en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

高俊英,E-mail:gaojunying@njmu.edu.cn

中图分类号:R741.02

文献标识码:A

文章编号:1007-4368(2024)03-398-12

DOI:10.7655/NYDXBNSN230863

参考文献 1
DASGUPTA K,JEONG J.Developmental biology of the meninges[J].Genesis,2019,57(5):e23288
参考文献 2
AHN J H,CHO H,KIM J H,et al.Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid[J].Na⁃ ture,2019,572(7767):62-66
参考文献 3
MØLLGÅRD K,BEINLICH F R M,KUSK P,et al.A me⁃ sothelium divides the subarachnoid space into functional compartments[J].Science,2023,379(6627):84-88
参考文献 4
YANG T,GUO R M,ZHANG F.Brain perivascular macro⁃ phages:recent advances and implications in health and diseases[J].CNS Neurosci Ther,2019,25(12):1318-1328
参考文献 5
RUA R,MCGAVERN D B.Advances in meningeal immu⁃ nity[J].Trends Mol Med,2018,24(6):542-559
参考文献 6
RANSOHOFF R M,ENGELHARDT B.The anatomical and cellular basis of immune surveillance in the central nervous system[J].Nat Rev Immunol,2012,12(9):623-635
参考文献 7
LEE D S,SUH M,SARKER A,et al.Brain glymphatic/lymphatic imaging by MRI and PET[J].Nucl Med Mol Imaging,2020,54(5):207-223
参考文献 8
ILIFF J J,WANG M H,LIAO Y H,et al.A paravascular pathway facilitates CSF flow through the brain parenchy⁃ ma and the clearance of interstitial solutes,including amy⁃ loid Β[J].Sci Transl Med,2012,4(147):147ra111
参考文献 9
SILVA I,SILVA J,FERREIRA R,et al.Glymphatic sys⁃ tem,AQP4,and their implications in Alzheimer’s disease [J].Neurol Res Pract,2021,3(1):5
参考文献 10
ALVES DE LIMA K,RUSTENHOVEN J,KIPNIS J.Men⁃ ingeal immunity and its function in maintenance of the central nervous system in health and disease[J].Annu Rev Immunol,2020,38:597-620
参考文献 11
LOUVEAU A,SMIRNOV I,KEYES T J,et al.Structural and functional features of central nervous system lymphatic vessels[J].Nature,2015,523(7560):337-341
参考文献 12
ASPELUND A,ANTILA S,PROULX S T,et al.A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules[J].J Exp Med,2015,212(7):991-999
参考文献 13
NAGRA G,JOHNSTON M G.Impact of ageing on lym⁃ phatic cerebrospinal fluid absorption in the rat[J].Neuro⁃ pathology Appl Neurobio,2007,33(6):684-691
参考文献 14
KWON S,MORENO ⁃GONZALEZ I,TAYLOR ⁃ PRESSE K,et al.Impaired peripheral lymphatic function and cere⁃ brospinal fluid outflow in a mouse model of Alzheimer’s disease[J].J Alzheimers Dis,2019,69(2):585-593
参考文献 15
KIVISÄKK P,MAHAD D J,CALLAHAN M K,et al.Human cerebrospinal fluid central memory CD4+ T cells:evidence for trafficking through choroid plexus and meninges via P ⁃ selectin[J].Proc Natl Acad Sci USA,2003,100(14):8389-8394
参考文献 16
ELLWARDT E,WALSH J T,KIPNIS J,et al.Understand⁃ ing the role of T cells in CNS homeostasis[J].Trends Im⁃ munol,2016,37(2):154-165
参考文献 17
FILIANO A J,GADANI S P,KIPNIS J.How and why do T cells and their derived cytokines affect the injured and healthy brain?[J].Nat Rev Neurosci,2017,18(6):375-384
参考文献 18
LOUVEAU A,HERZ J,ALME M N,et al.CNS lymphatic drainage and neuroinflammation are regulated by menin⁃ geal lymphatic vasculature[J].Nat Neurosci,2018,21(10):1380-1391
参考文献 19
VAN HOVE H,MARTENS L,SCHEYLTJENS I,et al.A single ⁃ cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment[J].Nat Neurosci,2019,22(6):1021-1035
参考文献 20
MA T Y,WANG F S,XU S J,et al.Meningeal immunity:structure,function and a potential therapeutic target of neurodegenerative diseases[J].Brain Behav Immun,2021,93:264-276
参考文献 21
DERECKI N C,CARDANI A N,YANG C H,et al.Regu⁃ lation of learning and memory by meningeal immunity:a key role for IL ⁃4[J].J Exp Med,2010,207(5):1067-1080
参考文献 22
HENDRIKSEN E,VAN BERGEIJK D,OOSTING R S,et al.Mast cells in neuroinflammation and brain disorders [J].Neurosci Biobehav Rev,2017,79:119-133
参考文献 23
FILIANO A J,XU Y,TUSTISON N J,et al.Unexpected role of interferon ⁃ γ in regulating neuronal connectivity and social behaviour[J].Nature,2016,535(7612):425-429
参考文献 24
ALVES DE L K,RUSTENHOVEN J,DA MESQUITA S,et al.Meningeal γδ T cells regulate anxiety⁃like behavior via IL⁃17a signaling in neurons[J].Nat Immunol,2020,21(11):1421-1429
参考文献 25
SHI L G,SUN Z Y,SU W,et al.Treg cell⁃derived osteo⁃ pontin promotes microglia ⁃ mediated white matter repair after ischemic stroke[J].Immunity,2021,54(7):1527-1542
参考文献 26
CHIKAHISA S,KODAMA T,SOYA A,et al.Histamine from brain resident MAST cells promotes wakefulness and modulates behavioral states[J].PLoS One,2013,8(10):e78434
参考文献 27
SOCAŁA K,DOBOSZEWSKA U,SZOPA A,et al.The role of microbiota ⁃gut ⁃brain axis in neuropsychiatric and neurological disorders[J].Pharmacol Res,2021,172:105840
参考文献 28
FITZPATRICK Z,FRAZER G,FERRO A,et al.Gut⁃edu⁃ cated IgA plasma cells defend the meningeal venous si⁃ nuses[J].Nature,2020,587(7834):472-476
参考文献 29
BENAKIS C,BREA D,CABALLERO S,et al.Commen⁃ sal microbiota affects ischemic stroke outcome by regulat⁃ ing intestinal γδ T cells[J].Nat Med,2016,22(5):516-523
参考文献 30
DI MARCO BARROS R,FITZPATRICK Z,CLATWOR⁃ THY M R.The gut ⁃ meningeal immune axis:priming brain defense against the most likely invaders[J].J Exp Med,2022,219(3):e20211520
参考文献 31
SAMPSON T R,DEBELIUS J W,THRON T,et al.Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease[J].Cell,2016,167(6):1469-1480
参考文献 32
HAUSER S L,OKSENBERG J R.The neurobiology of multiple sclerosis:genes,inflammation,and neurodegen⁃ eration[J].Neuron,2006,52(1):61-76
参考文献 33
CHOI S R,HOWELL O W,CARASSITI D,et al.Menin⁃ geal inflammation plays a role in the pathology of primary progressive multiple sclerosis[J].Brain,2012,135(10):2925-2937
参考文献 34
LUCCHINETTI C F,POPESCU B F G,BUNYAN R F,et al.Inflammatory cortical demyelination in early multiple sclerosis[J].N Engl J Med,2011,365(23):2188-2197
参考文献 35
KWONG B,RUA R,GAO Y Y,et al.T ⁃ bet ⁃ dependent NKp46+ innate lymphoid cells regulate the onset of TH17⁃ induced neuroinflammation[J].Nat Immunol,2017,18(10):1117-1127
参考文献 36
SCHLÄGER C,KÖRNER H,KRUEGER M,et al.Effec⁃ tor T ⁃ cell trafficking between the leptomeninges and the cerebrospinal fluid[J].Nature,2016,530(7590):349-353
参考文献 37
FURTADO G C,MARCONDES M C G,LATKOWSKI J A,et al.Swift entry of myelin⁃specific T lymphocytes into the central nervous system in spontaneous autoimmune encephalomyelitis[J].J Immunol,2008,181(7):4648-4655
参考文献 38
RUSSI A E,BROWN M A.The meninges:new therapeu⁃ tic targets for multiple sclerosis[J].Transl Res,2015,165(2):255-269
