en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

田兆方,E-mail:lyh0729@163.com

中图分类号:R725.6

文献标识码:A

文章编号:1007-4368(2024)02-178-07

DOI:10.7655/NYDXBNSN230621

参考文献 1
GILFILLAN M,BHANDARI A,BHANDARI V.Diagno⁃ sis and management of bronchopulmonary dysplasia[J].BMJ,2021,375:n1974
参考文献 2
高倩茜,程锐.间充质干细胞外泌体的生物学功能及其治疗支气管肺发育不良研究进展[J].南京医科大学学报(自然科学版),2022,42(2):286-290
参考文献 3
PARSONS A,NETSANET A,SEEDORF G,et al.Under⁃ standing the role of placental pathophysiology in the de⁃ velopment of bronchopulmonary dysplasia[J].Am J Physiol Lung Cell Mol Physiol,2022,323(6):L651-L658
参考文献 4
MCGOWAN S.Understanding the developmental path⁃ ways pulmonary fibroblasts may follow during alveolar re⁃ generation[J].Cell Tissue Res,2017,367(3):707-719
参考文献 5
LIU H,XIE J,FAN L,et al.Cryptotanshinone protects against PCOS⁃induced damage of ovarian tissue via regu⁃ lating oxidative stress,mitochondrial membrane potential,inflammation,and apoptosis via regulating ferroptosis[J].Oxid Med Cell Longev,2022,2022:8011850
参考文献 6
HE X,ZHONG Z,WANG Q,et al.Pharmacokinetics and tissue distribution of bleomycin⁃induced idiopathic pulmo⁃ nary fibrosis rats treated with cryptotanshinone[J].Front Pharmacol,2023,14:1127219
参考文献 7
DALIL D,IRANZADEH S,KOHANSAL S.Anticancer po⁃ tential of cryptotanshinone on breast cancer treatment;a narrative review[J].Front Pharmacol,2022,13:979634
参考文献 8
SUN J M,AGARWAL S,DESAI T D,et al.Cryptotanshi⁃ none protects against oxidative stress in the paraquat ⁃in⁃ duced Parkinson’s disease model[J].Environ Toxicol,2023,38(1):39-48
参考文献 9
ZHANG Q,GAN C,LIU H,et al.Cryptotanshinone revers⁃ es the epithelial⁃mesenchymal transformation process and attenuates bleomycin⁃induced pulmonary fibrosis[J].Phy⁃ tother Res,2020,34(10):2685-2696
参考文献 10
ZHANG Y,LU W,ZHANG X,et al.Cryptotanshinone pro⁃ tects against pulmonary fibrosis through inhibiting Smad and STAT3 signaling pathways[J].Pharmacol Res,2019,147:104307
参考文献 11
PANG X,SHAO L,NIE X,et al.Emodin attenuates silica⁃ induced lung injury by inhibition of inflammation,apopto⁃ sis and epithelial ⁃mesenchymal transition[J].Int Immu⁃ nopharmacol,2021,91:107277
参考文献 12
XU J,LI W,XU S,et al.Effect of dermatan sulphate on a C57 ⁃ mouse model of pulmonary fibrosis[J].J Int Med Res,2019,47(6):2655-2665
参考文献 13
THÉBAUD B,GOSS K N,LAUGHON M,et al.Broncho⁃ pulmonary dysplasia[J].Nat Rev Dis Primers,2019,5(1):78
参考文献 14
DENG X,BAO Z,YANG X,et al.Molecular mechanisms of cell death in bronchopulmonary dysplasia[J].Apopto⁃ sis,2023,28(1⁃2):39-54
参考文献 15
胡晶晶,郑亚斐,朱海艳,等.肌腱蛋白C对支气管肺发育不良诊断价值的前瞻性研究[J].南京医科大学学报(自然科学版),2023,43(4):531-535
参考文献 16
LUI K,LEE S K,KUSUDA S,et al.Trends in outcomes for neonates born very preterm and very low birth weight in 11 high⁃income countries[J].J Pediatr,2019,215:32-40
参考文献 17
WU Y H,WU Y R,LI B,et al.Cryptotanshinone:a review of its pharmacology activities and molecular mechanisms [J].Fitoterapia,2020,145:104633
参考文献 18
FU H,ZHANG T,HUANG R,et al.Calcitonin gene⁃relat⁃ ed peptide protects type Ⅱ alveolar epithelial cells from hyperoxia ⁃induced DNA damage and cell death[J].Exp Ther Med,2017,13(4):1279-1284
参考文献 19
YOU K,PARIKH P,KHANDALAVALA K,et al.Moder⁃ ate hyperoxia induces senescence in developing human lung fibroblasts[J].Am J Physiol Lung Cell Mol Physiol,2019,317(5):L525-L536
参考文献 20
REHAN V K,TORDAY J S.The lung alveolar lipofibro⁃ blast:an evolutionary strategy against neonatal hyperoxic lung injury[J].Antioxid Redox Signal,2014,21(13):1893-1904
参考文献 21
HWANG J S,REHAN V K.Recent advances in broncho⁃ pulmonary dysplasia:pathophysiology,prevention,and treatment[J].Lung,2018,196(2):129-138
参考文献 22
ASKIE L M,DARLOW B A,FINER N,et al.Association between oxygen saturation targeting and death or disabili⁃ ty in extremely preterm infants in the neonatal oxygen⁃ ation prospective meta⁃analysis collaboration[J].JAMA,2018,319(21):2190-2201
参考文献 23
NOE N,SHIM A,MILLETTE K,et al.Mesenchyme⁃spe⁃ cific deletion of Tgf ⁃ β1 in the embryonic lung disrupts branching morphogenesis and induces lung hypoplasia [J].Lab Invest,2019,99(9):1363-1375
参考文献 24
ASCHNER Y,DOWNEY G P.Transforming growth factor ⁃ β:master regulator of the respiratory system in health and disease[J].Am J Respir Cell Mol Biol,2016,54(5):647-655
参考文献 25
MOLAGODA I M N,SANJAYA S S,LEE K T,et al.Der⁃ rone targeting the TGF type 1 receptor kinase improves bleomycin ⁃ mediated pulmonary fibrosis through inhibi⁃ tion of smad signaling pathway[J].Int J Mol Sci,2023,24(8):7265
参考文献 26
WANG X,CUI H,WU S.CTGF:a potential therapeutic target for bronchopulmonary dysplasia[J].Eur J Pharma⁃ col,2019,860:172588
参考文献 27
YANAGIHARA T,TSUBOUCHI K,GHOLIOF M,et al.Connective⁃tissue growth factor contributes to TGF⁃β1⁃in⁃ duced lung fibrosis[J].Am J Respir Cell Mol Biol,2022,66(3):260-270
目录contents

