut axis in premature infants:physio ⁃ pathologi⁃ cal implications[J].Cells,2022,11(3):379

    • [16] STEWART C J,AJAMI N J,O’BRIEN J L,et al.Temporal development of the gut microbiome in early childhood from the TEDDY study[J].Nature,2018,562(7728):583-588

    • [17] BÄCKHED F,ROSWALL J,PENG Y,et al.Dynamics and stabilization of the human gut microbiome during the first year of life[J].Cell Host Microbe,2015,17(5):690-703

    • [18] LYONS K E,RYAN C A,DEMPSEY E M,et al.Breast milk,a source of beneficial microbes and associated bene⁃fits for infant health[J].Nutrients,2020,12(4):1039

    • [19] QUIGLEY M,EMBLETON N D,MCGUIRE W.Formula versus donor breast milk for feeding preterm or low birth weight infants[J].Cochrane Database Syst Rev,2018,6(6):CD002971

    • [20] AGUILAR⁃LOPEZ M,DINSMOOR A M,HO T T B,et al.A systematic review of the factors influencing microbial colonization of the preterm infant gut[J].Gut Microbes,2021,13(1):1-33

    • [21] RAMIREZ J,GUARNER F,BUSTOS FERNANDEZ L,et al.Antibiotics as major disruptors of gut microbiota[J].Front Cell Infect Microbiol,2020,10:572912

    • [22] KALBERMATTER C,FERNANDEZ TRIGO N,CHRIS⁃ TENSEN S,et al.Maternal microbiota,early life coloniza⁃ tion and breast milk drive immune development in the newborn[J].Front Immunol,2021,12:683022

    • [23] YANG D,XING Y,SONG X,et al.The impact of lung mi⁃ crobiota dysbiosis on inflammation[J].Immunology,2020,159(2):156-166

    • [24] BOSI A,BANFI D,BISTOLETTI M,et al.Tryptophan Metabolites along the microbiota⁃gut⁃brain axis:an inter⁃ kingdom communication system influencing the gut in health and disease[J].Int J Tryptophan Res,2020,13:1178646920928984

    • [25] LOHMANN P,LUNA R A,HOLLISTER E B,et al.The airway microbiome of intubated premature infants:charac⁃ teristics and changes that predict the development of bronchopulmonary dysplasia[J].Pediatr Res,2014,76(3):294-301

    • [26] MOURANI P M,HARRIS J K,SONTAG M K,et al.Mo⁃ lecular identification of bacteria in tracheal aspirate fluid from mechanically ventilated preterm infants[J].PLoS One,2011,6(10):e25959

    • [27] PAMMI M,LAL C V,WAGNER B D,et al.Airway micro⁃ biome and development of bronchopulmonary dysplasia in preterm infants:a systematic review[J].J Pediatr,2019,204:126-133

    • [28] LAL C V,TRAVERS C,AGHAI Z H,et al.The airway microbiome at birth[J].Sci Rep,2016,6:31023

    • [29] LI Z,LI Y,SUN Q,et al.Targeting the pulmonary micro⁃ biota to fight against respiratory diseases[J].Cells,2022,11(5):916

    • [30] MIRALLES R,HODGE R,MCPARLAND P C,et al.Re⁃ lationship between antenatal inflammation and antenatal infection identified by detection of microbial genes by polymerase chain reaction[J].Pediatr Res,2005,57(4):570-577

    • [31] GALLACHER D,MITCHELL E,ALBER D,et al.Dissimi⁃ larity of the gut ⁃lung axis and dysbiosis of the lower air⁃ ways in ventilated preterm infants[J].Eur Respir J,2020,55(5):1901909

    • [32] STRICKER S,HAIN T,CHAO C M,et al.Respiratory and intestinal microbiota in pediatric lung diseases ⁃ cur⁃ rent evidence of the gut ⁃ lung axis[J].Int J Mol Sci,2022,23(12):6791

    • [33] BERBERS R M,MOHAMED HOESEIN F A A,ELLER⁃ BROEK P M,et al.Low IgA associated with oropharyn⁃ geal microbiota changes and lung disease in primary anti⁃ body deficiency[J].Front Immunol,2020,11:1245

    • [34] DANG A T,MARSLAND B J.Microbes,metabolites,and the gut ⁃ lung axis[J].Mucosal Immunol,2019,12(4):843-850

    • [35] ENAUD R,PREVEL R,CIARLO E,et al.The gut ⁃lung axis in health and respiratory diseases:a place for inter ⁃ organ and inter ⁃kingdom crosstalks[J].Front Cell Infect Microbiol,2020,10:9

    • [36] LAUER T,BEHNKE J,OEHMKE F,et al.Bacterial colo⁃ nization within the first six weeks of life and pulmonary outcome in preterm infants <1000 g[J].J Clin Med,2020,9(7):2240

    • [37] ASHLEY S L,SJODING M W,POPOVA A P,et al.Lung and gut microbiota are altered by hyperoxia and contribute to oxygen ⁃ induced lung injury in mice[J].Sci Transl Med,2020,12(556):eaau9959

    • [38] CHEN C M,CHOU H C,YANG Y S H,et al.Predicting hyperoxia ⁃induced lung injury from associated intestinal and lung dysbiosis in neonatal mice[J].Neonatology,2021,118(2):163-173

    • [39] WEDGWOOD S,GERARD K,HALLORAN K,et al.In⁃ testinal dysbiosis and the developing lung:the role of toll⁃ like receptor 4 in the gut ⁃lung axis[J].Front Immunol,2020,11:357

    • [40] HUMBERG A,FORTMANN I,SILLER B,et al.Preterm birth and sustained inflammation:consequences for the neonate[J].Semin Immunopathol,2020,42(4):451-468

    • [41] SUN T,YU H Y,FU J H.Respiratory tract microecology and bronchopulmonary dysplasia in preterm infants[J].Front Pediatr,2021,9:762545

    • [42] CHEN X,HUANG X,LIN Y,et al.Association of Urea⁃ plasma infection pattern and azithromycin treatment effect with bronchopulmonary dysplasia in Ureaplasma positive infants:a cohort study[J].BMC Pulm Med,2023,23(1):229

    • [43] IMAMURA T,SATO M,GO H,et al.The microbiome of the lower respiratory tract in premature infants with and without severe bronchopulmonary dysplasia[J].Am J Per⁃inatol,2017,34(1):80-87

    • [44] YUN Y,SRINIVAS G,KUENZEL S,et al.Environmentally determined differences in the murine lung microbiota and their relation to alveolar architecture[J].PLoS One,2014,9(12):e113466

    • [45] WILLIS K A,SIEFKER D T,AZIZ M M,et al.Perinatal maternal antibiotic exposure augments lung injury in off⁃ spring in experimental bronchopulmonary dysplasia[J].Am J Physiol Lung Cell Mol Physiol,2020,318(2):L407-L418

    • [46] RYAN F J,DREW D P,DOUGLAS C,et al.Changes in the composition of the gut microbiota and the blood tran⁃ scriptome in preterm infants at less than 29 weeks gesta⁃ tion diagnosed with bronchopulmonary dysplasia[J].mSystems,2019,4(5):e00484-e00419

    • [47] ZHANG Z,JIANG J,LI Z,et al.The change of cytokines and gut microbiome in preterm infants for bronchopulmo⁃ nary dysplasia[J].Front Microbiol,2022,13:804887

    • [48] CHEN S M,LIN C P,JAN M S.Early gut microbiota changes in preterm infants with bronchopulmonary dys⁃ plasia:a pilot case ⁃ control study[J].Am J Perinatol,2021,38(11):1142-1149