参考文献 39
BURGALETTO C,MUNAFÒ A,BENEDETTO G,et al.The immune system on the TRAIL of Alzheimer’s disease [J].J Neuroinflammation,2020,17(1):1-11
参考文献 40
BOON B D C,BULK M,JONKER A J,et al.The coarse⁃ grained plaque:a divergent Aβ plaque⁃type in early⁃onset Alzheimer’s disease[J].Acta Neuropathol,2020,140(6):811-830
参考文献 41
CHEN W W,ZHANG X,HUANG W J.Role of neuroin⁃ flammation in neurodegenerative diseases(review)[J].Mol Med Rep,2016,13(4):3391-3396
参考文献 42
DA MESQUITA S,LOUVEAU A,VACCARI A,et al.Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease[J].Nature,2018,560(7717):185-191
参考文献 43
DA MESQUITA S,PAPADOPOULOS Z,DYKSTRA T,et al.Meningeal lymphatics affect microglia responses and anti ⁃Aβ immunotherapy[J].Nature,2021,593(7858):255-260
参考文献 44
EL KHOURY J,LUSTER A D.Mechanisms of microglia accumulation in Alzheimer’s disease:therapeutic impli⁃ cations[J].Trends Pharmacol Sci,2008,29(12):626-632
参考文献 45
OXANA S G,ALEXANDER S,INNA B,et al.Mecha⁃ nisms of phototherapy of Alzheimer’s disease during sleep and walcefulness:the role of meningeal lymphatics [J].Front Optcelectron,2023,16(1):22
参考文献 46
LI X A,CHEN G.CNS⁃peripheral immune interactions in hemorrhagic stroke[J].J Cereb Blood Flow Metab,2023,43(2):185-197
参考文献 47
DIENER H C,HANKEY G J.Primary and secondary pre⁃ vention of ischemic stroke and cerebral hemorrhage:JACC focus seminar[J].J Am Coll Cardiol,2020,75(15):1804-1818
参考文献 48
CHEN J M,WANG L M,XU H,et al.Meningeal lymphat⁃ ics clear erythrocytes that arise from subarachnoid hemor⁃ rhage[J].Nat Commun,2020,11(1):3159
参考文献 49
LV T,ZHAO B,HU Q,et al.The glymphatic system:a novel therapeutic target for stroke treatment[J].Front Aging Neurosci,2021,13:689098
参考文献 50
PETROVIC ⁃ DJERGOVIC D,GOONEWARDENA S N,PINSKY D J.Inflammatory disequilibrium in stroke[J].Circ Res,2016,119(1):142-158
参考文献 51
PERLA M,CARETTI V,MORO M A,et al.Role of the meningeal lymphatics in strock[J].stroke,2023,54(6):1670-1672
参考文献 52
SI J C,CHEN L B,XIA Z L.Effects of cervical⁃lymphatic blockade on brain edema and infarction volume in cerebral ischemic rats[J].Chin J Physiol,2006,49(5):258-265
参考文献 53
ZHANG D H,REN J X,LUO Y,et al.T cell response in ischemic stroke:from mechanisms to translational insights [J].Front Immunol,2021,12:707972
参考文献 54
BENAKIS C,LLOVERA G,LIESZ A.The meningeal and choroidal infiltration routes for leukocytes in stroke[J].Ther Adv Neurol Disord,2018,11:1756286418783708
参考文献 55
ESPOSITO E,AHN B J,SHI J F,et al.Brain⁃to⁃cervical lymph node signaling after stroke[J].Nat Commun,2019,10:5306
参考文献 56
XIANG T T,FENG D Y,ZHANG X J,et al.Effects of in⁃ creased intracranial pressure on cerebrospinal fluid in⁃ flux,cerebral vascular hemodynamic indexes,and cere⁃ brospinal fluid lymphatic efflux[J].J Cereb Blood Flow Metab,2022,42(12):2287-2302
参考文献 57
SUÁREZ⁃PIÑERA M,PUDIS M,VILARIÑO N,et al.Cer⁃ vical lymph node metastasis from recurrent glioblastoma detected by MRI and 2⁃[18F]FDG PET/CT[J].Clin Nucl Med,2023,48(3):118-120
参考文献 58
MA Q L,SCHLEGEL F,BACHMANN S B,et al.Lym⁃ phatic outflow of cerebrospinal fluid is reduced in glioma [J].Sci Rep,2019,9(1):14815
参考文献 59
LU H B,CAO Y,HU J Z,et al.The lymphatic system:a therapeutic target for central nervous system disorders [J].Neural Regen Res,2023,18(6):1249
参考文献 60
CAO P,CHEN C M,LIU A,et al.Early⁃life inflammation promotes depressive symptoms in adolescence via microg⁃ lial engulfment of dendritic spines[J].Neuron,2021,109(16):2573-2589
参考文献 61
BAH T M,SILER D A,IBRAHIM A H,et al.Fluid dy⁃ namics in aging ⁃ related dementias[J].Neurobiol Dis,2023,177:105986
参考文献 62
SEMYACHKINA⁃GLUSHKOVSKAYA O,ABDURASHI⁃ TOV A,DUBROVSKY A,et al.Application of optical co⁃ herence tomography for in vivo monitoring of the meninge⁃ al lymphatic vessels during opening of blood⁃brain barri⁃ er:mechanisms of brain clearing[J].JBO,2017,22(12):121719
参考文献 63
WANG X Y,ZHANG A K,YU Q,et al.Single⁃cell RNA sequencing and spatial transcriptomics reveal pathogene⁃ sis of meningeal lymphatic dysfunction after experimental subarachnoid hemorrhage[J].Adv Sci,2023,10(21):e2301428
参考文献 64
WOJCIECHOWSKI S,VIRENQUE A,VIHMA M,et al.Developmental dysfunction of the central nervous system lymphatics modulates the adaptive neuro ⁃ immune re⁃ sponse in the perilesional cortex in a mouse model of trau⁃ matic brain injury[J].Front Immunol,2021,11:559810
参考文献 65
ARAC A,GRIMBALDESTON M A,NEPOMUCENO A R B,et al.Evidence that meningeal mast cells can worsen stroke pathology in mice[J].Am J Pathol,2014,184(9):2493-2504
参考文献 66
NEDERGAARD M,GOLDMAN S A.Glymphatic failure as a final common pathway to dementia[J].Science,2020,370(6512):50-56
参考文献 67
OZTURK B,KOUNDAL S,AL BIZRI E,et al.Conti ⁃ nuous positive airway pressure increases CSF flow and glymphatic transport[J].JCI Insight,2023,8(12):e170270
参考文献 68
LIAO J W,ZHANG M C,SHI Z C,et al.Improving the function of meningeal lymphatic vessels to promote brain edema absorption after traumatic brain injury[J].J Neu⁃ rotrauma,2023,40(3/4):383-394
参考文献 69
LI G W,CAO Y,TANG X,et al.The meningeal lymphatic vessels and the glymphatic system:potential therapeutic targets in neurological disorders[J].J Cereb Blood Flow Metab,2022,42(8):1364-1382
参考文献 70
谢雯,董洪权,侍崇龙,等.脑膜淋巴管转运功能障碍加重脂多糖诱导的小鼠中枢炎症[J].南京医科大学学报(自然科学版),2023,43(7):927-933
参考文献 71
ZHAO Q,CHENG W J,XI Y B,et al.IFN ⁃β regulates Th17 differentiation partly through the inhibition of osteo⁃ pontin in experimental autoimmune encephalomyelitis [J].Molecular Immunology,2018,93:20-30
参考文献 72
MANGALAM A K,LUCKEY D,GIRI S,et al.Two dis⁃ creet subsets of CD8 T cells modulate PLP(91⁃110)in⁃ duced experimental autoimmune encephalomyelitis in HLA ⁃ DR3 transgenic mice[J].J Autoimmun,2012,38(4):344-353
参考文献 73
BROWNE T C,MCQUILLAN K,MCMANUS R M,et al.IFN ⁃ gamma production by amyloid beta ⁃ specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer's disease[J].J Im⁃ munol,2013,190(5):2241-2251
参考文献 74
CAO C,ARENDASH G W,DICKSON A,et al.Abeta⁃spe⁃ cific Th2 cells provide cognitive and pathological benefits to Alzheimer’s mice without infiltrating the CNS[J].Neu⁃ robiol Dis,2009,34(1):63-70
参考文献 75
SONG E,MAO T,DONG H,et al.VEGF ⁃C ⁃driven lym⁃ phatic drainage enables immunosurveillance of brain tu⁃ mours[J].Nature,2020,577(7792):689-694
目录contents