    摘要

    目的:探讨隐丹参酮(cryptotanshinone,CTS)对高氧诱导的支气管肺发育不良(bronchopulmonary dysplasia,BPD)大鼠肺纤维化的影响及作用机制。方法:体内实验:将50只新生雄性SD大鼠随机分为空气组、高氧组、CTS低剂量组(7.5 mg/kg)、CTS 中剂量组(15.0 mg/kg)及CTS高剂量组(30.0 mg/kg)。高氧组及CTS干预组大鼠饲养于氧浓度95%的氧箱中,空气组饲养于空气中。CTS干预组大鼠生后每日给予CTS腹腔注射,空气组及高氧组每日腹腔注射同等体积DMSO。7 d后安乐死全部大鼠后取肺组织用于后续实验。应用HE染色观察肺泡病理改变;通过Masson染色观察肺组织纤维化程度;RT-qPCR法检测转化生长因子β1(transforming growth factor-β1,TGF-β1)及α平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)的mRNA 水平;Western blot检测细胞信号转导分子(small mother against decapentaplegic,Smad)2/3、p-Smad2/3的表达。体外实验:选用人胚肺成纤维细胞(human fetal lung fibroblast-1,HFL-1),按照培养条件分为空气组、高氧组及CTS干预组,空气组常规条件下培养,而高氧及干预组置于95%O2恒温培养箱中培养24 h,干预组加入CTS 10 μmol/L。CCK-8实验检测细胞活力;Western blot检测TGF-β1、 α-SMA、p-Smad2/3、Smad2/3蛋白表达变化。结果:与对照组相比,高氧组大鼠肺泡形态紊乱、间隔增宽,RAC值下降,纤维化评分上升(P<0.05);TGF-β1及α-SMA的mRNA水平升高(P<0.05);p-Smad2/3表达升高(P<0.05);不同剂量的CTS给药后可改善上述指标(P<0.05);同时,CTS还可以降低高氧后HFL-1细胞的TGF-β1、α-SMA、p-Smad2/3、Smad2/3表达(P<0.05)。结论:CTS 可通过TGF-β/Smad通路改善高氧诱导肺损伤的纤维化过程。