    摘要

    脑膜作为包绕中枢神经系统(central nervous system,CNS)的4层膜状结构,含有大量免疫细胞,是中枢神经系统的重要屏障和通道,但是其具体的免疫机制尚不明确。近年来,脑膜淋巴管的发现揭示了脑膜在清除大脑代谢物、参与免疫监视与免疫反应等方面的作用。本文主要就脑膜免疫的相关研究进展以及脑膜免疫对相关疾病的影响进行综述,同时展望脑膜免疫未来的研究方向。

    Abstract

    The meninges,a four - layer membrane - like enclosure around the central nervous system(CNS),house a significant population of immune cells and is an important barrier and pathway for entering the CNS;however,the specific immune processes remain elusive. Recent identification of meningeal lymphatic vessels has shed light on the involvement of meninges in metabolite clearance,immune surveillance and response. Here,we provide a comprehensive review of advancements in meningeal immunity research and its implications for associated disorders. Additionally,potential avenues for future investigations in the realm of meningeal immunity are suggested.

  • 1 脑膜的结构及相关免疫细胞

  • 1.1 脑膜的基本结构

  • 过去认为,脑膜位于颅骨和脑之间,从外向内分别由硬脑膜、脑蛛网膜和软脑膜3层组成。硬脑膜是厚而坚韧的双层膜,其外层附着于颅骨内面,内层为脑膜层,两层膜在一些特定部位相互分离,形成硬脑膜窦。硬脑膜上有大量神经、血管分布,并含有淋巴管。脑蛛网膜薄而透明,缺乏血管和神经,由一层外层细胞组成,包围着蛛网膜下腔,其间充满脑脊液(cerebrospinal fluid,CSF),大部分脑脊液由脑室内的脉络丛(choroid plexus,CP)产生,跨越蛛网膜下腔的富含胶原的薄层结构,称为小梁。脑蛛网膜的细胞通过紧密连接连接在一起,是中枢神经系统实质的第一个不透水屏障,因此,分子不能从硬脑膜自由扩散到蛛网膜下腔,其作为一层物理屏障将 CSF 与脑组织间质液(interstitial fluid,ISF)分隔开[1]。脑蛛网膜在上矢状窦两侧形成许多绒毛状突起突入上矢状窦内,称为蛛网膜粒,参与CSF流入静脉血的重吸收[2]

  • 近期,研究人员在蛛网膜和软脑膜之间发现了第四层脑膜,将蛛网膜下隙划分为浅部、深部两个空间,其在结构和免疫表型方面与外周脏器所覆盖的间皮组织相似,研究团队将其命名为蛛网膜下淋巴样膜(subarachnoid lymphatic ⁃ like membrane, SLYM)[3]。SLYM位于蛛网膜下隙,与脑膜静脉窦紧密排列,内含血管和免疫细胞,故认为SLYM参与了 CSF和静脉血之间小分子溶质的物质交换,并通过在小鼠蛛网膜下隙注射微球体以及示踪剂,发现 SLYM可以限制多数小分子肽和蛋白质在蛛网膜下隙浅、深两层之间交换,而其参与脑膜免疫以及液体引流的具体机制尚待进一步探索。脑蛛网膜和软脑膜合称软膜,但随着SLYM的发现,软膜这一概念是否需要被扩充或修正,值得探究。

  • 1.2 脑膜相关的免疫细胞

  • 生理状态下,脑实质所含有的免疫细胞仅有小胶质细胞。该类细胞起源于原始卵黄囊细胞,是一种终身定居于脑实质的特殊类型巨噬细胞。此外,通过CSF引流,脑膜中也存在来源于骨髓造血干细胞和淋巴样干细胞的免疫细胞[4]。3层脑膜中,硬脑膜含有大量的免疫细胞,如树突细胞(dendritic cell, DC)、肥大细胞(mast cell,MC)、固有淋巴细胞(in⁃ nate lymphoid cell,ILC)、脑膜巨噬细胞、T 细胞和 B 细胞[5]。虽然软脑膜上也含有免疫细胞,但少于硬脑膜,主要含有巨噬细胞、DC和MC[5]。CSF中仅含有记忆T细胞、少量B细胞和单核细胞[6]。位于中枢神经系统的非小胶质巨噬细胞被称为屏障相关巨噬细胞(border⁃associated macrophages,BAM),过去,所有组织特异性巨噬细胞都被认为来源于骨髓祖细胞,然而通过大规模单细胞RNA测序结合原基作图,发现硬脑膜与伴血管的非实质巨噬细胞均源自胚胎时期的卵黄囊髓样祖细胞,并在许多方面与小胶质细胞类似。脑膜、CP 和脑血管周围空间由 BAM填充,其主要表达蛋白质标志物CD206,参与抗原识别和递呈,维护血⁃脑屏障(blood⁃brain barrier, BBB)的完整[4]。硬脑膜被蛛网膜从中枢神经系统的其他部分隔离出来,因此应该有自己特异的免疫细胞亚群。这些脑膜相关淋巴细胞参与免疫屏障的具体机制尚待进一步探索。

  • 2 脑膜免疫渠道

  • 2.1 胶质淋巴系统

  • CSF在循环过程中,通过覆盖在大脑微血管周围的星形胶质细胞(astrocytes,AC)终足,与ISF进行密切的物质交换。其中,CSF围绕动脉进行流动,其所在的动脉旁间隙(Virchow⁃Robin spaces,VRS)的边界由血管腔壁和AC终足构成[7]。Iliff等[8] 在活体双光子显微镜下通过免疫荧光追踪,证实经过蛛网膜下CSF 循环使脑实质中的溶质进入CSF,并发现此通道依赖血管周围AC终足表达的水通道蛋白⁃4 (aquaporin 4,AQP4)。他们将这种 CSF 与 ISF 之间进行小分子物质交换的系统命名为 glymphatic 系统,即胶质淋巴系统。一方面,该系统的物质交换依赖胶质水通道;另一方面,其清除废物的机制又与外周淋巴系统相似。基于胶质淋巴系统的清除特性,研究者将其与阿尔茨海默病(Alzheimer’s disease,AD)中的大分子物质,如Aβ和tau蛋白沉积联系起来,认为淋巴胶质系统的功能退行可能导致 Aβ或 tau 蛋白沉积[9]。而增强其清除能力以缓解 AD 病理进程的具体机制和临床应用,尚待进一步探索。

  • 2.2 脑膜淋巴管(meningeal lymphatic vessel,MLV)

  • MLV是硬脑膜上沿静脉结构排列的管状结构,除了静脉窦周围,颅底也尤为发达,具有周围淋巴管的许多相同属性,如生理条件下表达淋巴管内皮细胞的大部分经典标志物,包括prospero homeobox⁃ 1(PROX1)、血管内皮生长因子受体3(vascular endo⁃ thelial growth factor receptor 3,VEGFR3)、淋巴管内皮透明质酸受体⁃1(lymphatic vessel endothelial hyal⁃ uronan receptor⁃1,LYVE1)、podoplanin和C⁃C基序趋化因子配体 21(chemokine ligand 21,CCL21)等,但无平滑肌细胞。其总体结构和分布又具有某些特点,如脑膜淋巴管不表达如整合素⁃α9(integrin α9) 等瓣膜特征性标志物,其直径小于外周淋巴管[10]

  • 从分布来说,MLV 可能起始于眼部,行于嗅球上方,之后与上矢状窦并行。与膈肌的淋巴管相比,MLV相对细小,形成相对简单的网络,覆盖相对少的组织[11]。MLV 的存在揭示了脑内液体在中枢神经系统内存在定向运输,一些证据表明CSF内的示踪剂可以穿过蛛网膜进入硬脑膜淋巴系统,也有观点认为示踪剂并非由外周途径而是从颅骨上的小孔流出[5]。近期研究表明,MLV携带大量免疫细胞,将脑实质有关的细胞因子与外周免疫系统相联系,并由此将脑实质与CSF中免疫细胞及细胞因子从蛛网膜下隙引流入颈深淋巴节(deep cervical lymph node,dCLN),部分进入颈浅淋巴节(superfi⁃ cial cervical lymph node,sCLN)[11-12]

  • 2.2.1 MLV引流CSF的途径

  • 除经典的蛛网膜粒硬脑膜窦吸收途径外,CSF 也可以沿着颅神经鞘,通过MLV或鼻腔嗅觉系统淋巴管流入外周淋巴管,间接进入血液循环。多种动物实验表明,在正常颅内压力下,很少量的CSF通过经典途径转运到颅静脉系统,该转运途径仅在病理性颅内压增高的情况下发挥作用[13]。基于此,大量研究开始聚焦CSF的淋巴引流途径。Louveau等[11] 发现,给小鼠静脉注射伊文思蓝 30 min 后,染料在 MLV 与dCLN 中均被检测到,但在周围的非淋巴组织中几乎没有分布。结扎 dCLN 的输入淋巴管后,与假手术对照组比较,结扎小鼠的 dCLN 无明显染料累积,由此可见,MLV和dCLN之间直接偶联。而 Aspelund等[12] 通过建立血管内皮生长因子缺失的转基因小鼠模型,也发现MLV发育不良会导致脑内大分子物质清除减弱,以及阻碍蛛网膜下腔向 dCLN 的引流途径。由此可见,MLV是ISF及其来源的细胞成分及可溶性代谢产物通过CSF引流到dCLN的主要途径。

  • 此外,也有团队将放射性同位素注入CSF后,发现示踪剂主要富集在大鼠嗅鼻甲处,在3月龄呈高速流动状态,而在12月龄和15月龄明显下降,由此可见,大量的CSF通过筛孔进入嗅淋巴管的运输也代表了CSF淋巴运输的范式,并具有实际优势,而其引流效率与年龄呈负相关[13]。Kwon等[14] 将吲哚青绿 (indocyanine green,ICG)注入AD小鼠和野生型小鼠蛛网膜下腔,并用近红外荧光成像技术对比二者的 CSF 引流情况,发现 ICG 立即进入野生型小鼠的蛛网膜下腔并通过筛血管引流至下颌下淋巴结,而 AD 小鼠该淋巴结内荧光强度显著降低,且外周淋巴管收缩频率降低,说明 AD 小鼠的 CSF 流出途径严重受损,CSF清除障碍,考虑与外周淋巴管功能受损相关,这证实鼻腔嗅觉系统淋巴管流入外周淋巴管的功能下降同样导致淋巴管堵塞,从而限制CSF 的流出。可见,两种淋巴途径均对CSF存在引流作用,但二者的权重,特别是MLV引流的具体机制尚待探究。