    Abstract

    Objective:To investigate the effects and underlying mechanism of cryptotanshinone(CTS)on pulmonary fibrosis in rats with hyperoxia-induced bronchopulmonary dysplasia(BPD). Methods:50 newborn male Sprague-Dawley rats were randomly divided into air group,hyperoxia group,low-dose CTS(7.5 mg/kg)group,medium-dose CTS(15.0 mg/kg)group and high-dose CTS(30 mg/kg) group. Rats in hyperoxia and three CTS treatment groups were exposed to 95% oxygen(O2)for 7 d after birth,and the air group were exposed to a room environment(21% O2). 7 days later,all rats were euthanized. The alveolar morphology and lung fibrosis were evaluated using hematoxylin-eosin(HE)staining and Masson staining. The mRNA levels of transforming growth factor beta1(TGF-β1) and alpha-smooth muscle actin(α-SMA)were detected by RT-qPCR. The protein expression of cell signaling molecules small mother against decapentaplegic(Smad)2/3 and p -Smad2/3 was detected by Western blot. In vitro experiments:Human fetal lung fibroblasts (HFL - 1)cells were selected and divided into air group,hyperoxia group and CTS intervention group according to the culture conditions. The air group was cultured under conventional conditions,while the hyperoxia and intervention groups were incubated in a 95% O2 incubator for 24 h. 10 μmol/L CTS was added to the intervention group. Cell viability was measured by CCK - 8 assay,and protein expression of TGF-β1,α-SMA,p-Smad2/3 and Smad2/3 were detected by Western blot. Results:Compared with the control group,rats in the hyperoxia group had disorderd alveolar morphology,widened alveolar septa,decreased RAC values and increased fibrosis scores(P < 0.05);increased the mRNA levels of TGF-β1 and α-SMA(P < 0.05);and up-regulated p-Smad2/3 expression(P < 0.05). Different doses of CTS could improve the above indicators(P < 0.05). Meanwhile,CTS also reduced TGF-β1,α-SMA,p-Smad2/ 3,and Smad2/3 protein expression levels in HFL-1 cells after hyperoxia(P < 0.05). Conclusion:CTS ameliorates the fibrotic process of hyperoxia-induced lung injury via the TGF-β/Smad pathway.

  • 支气管肺发育不良(bronchopulmonary dysplasia, BPD)是早产儿常见的一种慢性呼吸系统疾病,在出生胎龄<29周的新生儿中发病率高达45%[1-2]。BPD 的发病机制目前仍未明确,其主要的病理学特点包括肺泡破坏、纤维化、微血管发育异常以及气道损害[3],其中肺纤维化是 BPD 的主要病理特征。在高氧诱导的 BPD 模型中,肺泡的发育、修复和再生受到成纤维细胞的影响,从而导致细胞外基质 (extracellular matrix,ECM)的重塑及纤维化的发展,导致肺部纤维化进一步加重[4]。目前,对于这种长期存在的慢性呼吸道疾病,既不能预防也不能有效治疗,因此寻找BPD的特效药十分重要。

  • 隐丹参酮(cryptotanshinone,CTS)是从传统中药丹参中提取的一种活性成分,其生物学活性丰富,具有抗炎[5]、抗纤维化[6]、抗肿瘤[7] 及神经保护[8] 等作用。近期研究表明,CTS可以通过逆转上皮间充质转化[9]、抑制Smad及STAT3通路[10] 来改善博来霉素诱导的肺纤维化,但在高氧诱导的肺损伤纤维化中,尚无相关报道,本研究利用高氧诱导新生鼠 BPD模型及体外人胚肺成纤维细胞培养模型,旨在探讨CTS在高氧引致的肺纤维化中的作用及机制。

  • 1 材料和方法

  • 1.1 材料

  • CTS(纯度≥ 98%,批号HY⁃NO174,MCE公司,美国);α⁃SMA、TGF ⁃β1、Smad2、p ⁃Smad2、Smad3 (Abcam 公司,英国);p⁃Smad3(批号9520T,CST 公司,美国);GAPDH(批号 6004⁃1⁃ig,武汉三鹰 Proteintech 公司);Ham’s F ⁃ 12K 培养基(批号 A211013,上海BasalMedia公司);RIPA裂解液、蛋白酶抑制剂、磷酸酶抑制剂、ECL发光液(苏州新赛美生物科技有限公司);逆转录试剂盒、聚合酶链反应试剂盒、CCK⁃8溶液(批号分别为PE5402、PC5902、PC001,南京Proteinbio公司)。

  • CY⁃12c 型测氧仪(杭州佳长电子科技有限公司);LightCyclePCR 仪(Roche 公司,美国);酶标仪 (BioTek公司,美国);电泳仪、凝胶成像仪(BIO⁃RAD 公司,美国)。

  • 人胚肺成纤维细胞(HFL⁃1)购于无锡欣润生物科技有限公司,培养于含10%胎牛血清的Ham’s F⁃ 12K 培养基中,置于含 5%CO2的 37℃恒温培养箱中。SD 大鼠[生产许可证编号 SCXK(京)2019 ⁃ 0010]饲养于南京医科大学附属淮安第一医院,选取 12周龄的SD大鼠按雄雌比例1∶3进行合笼,待所有孕鼠自然分娩后选取24 h内雄性SD大鼠用。本研究已获得南京医科大学附属淮安一院伦理委员会批准(伦理编号:DW⁃P⁃2023⁃001⁃10)。