  • 2.2.2 MLV介导免疫细胞的迁移

  • 过去观点认为,BBB 的存在使大脑处于“免疫豁免状态”,但随着MLV的发现,揭示了脑实质内的小胶质细胞,还包括 T 细胞、巨噬细胞等免疫细胞 (其中部分通过MLV引流),动态监视着大脑的健康状况,即MLV存在运输大脑免疫细胞的功能。研究发现,CSF中的T细胞主要是CD4+ /CD45RA /CD27+ / CD69+ 记忆T细胞,这些细胞表达高浓度的CC⁃趋化因子受体7(CC⁃chemokine receptor 7,CCR7)和 L 蛋白选择素,负责生理状态下CSF和血管周围区域的免疫监视,并保留参与自身免疫反应和回流入二级淋巴器官的功能,即如果这些淋巴细胞在监视过程中未发现抗原,就会通过 MLV 回流入 dCLN[15-16]。健康状态下,T细胞由血液循环进入脑膜的途径有 3条:软脑膜表面血管、硬脑膜上的脑膜血管或CP[17]

  • 淋巴内皮细胞已被证明在炎症环境中会增殖和扩张。Louveau等[18] 使用多发性硬化动物模型——实验性自身免疫性脑脊髓炎(experimental autoimmune encephalomyelitis,EAE)诱导中枢神经系统的强烈炎症。研究表明,在疾病晚期,位于筛板中枢侧的淋巴管扩张,且 MLV 内部和周围的 T 细胞密度增加,这意味着引流淋巴结的脑膜免疫细胞输出增加。通过手术结扎dCLN的传入淋巴管会延迟EAE 的进展。此外,与野生型小鼠相比,淋巴管完整性缺陷型Prox1het小鼠内源性脑膜T细胞的数量显著增加。注射入2月龄Prox1het小鼠脑脊液中的T细胞,不能像野生型小鼠那样有效地引流到 dCLN 中。与 Proxy1het 小鼠相似,dCLN 的传入淋巴管结扎后,注射到小鼠脑脊液的 T 细胞、DC 未能流入 dCLN。这些结果表明,脑膜对T细胞的引流依赖于淋巴管的完整性。

  • CCR7⁃CCL21 途径被认为是 T 细胞和 DC 进入淋巴系统及在淋巴系统中迁移、循环的主要途径。 Louveau 等[18] 将 CCR7⁃WT 和 CCR7⁃KO 的 T 细胞以 1∶1的比例共注射到naïve小鼠的脑脊液中,发现与 CCR7⁃WT T 细胞相比,CCR7⁃KO T 细胞在 dCLN 中的引流显著减少。流式细胞荧光分选技术(fluores⁃ cence activated cell sorting,FACS)分析CCR7启动子下表达 GFP 的小鼠脑膜T细胞,发现约40%的脑膜 CD4+ T细胞表达CCR7。该小鼠脑膜免疫染色显示 CCR7+ T细胞主要与表达CCL21的淋巴内皮细胞密切相关。由此可见,T 细胞将沿 MLV 最终进入 dCLN,从而离开脑膜,此过程依赖 CCR7⁃CCL21 途径。但MLV对免疫细胞的具体迁移机制尚待进一步确认。另外,MLV对T细胞等免疫细胞的激活是否存在影响及其途径也值得深入探究。

  • 3 脑膜免疫与中枢神经系统

  • 3.1 脑膜:有效的免疫屏障

  • 脑膜作为中枢神经系统的“守门员”,不仅参与大脑的基本运转,在免疫监视中也具有举足轻重的作用,能够有效阻止病原体进入脑实质[5]。Van Hove等[19] 通过解剖脑边缘区域以及RNA测序和高维细胞计数法,证实了脑膜在生理状态下以巨噬细胞为代表的多样性与动态变化,并发现相比其他中枢神经系统免疫屏障,脑膜相关DC、T细胞、B细胞、NK细胞等免疫细胞的数量更为庞大。由此可见,脑膜免疫对中枢神经系统的免疫调控具有重要作用。

  • 3.2 脑膜免疫相关细胞因子

  • 细胞因子是免疫细胞产生的最重要的信使分子,通过自分泌或旁分泌机制调节许多生物功能。多项研究表明,脑膜免疫可以通过分泌神经调节细胞因子控制神经信号,进而影响机体行为和认知[10]。除免疫细胞释放的炎症因子产生炎症环境增加中枢神经系统灰质的脱髓鞘和神经退行性疾病风险之外,也有研究发现脑膜免疫细胞来源的某些细胞因子可促进学习和记忆行为,证实了脑膜免疫相关细胞因子对中枢神经系统功能存在正反两面的影响[20]

  • 研究表明脑膜T细胞分泌的白细胞介素(inter⁃ leukin,IL)⁃4 在认知功能方面发挥重要作用[21]。例如,IL⁃4缺失的小鼠表现出学习障碍,通过腹腔注射富含 IL⁃4 的 T 细胞可逆转上述病理。现已明确 CD4+ αβT细胞可释放IL⁃4和IL⁃13,拮抗促炎细胞因子对AC的有害作用,促进AC表达脑源性神经营养因子(brain⁃derived neurotrophic factor,BDNF)、胰岛素样生长因子(insulin like growth factor,IGF)⁃1和转化生长因子(transforming growth factor,TGF)⁃β等,从而影响神经元活性[21]。在稳态条件下,CD4+ γδ T 细胞是脑膜中 IL⁃17 的主要来源,它们通过增加海马神经元的谷氨酸突触可塑性来促进小鼠的短期记忆[22]。此外,Filiano 等[23] 发现健康脑膜中T细胞倾向于产生大量γ干扰素(interferon γ,IFN⁃γ),缺乏 IFN⁃γ的小鼠表现出社交缺陷。大脑抑制性神经元直接对脑膜T细胞分泌的IFN⁃γ产生应答,引起γ⁃氨基丁酸能神经元传递增强,参与小鼠社交行为[23]

  • 最近的文献也证明了其他细胞因子信号对神经元的作用。研究发现小鼠脑膜γδ T细胞表达趋化因子受体 6(chemokine receptor 6,CCR6)及 IL⁃17a,后者调控小鼠焦虑样行为,有利于群居共生[24]。Shi 等[25] 通过单细胞RNA测序和流式细胞技术,发现小鼠中风后 1~5 周内调节性 T 细胞开始浸润大脑,并通过其衍生的骨桥蛋白(osteopontin,OPN)增强小胶质细胞的修复活性,促进少突胶质细胞的再生以及白质的修复,并分泌 IL⁃2 免疫复合体,有助于维护白质以及中枢神经系统的功能,从而证实脑膜调节性T细胞来源的细胞因子有助于维护脑稳态。MC 分泌的细胞因子也被证明参与大脑免疫,其分泌的 IL⁃6、IL⁃1β、TNF⁃α等细胞因子参与了神经再生以及脑膜固有细胞的免疫行为[22]。Chikahisa 等[26] 通过研究MC缺陷的小鼠模型,发现MC释放的组胺促进觉醒,参与调节昼夜节律。

  • 以上研究表明,学习、记忆、空间认知以及社交行为等中枢神经系统功能的维持依赖正常免疫相关细胞因子水平维持的脑膜免疫稳态。而疾病状态下这种稳态的破坏是各种脑功能行为异常的重要原因。未来,更多的脑膜免疫相关细胞因子和它们所产生的效应及具体机制都值得深入探究。

  • 3.3 脑膜介导中枢与外周免疫信息交互

  • 脑膜作为维护中枢神经系统免疫稳态的重要屏障,在免疫监视大脑内部稳态的同时,还参与介导中枢与外周免疫信息的交互,通过外周免疫细胞的迁移或感知外周免疫信息等途径维护大脑稳态。

  • 近年来,越来越多的研究发现胃肠道与中枢神经系统之间存在特殊的联系,彼此双向影响,此系统被命名为“脑⁃肠轴”[27]。Fitzpatrick等[28] 发现在生理状态下的小鼠和人脑膜中有一种 IgA 分泌型浆细胞,其毗邻硬脑膜静脉窦,并被证明来源于肠道,这种肠道来源的浆细胞有助于维护静脉窦稳态,证实了来自外周的免疫细胞影响脑膜的体液免疫。 Benakis等[29] 通过建立小鼠脑卒中模型,发现脑卒中后调节性T细胞会从肠道迁移至软脑膜,并且大脑神经保护依赖于肠道相关的IL⁃10和IL⁃17,证明外周免疫细胞也参与脑膜的细胞免疫过程。另外,肠道微生物群的代谢产物及病原体相关分子模式也被证明对脑膜免疫细胞存在影响[30]。研究还发现,将帕金森病患者的肠道微生物群移植入α突触核蛋白转基因鼠,加剧了该类小鼠神经变性进程,这可能与肠道微生物群衍生的短链脂肪酸相关[31]。脑⁃肠轴作为大脑与外周免疫系统信息交互的一种渠道,值得进一步深入探究。

  • 脑膜作为脑内免疫细胞的驻留场所,通过解剖结构和其免疫细胞及细胞因子发挥脑内抗原和代谢物清除的作用,由此实现脑内的免疫监视作用 (图1)。而在脑膜维护大脑免疫稳态的过程中,是否存在其他外周途径影响其免疫行为也同样值得探索。

  • 4 脑膜免疫与中枢神经系统疾病

  • 4.1 多发性硬化症(multiple sclerosis,MS)

  • MS作为最常见的慢性中枢神经系统炎症性脱髓鞘疾病,多发于年轻女性,部分患者可能出现认知功能障碍,且症状随时间推移逐渐加重[32]。Choi 等[33] 通过免疫组化分析 MS 患者死后的脑组织,发现随着脑膜炎症细胞的浸润,脱髓鞘现象更为广泛,大脑灰质的轴突丢失也随之发生,脑膜炎症的严重性与 MS 病情严重程度和死亡率呈正相关。 Lucchinetti 等[34] 通过活体脑组织成像技术,发现脑膜炎症常常发生在 MS 早期,甚至可能早于白质病变的出现。在MS病程中,大脑活性T细胞入侵中枢神经系统,诱导自我损伤性炎症反应发生,T细胞浸润最早在脑膜中被观察到,早于脑实质浸润以及临床症状的出现,而在CSF中也发现了T细胞浸润[35]。由此可见,脑膜炎症与MS的发病和进展紧密相关。

  • 图1 脑膜结构和免疫功能相关示意图

  • Figure1 Structure and immune function of meninges

  • 由于 MS 患者标本不易获取,最理想的研究模型是EAE模型鼠,目前主要通过自身反应性T细胞过继转移诱导被动性EAE模型鼠,或通过髓磷脂抗原免疫注射诱导主动性 EAE 模型鼠[5]。有研究在 EAE鼠的病理过程中观察到,有活性的T细胞进入脑实质,而无活性的T细胞则进入CSF,经过软脑膜的筛选,T细胞得以接触抗原,引起脑组织损伤,诱导MS的病理过程[36]。Furtado等[37] 发现,在EAE病理进程中,T细胞活化最早发生在颈淋巴结,手术切除颈淋巴结可以改善EAE的病理情况,进一步证实了EAE的发生与脑膜T细胞活化相关。Louveau 等[18]研究表明,在EAE 活跃期,脑膜中CD4+ T 细胞的浸润数量高于脑实质,破坏MLV有助于延缓EAE的病理进程,改善EAE模型鼠的症状。以上发现不仅佐证了在中枢神经系统炎症过程中脑内浸润的T细胞从MLV引流入dCLN这一免疫活化途经,也为临床治疗MS提供了新的思路。

  • 除T细胞外,MC也被认为参与了EAE的进程。文献报道称,位于硬脑膜和软脑膜的 MC通过释放 TNF⁃α诱发嗜中性粒细胞进入脑膜,加剧中枢神经系统的炎症细胞浸润,使EAE 病情恶化。并且,脑膜中MC的活化以及其相关嗜中性粒细胞浸润被认为发生在EAE 早期,甚至早于临床症状的出现,于是研究者猜测,此过程可能损害了BBB,导致大量免疫细胞浸润中枢神经系统,从而引发炎症反应[38]。 Russi等[38] 通过对比野生型小鼠和遗传性MC缺乏小鼠,发现后者的脑膜不会出现自身反应性T细胞聚集的现象,证明MC具有招募T细胞在脑膜聚集的功能,不仅如此,MC似乎还会增强自身反应性T细胞的免疫应答。

  • 由此可见,脑膜和其免疫细胞及细胞因子在MS 的发病和进程中发挥有效的屏障作用,可作为疾病干预的有效靶点。

  • 4.2 神经退行性疾病

  • 许多与年龄相关的神经退行性疾病的发生和发展与脑内代谢废物的积聚有关。MLV具有清除脑内代谢物、引流免疫细胞以及吞噬细胞的功能,对治疗这些疾病有积极价值。

  • AD是一种最常见的以认知功能障碍为特征的神经退行性疾病,目前认为其神经病理改变包括记忆相关脑区Aβ沉积导致氨基酸肽结构的变化从而形成胞外原纤维、Tau 蛋白过度磷酸化所致的神经原纤维缠结、神经元与突触丢失等[39-40]。有研究者认为慢性神经炎症抑制了神经元功能,导致上述相关病理变化[41]。而神经炎症发生的中心——脑膜,被认为是AD病理变化的重要因素,脑膜受损,脑膜相关免疫细胞群受到刺激慢性活化,周围免疫细胞在BBB中聚集,导致炎症和神经毒性因子释放,结合血管旁CSF和ISF内大分子引流与物质交换减慢,从而导致一系列功能和认知损害[3942]。研究发现通过破坏转基因鼠的MLV,发现其脑膜内Aβ沉积增加,而增强老龄AD模型小鼠的MLV功能可以改善其认知功能障碍,证明了AD病理变化与脑膜转运功能降低相关[42]。Da Mesquita 等[43] 通过阻断 AD 小鼠的 MLV,也发现 Aβ沉积和小胶质细胞的炎症应答等AD病理改变加剧,抗Aβ被动免疫疗法疗效减弱。