  • 1.2 方法

  • 1.2.1 动物分组与造模

  • 新生SD雄性大鼠随机分为5组,每组8只,分别为空气组、高氧组、CTS 低剂量组(7.5 mg/kg)、CTS 中剂量组(15 mg/kg)及 CTS 高剂量组(30 mg/kg)。高氧组及 CTS 干预组连续吸入 95%O2 7 d,空气组置于室内环境(21%O2)中7 d。每日8:30 —9:30开箱操作,CTS溶于DMSO中进行腹腔注射,高氧组及空气组同时注射等量的DMSO。氧浓度分析仪连续监测箱内氧气浓度,并放置钠石灰吸收老鼠呼出的 CO2,哺乳鼠每日在高氧和空气环境之间交换,以防止母鼠不耐受高氧出现死亡情况。7 d后对全部鼠实施安乐死,立即取左肺上叶用4%多聚甲醛固定供)苏木精⁃伊红(hematoxylin⁃eosin,HE)和马松(Masson)染色实验用,剩余肺组织置于-80℃冰箱中待测。

  • 1.2.2 肺组织病理学检测

  • 左肺上叶用4%多聚甲醛固定过夜后包埋在蜡块中,切成4 μm厚的连续切片,之后在室温条件下进行HE染色以及Masson染色。根据HE染色情况,每张切片随机选取6个视野,取平均值计算辐射肺泡状计数(radical alveolar counts,RAC),并根据Masson染色结果参考文献[11-12]进行纤维化评分。

  • 1.2.3 RT⁃qPCR

  • 提取肺组织总 RNA 后,使用逆转录试剂盒逆转录为 cDNA,按照聚合酶链反应试剂盒说明加入 2× SYBR qPCR Mix 12.5 μL、cDNA 1 μL、前引物 (10 μmol/L)0.5 μL和后引物(10 μmol/L)0.5 μL,最后ddH2O定容至25 μL后在实时荧光定量PCR仪器上进行PCR扩增。引物序列为:TGF⁃β1 F:5′⁃CCT⁃ GGACACACAGTACAGCA⁃3′;TGF⁃β1 R:5′⁃CCACG⁃ TAGTAGACGATGGGC ⁃ 3′;α ⁃ SMA F:5′ ⁃ CATCC⁃ GACCTTGCTAACGGA⁃3′;α⁃SMA R:5′⁃CCACATA⁃ CATGGCAGGGACA⁃3′。

  • 1.2.4 HFL⁃1细胞分组及处理

  • 取对数生长期的 HFL⁃1 细胞分为 3 组,即空气组、高氧组及CTS干预组,均匀铺于6孔板,细胞饥饿 12 h后干预组予CTS 10 μmol/L处理,高氧及空气组加入等量的溶剂DMSO,随后高氧组及CTS干预组置于95%O2、5%CO2、37℃恒温培养箱中培养24 h。

  • 1.2.5 CCK⁃8测定HFL⁃1细胞活力

  • HFL⁃1细胞以5×104 个/mL的密度均匀铺于96孔板,并在培养箱中培养过夜,将不同浓度溶于DMSO 的CTS(0、2.5、5.0、10.0 μmol/L)处理细胞24 h,之后每孔加入 10 μL 的 CCK⁃8 溶液继续孵育 2 h,使用酶标仪在450 nm处测量每个孔的吸光度值,每孔设 4个复孔取平均值,重复实验3次。

  • 1.2.6 Western blot

  • 提取各组新生SD鼠肺组织及HFL⁃1 细胞的总蛋白,使用BCA法测定总浓度,然后在SDS⁃PAGE凝胶电泳中分离蛋白质样品并湿转到PVDF 膜上,之后脱脂牛奶溶液封闭 1 h 后与以下一抗 4℃孵育过夜:α⁃SMA(1∶1 000)、TGF⁃β1(1∶1 000)、Smad2 (1∶500)、p⁃Smad2(1∶2 000)、Smad3(1∶1 000)、 p⁃Smad3(1∶1 000)、GAPDH(1∶2 000)。TBST 洗膜后与二抗室温孵育1 h,最后使用超强发光液在凝胶成像系统进行曝光Image J 软件定量分析。

  • 1.3 统计学方法

  • 所有数据采用统计软件SPSS 27.0进行分析,计量资料以均数±标准差(x-±s)表示,采用单因素方差分析比较各组数据,LSD⁃t检验进行两两比较。P <0.05为差异有统计学意义。

  • 2 结果

  • 2.1 CTS对新生SD大鼠肺组织病理学影响

  • HE染色显示高氧组较空气组肺泡结构紊乱,肺泡形态变大,数目减少,RAC值下降(P <0.05);不同剂量的CTS干预后肺泡形态好转,RAC值也较高氧组明显上升(P <0.05,图1)。