  • 在脑膜相关固有免疫细胞方面,鉴于固有小胶质细胞与单核巨噬细胞均可吞噬、消化Aβ,而炎症时调控单核巨噬细胞进入脑内的趋化因子受体 CCR2 缺乏可降低下游小胶质细胞聚集,清除代谢物功能减弱,进而增加Aβ沉积,由此可推测通过调控上游趋化因子来募集小胶质细胞,促进其脑内聚集有助于延缓AD病理进程,可成为治疗AD的新思路[44]。除了借助脑膜免疫渠道治疗 AD,昼夜节律以及脑膜与外周的信息交互等角度也有助于探索 AD治疗的新策略,Oxana等[45] 通过对比清醒与睡眠期的小鼠,发现生理性睡眠过程增强MLV清除脑内代谢物的功能,另外,睡眠中应用光生物调节法 (photobiomodulation,PBM)可以显著增加 Aβ清除率,对AD起到治疗作用。

  • 由此可见,在临床治疗AD的过程中,基础免疫治疗辅以改善MLV功能的疗法也许能够获得更好的疗效。

  • 4.3 脑卒中

  • 脑卒中可被分为两类:血管破裂引起的出血性脑卒中[如蛛网膜下腔出血(subarachnoid hemor⁃ rhage,SAH)、脑实质出血(intracerebral hemorrhage, ICH)等[46] ]和血管阻塞引起的缺血性脑卒中[47]。尽管脑卒中主要造成脑实质损害,但脑膜的细胞活化和免疫应答往往早于脑实质损伤[29]

  • 在小鼠急性SAH模型中,dCLN引流减少,脑组织和脑膜中大分子和免疫细胞异常聚集,提示SAH 可损害或阻碍MLV的功能,从而可能导致并加重疾病[48]。SAH发生后,纤维蛋白原和纤维蛋白在血管周围间隙沉积,导致胶质淋巴系统的功能失调,出入脑内的CSF和ISF流量均显著下降,从而引起血管炎、广泛微梗死和神经炎症[49]。通过阻断SAH小鼠模型的 MLV,观察到引流至dCLN的红细胞显著减少,随之 SAH引发的神经炎症及神经损害程度显著升高,提示 SAH后MLV清除外渗红细胞的能力减弱,增加此清除功能可能有助于减轻SAH引发的脑部损害[48]

  • 缺血性脑卒中时,BBB 的破坏会导致白细胞,尤其是中性粒细胞和巨噬细胞在脑实质内和 MLV 中聚集[50]。大脑产生的抗原(微管相关蛋白2和髓鞘碱性蛋白)在淋巴结巨噬细胞中富集,这些抗原可激活抗原递呈细胞DC;脑脊液通过脑膜将抗原、 T 细胞和其他免疫细胞引流到dCLN[51]。DC通过上调趋化因子受体 CCR7,与 MLV 表达的配体CCL21 结合,迁移到dCLN。研究表明,短暂性大脑中动脉闭塞(transient middle cerebral artery occlusion,tMCAO) 诱发卒中后,结扎 dCLN 可增加脑水肿和梗死面积[52]。缺血性脑卒中发生后,T细胞可通过BBB、CP 和脑膜3个途径浸润脑实质[53]。基于“脑⁃肠轴”理论,有研究发现效应T细胞在缺血后首先从肠道进入软脑膜,通过分泌IL⁃17加剧炎性反应,导致脑实质的趋化因子数量增多,从而引起包括中性粒细胞、单核细胞在内的细胞毒性免疫细胞群的MLV内浸润[53]。另外,有学者发现,在缺血早期,脑膜中IL⁃ 17+ γδ T细胞数量明显增多,甚至早于其在缺血区的聚集,这可能与脑损伤相关趋化因子基因 CXCL1/ CXCL2的上调有关[54]。通过阻断内皮细胞VEGFR3 的表达,缺血区附近的淋巴结所释放的趋化因子及细胞因子减少,促炎性巨噬细胞的增殖被抑制,从而有效缩小脑梗死区的面积[55]。即脑膜在缺血性脑卒中炎症发生中起到守卫关卡的作用。

  • 此外,多项研究表明,颅内压增高可通过诱导血管闭塞、降低脑血管搏动等途径抑制胶质淋巴系统循环,可能引起dCLN引流受损和MLV功能障碍[56]。由此可见,靶向MLV的清除功能及其特定的免疫细胞可以改善各类脑卒中的病程及预后,成为疾病干预的潜在靶点。

  • 4.4 肿瘤

  • 脑膜的原发性恶性肿瘤极为罕见,最常见的是继发性脑膜癌。原发性中枢神经系统肿瘤,包括儿童的髓母细胞瘤和室管膜瘤,以及成人的多形性胶质母细胞瘤等,通常转移到脑膜。脑膜可能成为脑肿瘤发生、转移的渠道。胶质母细胞瘤是一种恶性原发性脑肿瘤,平均总生存期<15个月,临床报道表明复发性胶质母细胞瘤可通过颈部淋巴结转移[57]。此外,动物实验表明,在患有胶质瘤的小鼠中,由 MLV 排出的 CSF 显著减少[58]。注射胶质瘤和黑素瘤细胞的小鼠背侧MLV的直径和密度明显增加,提示脑瘤可促进MLV生成。同时,MLV是DC等免疫细胞向dCLN迁移和建立对脑肿瘤免疫应答的主要途径[59]。Visudyne介导的MLV消融削弱了抗PD ⁃1/ CTLA4免疫治疗的疗效,而肿瘤细胞中过表达的血管内皮细胞生长因子⁃C(vascular endothelial growth factor⁃C,VEGF⁃C)则以 CCL21/CCR7 信号依赖的方式发挥相反的作用,VEGF⁃C 诱导 MLV 生成,导致抗肿瘤环境的产生,促进 T 细胞的浸润、启动和招募[59]。由此可见,MLV通过运输不同的免疫组分在肿瘤脑内外转移的过程中发挥复杂的作用。根据不同的抗肿瘤原理结合MLV的调控可以起到更好的抗肿瘤作用。