  • Masson 染色结果显示,与空气对照组相比,高氧组胶原纤维含量明显上升,肺泡排列不规则,肺泡间隔增厚。CTS 干预后纤维化评分较高氧组降低,其中高剂量的 CTS 效果最好(P <0.05,图2)。

  • 图1 SD新生大鼠肺组织HE染色(×100)

  • Figure1 HE staining of lung tissue from neonatal SD rats(×100)

  • 图2 SD新生大鼠肺组织Masson染色(×200)

  • Figure2 Masson staining of lung tissue from neonatal SD rat(×200)

  • 2.2 CTS 对 SD 新生大鼠肺组织中 TGF ⁃β1 及α⁃ SMA mRNA水平影响

  • 模型组 SD 新生大鼠肺中 TGF⁃β1(图3A)及α⁃ SMA(图3B)的mRNA表达水平较空气组明显升高,不同剂量的CTS干预后逐渐好转,较高氧组明显下降(P <0.05)。

  • 2.3 CTS 对 SD 新生大鼠肺组织中 Smad2/3 通路蛋白表达的影响

  • Western blot 检测结果显示高氧暴露后,模型组的 p⁃Smad2/Smad2 蛋白水平较空气对照组明显升高(P <0.05,图4A、B),p⁃Smad3/Smad3在高氧组明显上升(P <0.05,图4A、C),p⁃Smad2/Smad2及p⁃ Smad3/Smad3比值在CTS处理后呈剂量依赖方式降低(P <0.05)。

  • 2.4 CTS对体外HFL⁃1增殖活力的影响

  • 体外研究中,首先用不同浓度 CTS(2.5、5.0、 10.0 mmol/L)处理HFL⁃1细胞后,细胞的增殖活力均在95%以上,其中CTS 10.0 μmol/L以内各组与对照组无统计学差异(P>0.05,图5A),提示 10 μmol/L 浓度以内的CTS不影响细胞增殖,故选用10 μmol/L 的CTS用于后续实验。在高氧条件下,细胞增殖活力受到影响,高氧组较空气组下降,但CTS处理后可以提高细胞活力(P <0.05,图5B)。

  • 2.5 CTS对HFL⁃1细胞α⁃SMA及TGF⁃β/Smad通路蛋白表达的影响

  • 体外实验中,高氧诱导HFL⁃1细胞后,细胞内的 α⁃SMA表达明显上升,在CTS处理后表达下降(P <0.05,图5C、D)。在TGF⁃β1/Smad通路蛋白表达中,高氧组与空气组相比,TGF⁃β1及Smad2/3磷酸化蛋白含量上升,CTS组较高氧组明显下降(P <0.05,图5C,E~G)。

  • 图3 各组新生 SD 大鼠肺组织中 TGF ⁃β1 及α⁃SMA 的 mRNA表达水平

  • Figure3 mRNA expression levels of TGF⁃β1 and α⁃SMA in neonatal SD rats lung tissue in each group

  • 图4 新生SD大鼠肺组织Smad2/3通路蛋白表达情况

  • Figure4 Smad2/3 pathway protein expression in lung tissue of neonatal SD rats

  • 3 讨论

  • BPD不仅是一种局部的肺部疾病,也是一种全身性疾病,对患儿成年以后的健康和生活质量具有一定影响[13-15],随着目前医疗水平的提高,BPD的生存率虽然提高了,但不幸的是其发生率仍然居高不下[16],且目前仍然没有特效治疗药物,因此 BPD 在新生儿呼吸系统疾病中一直备受关注。CTS是一种从传统中药丹参中提取的一种天然化合物,其生物学活性丰富,在多种疾病中具有潜在的治疗价值[17],本研究主要探索 CTS 在 BPD 相关纤维化中是否发挥作用。

  • 纤维化作为 BPD 的主要病理特征在 BPD 的发展中占据重要地位,在肺部发育中,成纤维细胞可维持肺泡和支气管的完整性,但在高氧诱导之后会发生显著的形态学变化[18-19],可进一步分化为肌成纤维细胞,使得肺泡上皮⁃间充质信号转导被破坏,不能正常维持上皮细胞的生长和分化,导致肺部出现异常修复并最终出现纤维化[20-21]。目前,高氧在 BPD 发展中的作用已在实验模型和临床试验中得到证实,高氧诱导的BPD实验动物模型已经被广泛运用[22],本研究通过高氧BPD模型发现,CTS改善了 BPD模型新生大鼠的肺部病理情况,特别是纤维化现象,体内外结果均显示纤维化标志物α⁃SMA的水平降低,提示CTS可改善高氧诱导的肺纤维化从而起到肺部保护作用。

  • 图5 CTS通过激活TGF⁃β/Smad信号通路降低高氧下HFL⁃1细胞的α⁃SMA水平,提高HFL⁃1细胞活力

  • Figure5 CTS reduced α⁃SMA levels by activating TGF⁃β/Smad signalling pathway and improved viability of HFL⁃1 cells

  • 生长因子TGF⁃β被认为是肺发育异常的主要调节因子,通过 TGF⁃β/Smad2/3 的典型信号转导调节早期肺发育[23-24],该通路与异常肺泡化关系密切, TGF⁃β1还可诱导成纤维细胞迁移、肌成纤维细胞的增殖和分化以及ECM的沉积[25],目前TGF⁃β靶基因越来越被认为是BPD的致病因素[26]。TGF⁃β1启动了成纤维细胞向肌成纤维细胞的转化,并导致标志性蛋白α⁃SMA的显著增加[27],这表明抑制纤维化细胞因子TGF⁃β1和靶向TGF⁃β信号通路是BPD中纤维化治疗的潜在策略。本研究结果显示CTS可以降低高氧后肺组织及HFL⁃1中的TGF⁃β1水平,同时降低下游 Smad2/3 的磷酸化表达含量,表明 CTS 可能通过 TGF⁃β1/Smad 通路在 BPD 模型中发挥抗纤维化的作用。

  • 综上所述,CTS对高氧诱导肺损伤的BPD模型具有保护作用,降低纤维化标志物α⁃SMA 的水平,其机制可能与TGF⁃β1/Smad通路有关,具体上下游的机制有待进一步研究。

  • 参考文献

    • [1] GILFILLAN M,BHANDARI A,BHANDARI V.Diagno⁃ sis and management of bronchopulmonary dysplasia[J].BMJ,2021,375:n1974

    • [2] 高倩茜,程锐.间充质干细胞外泌体的生物学功能及其治疗支气管肺发育不良研究进展[J].南京医科大学学报(自然科学版),2022,42(2):286-290

    • [3] PARSONS A,NETSANET A,SEEDORF G,et al.Under⁃ standing the role of placental pathophysiology in the de⁃ velopment of bronchopulmonary dysplasia[J].Am J Physiol Lung Cell Mol Physiol,2022,323(6):L651-L658

    • [4] MCGOWAN S.Understanding the developmental path⁃ ways pulmonary fibroblasts may follow during alveolar re⁃ generation[J].Cell Tissue Res,2017,367(3):707-719

    • [5] LIU H,XIE J,FAN L,et al.Cryptotanshinone protects against PCOS⁃induced damage of ovarian tissue via regu⁃ lating oxidative stress,mitochondrial membrane potential,inflammation,and apoptosis via regulating ferroptosis[J].Oxid Med Cell Longev,2022,2022:8011850

    • [6] HE X,ZHONG Z,WANG Q,et al.Pharmacokinetics and tissue distribution of bleomycin⁃induced idiopathic pulmo⁃ nary fibrosis rats treated with cryptotanshinone[J].Front Pharmacol,2023,14:1127219

    • [7] DALIL D,IRANZADEH S,KOHANSAL S.Anticancer po⁃ tential of cryptotanshinone on breast cancer treatment;a narrative review[J].Front Pharmacol,2022,13:979634

    • [8] SUN J M,AGARWAL S,DESAI T D,et al.Cryptotanshi⁃ none protects against oxidative stress in the paraquat ⁃in⁃ duced Parkinson’s disease model[J].Environ Toxicol,2023,38(1):39-48

    • [9] ZHANG Q,GAN C,LIU H,et al.Cryptotanshinone revers⁃ es the epithelial⁃mesenchymal transformation process and attenuates bleomycin⁃induced pulmonary fibrosis[J].Phy⁃ tother Res,2020,34(10):2685-2696

    • [10] ZHANG Y,LU W,ZHANG X,et al.Cryptotanshinone pro⁃ tects against pulmonary fibrosis through inhibiting Smad and STAT3 signaling pathways[J].Pharmacol Res,2019,147:104307

    • [11] PANG X,SHAO L,NIE X,et al.Emodin attenuates silica⁃ induced lung injury by inhibition of inflammation,apopto⁃ sis and epithelial ⁃mesenchymal transition[J].Int Immu⁃ nopharmacol,2021,91:107277

    • [12] XU J,LI W,XU S,et al.Effect of dermatan sulphate on a C57 ⁃ mouse model of pulmonary fibrosis[J].J Int Med Res,2019,47(6):2655-2665

    • [13] THÉBAUD B,GOSS K N,LAUGHON M,et al.Broncho⁃ pulmonary dysplasia[J].Nat Rev Dis Primers,2019,5(1):78

    • [14] DENG X,BAO Z,YANG X,et al.Molecular mechanisms of cell death in bronchopulmonary dysplasia[J].Apopto⁃ sis,2023,28(1⁃2):39-54

    • [15] 胡晶晶,郑亚斐,朱海艳,等.肌腱蛋白C对支气管肺发育不良诊断价值的前瞻性研究[J].南京医科大学学报(自然科学版),2023,43(4):531-535

    • [16] LUI K,LEE S K,KUSUDA S,et al.Trends in outcomes for neonates born very preterm and very low birth weight in 11 high⁃income countries[J].J Pediatr,2019,215:32-40

    • [17] WU Y H,WU Y R,LI B,et al.Cryptotanshinone:a review of its pharmacology activities and molecular mechanisms [J].Fitoterapia,2020,145:104633

    • [18] FU H,ZHANG T,HUANG R,et al.Calcitonin gene⁃relat⁃ ed peptide protects type Ⅱ alveolar epithelial cells from hyperoxia ⁃induced DNA damage and cell death[J].Exp Ther Med,2017,13(4):1279-1284

    • [19] YOU K,PARIKH P,KHANDALAVALA K,et al.Moder⁃ ate hyperoxia induces senescence in developing human lung fibroblasts[J].Am J Physiol Lung Cell Mol Physiol,2019,317(5):L525-L536

    • [20] REHAN V K,TORDAY J S.The lung alveolar lipofibro⁃ blast:an evolutionary strategy against neonatal hyperoxic lung injury[J].Antioxid Redox Signal,2014,21(13):1893-1904

    • [21] HWANG J S,REHAN V K.Recent advances in broncho⁃ pulmonary dysplasia:pathophysiology,prevention,and treatment[J].Lung,2018,196(2):129-138

    • [22] ASKIE L M,DARLOW B A,FINER N,et al.Association between oxygen saturation targeting and death or disabili⁃ ty in extremely preterm infants in the neonatal oxygen⁃ ation prospective meta⁃analysis collaboration[J].JAMA,2018,319(21):2190-2201

    • [23] NOE N,SHIM A,MILLETTE K,et al.Mesenchyme⁃spe⁃ cific deletion of Tgf ⁃ β1 in the embryonic lung disrupts branching morphogenesis and induces lung hypoplasia [J].Lab Invest,2019,99(9):1363-1375

    • [24] ASCHNER Y,DOWNEY G P.Transforming growth factor ⁃ β:master regulator of the respiratory system in health and disease[J].Am J Respir Cell Mol Biol,2016,54(5):647-655

    • [25] MOLAGODA I M N,SANJAYA S S,LEE K T,et al.Der⁃ rone targeting the TGF type 1 receptor kinase improves bleomycin ⁃ mediated pulmonary fibrosis through inhibi⁃ tion of smad signaling pathway[J].Int J Mol Sci,2023,24(8):7265

    • [26] WANG X,CUI H,WU S.CTGF:a potential therapeutic target for bronchopulmonary dysplasia[J].Eur J Pharma⁃ col,2019,860:172588

    • [27] YANAGIHARA T,TSUBOUCHI K,GHOLIOF M,et al.Connective⁃tissue growth factor contributes to TGF⁃β1⁃in⁃ duced lung fibrosis[J].Am J Respir Cell Mol Biol,2022,66(3):260-270

  • 参考文献

    • [1] GILFILLAN M,BHANDARI A,BHANDARI V.Diagno⁃ sis and management of bronchopulmonary dysplasia[J].BMJ,2021,375:n1974

    • [2] 高倩茜,程锐.间充质干细胞外泌体的生物学功能及其治疗支气管肺发育不良研究进展[J].南京医科大学学报(自然科学版),2022,42(2):286-290

    • [3] PARSONS A,NETSANET A,SEEDORF G,et al.Under⁃ standing the role of placental pathophysiology in the de⁃ velopment of bronchopulmonary dysplasia[J].Am J Physiol Lung Cell Mol Physiol,2022,323(6):L651-L658

    • [4] MCGOWAN S.Understanding the developmental path⁃ ways pulmonary fibroblasts may follow during alveolar re⁃ generation[J].Cell Tissue Res,2017,367(3):707-719

    • [5] LIU H,XIE J,FAN L,et al.Cryptotanshinone protects against PCOS⁃induced damage of ovarian tissue via regu⁃ lating oxidative stress,mitochondrial membrane potential,inflammation,and apoptosis via regulating ferroptosis[J].Oxid Med Cell Longev,2022,2022:8011850

    • [6] HE X,ZHONG Z,WANG Q,et al.Pharmacokinetics and tissue distribution of bleomycin⁃induced idiopathic pulmo⁃ nary fibrosis rats treated with cryptotanshinone[J].Front Pharmacol,2023,14:1127219

    • [7] DALIL D,IRANZADEH S,KOHANSAL S.Anticancer po⁃ tential of cryptotanshinone on breast cancer treatment;a narrative review[J].Front Pharmacol,2022,13:979634

    • [8] SUN J M,AGARWAL S,DESAI T D,et al.Cryptotanshi⁃ none protects against oxidative stress in the paraquat ⁃in⁃ duced Parkinson’s disease model[J].Environ Toxicol,2023,38(1):39-48

    • [9] ZHANG Q,GAN C,LIU H,et al.Cryptotanshinone revers⁃ es the epithelial⁃mesenchymal transformation process and attenuates bleomycin⁃induced pulmonary fibrosis[J].Phy⁃ tother Res,2020,34(10):2685-2696

    • [10] ZHANG Y,LU W,ZHANG X,et al.Cryptotanshinone pro⁃ tects against pulmonary fibrosis through inhibiting Smad and STAT3 signaling pathways[J].Pharmacol Res,2019,147:104307

    • [11] PANG X,SHAO L,NIE X,et al.Emodin attenuates silica⁃ induced lung injury by inhibition of inflammation,apopto⁃ sis and epithelial ⁃mesenchymal transition[J].Int Immu⁃ nopharmacol,2021,91:107277

    • [12] XU J,LI W,XU S,et al.Effect of dermatan sulphate on a C57 ⁃ mouse model of pulmonary fibrosis[J].J Int Med Res,2019,47(6):2655-2665

    • [13] THÉBAUD B,GOSS K N,LAUGHON M,et al.Broncho⁃ pulmonary dysplasia[J].Nat Rev Dis Primers,2019,5(1):78

    • [14] DENG X,BAO Z,YANG X,et al.Molecular mechanisms of cell death in bronchopulmonary dysplasia[J].Apopto⁃ sis,2023,28(1⁃2):39-54

    • [15] 胡晶晶,郑亚斐,朱海艳,等.肌腱蛋白C对支气管肺发育不良诊断价值的前瞻性研究[J].南京医科大学学报(自然科学版),2023,43(4):531-535

    • [16] LUI K,LEE S K,KUSUDA S,et al.Trends in outcomes for neonates born very preterm and very low birth weight in 11 high⁃income countries[J].J Pediatr,2019,215:32-40

    • [17] WU Y H,WU Y R,LI B,et al.Cryptotanshinone:a review of its pharmacology activities and molecular mechanisms [J].Fitoterapia,2020,145:104633

    • [18] FU H,ZHANG T,HUANG R,et al.Calcitonin gene⁃relat⁃ ed peptide protects type Ⅱ alveolar epithelial cells from hyperoxia ⁃induced DNA damage and cell death[J].Exp Ther Med,2017,13(4):1279-1284

    • [19] YOU K,PARIKH P,KHANDALAVALA K,et al.Moder⁃ ate hyperoxia induces senescence in developing human lung fibroblasts[J].Am J Physiol Lung Cell Mol Physiol,2019,317(5):L525-L536

    • [20] REHAN V K,TORDAY J S.The lung alveolar lipofibro⁃ blast:an evolutionary strategy against neonatal hyperoxic lung injury[J].Antioxid Redox Signal,2014,21(13):1893-1904

    • [21] HWANG J S,REHAN V K.Recent advances in broncho⁃ pulmonary dysplasia:pathophysiology,prevention,and treatment[J].Lung,2018,196(2):129-138

    • [22] ASKIE L M,DARLOW B A,FINER N,et al.Association between oxygen saturation targeting and death or disabili⁃ ty in extremely preterm infants in the neonatal oxygen⁃ ation prospective meta⁃analysis collaboration[J].JAMA,2018,319(21):2190-2201

    • [23] NOE N,SHIM A,MILLETTE K,et al.Mesenchyme⁃spe⁃ cific deletion of Tgf ⁃ β1 in the embryonic lung disrupts branching morphogenesis and induces lung hypoplasia [J].Lab Invest,2019,99(9):1363-1375

    • [24] ASCHNER Y,DOWNEY G P.Transforming growth factor ⁃ β:master regulator of the respiratory system in health and disease[J].Am J Respir Cell Mol Biol,2016,54(5):647-655

    • [25] MOLAGODA I M N,SANJAYA S S,LEE K T,et al.Der⁃ rone targeting the TGF type 1 receptor kinase improves bleomycin ⁃ mediated pulmonary fibrosis through inhibi⁃ tion of smad signaling pathway[J].Int J Mol Sci,2023,24(8):7265

    • [26] WANG X,CUI H,WU S.CTGF:a potential therapeutic target for bronchopulmonary dysplasia[J].Eur J Pharma⁃ col,2019,860:172588

    • [27] YANAGIHARA T,TSUBOUCHI K,GHOLIOF M,et al.Connective⁃tissue growth factor contributes to TGF⁃β1⁃in⁃ duced lung fibrosis[J].Am J Respir Cell Mol Biol,2022,66(3):260-270