  • 4.5 脑膜与其他中枢神经系统疾病

  • 随着科学研究的深入,其他中枢神经系统疾病的病理机制与脑膜的联系正在被逐渐挖掘。通过观察小鼠神经元,发现来源于硬脑膜的γδ17 T 细胞通过 IL⁃17 途径调控焦虑样表现,这为临床探索焦虑症的病理机制与治疗方向提供了思路[24]。另外,有学者通过脂多糖(lipopolysaccharide,LPS)诱导幼龄小鼠炎性反应,证明早期炎性反应通过影响小胶质细胞的吞噬功能,引起成年抑郁样表现[60]。考虑脑膜与免疫细胞及炎性反应之间的关联,脑膜免疫与抑郁症发病机制之间的关联值得深入挖掘。除了焦虑症和抑郁症,其他中枢神经系统相关疾病的发病机制与脑膜免疫之间的联系都具有潜在的探索价值,如癫痫、强迫症等。未来,在继续探索脑膜与MS、AD等疾病的联系和具体机制的同时,也应拓宽思路,进一步挖掘脑膜免疫与其他中枢神经系统疾病之间的联系。

  • 总之,结构完整和清除功能顺畅的脑膜淋巴系统是维持脑健康和内环境稳态的基础,睡眠、呼吸等多种生理作用参与调控这一过程。在疾病状态下,BBB破坏,MLV清除代谢物的速率减弱,同时可能沦为中枢抗原堆积的场所,甚至作为肿瘤转移的直接途径,由此导致大量的免疫细胞和促炎因子在脑膜淋巴系统和脑实质内积聚,加剧了原有的病变(图2)。因此,积极探索靶向MLV和免疫功能调控的有效干预手段,将为治疗包括衰老和卒中在内的多种中枢神经系统疾病带来新的希望。

  • 5 脑膜免疫相关的研究手段与干预措施

  • 5.1 脑膜免疫相关功能的研究手段

  • 在动物研究中可以通过各种荧光或放射性标志物的注射和dCLN结扎手术显示并量化脑膜淋巴转运系统,甚至评估脑膜免疫功能,结合单细胞 RNA 测序和空间转录组学来明确在疾病和衰老过程中 MLV 内免疫细胞类型和相关细胞因子的改变。同时可以结合一些针对MLV或者特定免疫细胞操控的转基因小鼠来进一步验证上述结果,并发现疾病相关的脑膜免疫靶标甚至评估治疗效果。

  • 例如,通过枕大池或皮层内注射标志物,在小鼠、大鼠、猫等实验动物的中枢神经系统内进行流体动力学研究,提供了脑脊液和溶质的流动和扩散证据[61]。应用光学相干断层扫描技术(optical coher⁃ ence tomography,OCT)结合异硫氰酸荧光素(fluo⁃rescein isothiocyanate,FITC)⁃葡聚糖外渗对声音诱导BBB打开后的MLV进行成像,通过观察脑实质周围的血管,可以揭示MLV的血管周围空间[62]。另有研究在枕大池注射结合羧酸修饰的荧光球,激光转换标记内源性脑膜T细胞,使用Visudyne消融MLV 或鼻部淋巴管的方法,证明MLV可协助脑脊液成分如T细胞引流入dCLN[18]。此外,单细胞RNA测序和空间转录组学研究SAH后MLV的细胞、分子和空间模式的改变,证明SAH诱导MLV损伤[63]。另有研究发现,包括MLV在内的多个部位淋巴管缺陷的K14⁃ VEGFR⁃3⁃Ig转基因小鼠脑内浸润的CD4+ T淋巴细胞显著减少[64]。也有学者使用存在严重MC缺陷的 c⁃kit突变小鼠模型(即WBB6F1⁃KitW/W⁃v小鼠)发现脑膜MC可以在卒中的关键特征中起重要作用[65]

  • 图2 疾病状态下MLV的结构和免疫功能发生改变

  • Figure2 Struchural and immunological changes of MLV in disease state

  • 尽管研究在啮齿类动物中已取得一定进展,但在人类中的研究证据非常有限。一些影像学方法,如使用鞘内造影剂进行增强MRI,已在人类中重复了先前在动物模型中的发现。这些研究可能有助于开发胶质淋巴功能的生物成像标志物。然而,鞘内给药会伴随一些风险,包括钆诱发的脑病和感觉不适。另一个问题是钆造影剂不能穿越BBB,因此需要破坏BBB以使示踪剂进入动脉旁间隙[61]。OCT 对BBB打开后的MLV进行成像可能为无创分析提供新的有用策略[62]。此外,有颅内手术需要的患者可通过结合脑膜活检和单细胞测序等方法,评估脑膜免疫与不同疾病的相关性。

  • 5.2 针对MLV功能的潜在有效干预手段

  • 研究表明,多种生理性和药物干预措施对脑膜淋巴转运功能具有潜在的有效性。例如,睡眠对脑膜淋巴功能具有积极影响,特别是在非快速眼动 (non⁃rapid eye movement,NREM)睡眠期间,脑脊液的胶质淋巴管流动增强[66]。呼吸也可对脑脊液在大脑中的流动产生积极影响,持续气道正压通气 (continuous positive airway pressure,CPAP)增加了颅底脑脊液的流动速度,增强了局部的胶质淋巴运输[67]。此外,一些药物干预也在动物实验中取得了进展,如使用促进外周淋巴管增殖的酮洛芬、9⁃顺式维甲酸(retinoic acid,RA)和VEGF⁃C,通过维持脑膜淋巴壁完整性、促进淋巴管增殖,改善脑膜淋巴功能,从而促进脑脊液引流和脑水肿吸收,降低神经系统的免疫反应,改善预后[68]。在老年小鼠中,使用VEGF⁃C安全地增加了MLV的直径,加强了脑膜淋巴引流,改善了脑灌注、学习和记忆[69]。MLV 转运障碍通过增加炎性介质聚积,活化海马区小胶质细胞,加重小鼠的认知功能障碍[70]。此外,使用 VEGF⁃C的治疗还提高了免疫检查点抑制剂的有效性,突显了MLV在调节脑肿瘤免疫中的重要性。在一些疾病情况下,如脑出血损伤,使用VEGF⁃C的治疗通过促进淋巴管生成来帮助修复损伤,进而改善组织学和功能结果[69]

  • 需要指出的是,这些潜在干预手段在动物模型中已经取得了一定成功,但在人类应用方面还需要进一步研究和临床实验来验证其安全性和有效性。总之,研究脑膜免疫以及相关的干预措施是一个重要的领域,可以深入了解神经系统疾病的发病机制,寻找新的治疗方法,提高患者的生活质量。

  • 6 亟待阐明的问题

  • 虽然针对脑膜免疫的研究取得了诸多进展,各类中枢神经系统疾病相关脑膜免疫变化见表1,但还是存在一些问题亟待解决,例如,在人类 MRI 研究中,脑脊液经筛板/鼻道的引流目前尚无证据。人体中的两个发现与大鼠和小鼠明显不同:①人类背侧MLV排出了大部分 CSF及其溶质,而在MRI上尚未发现任何CSF⁃淋巴管通过筛板排出的证据;②淋巴管内与上矢状窦内液体相互逆向流动,也就是说,静脉窦的流动是由前向后的,而背侧MLV的流动则是由后向前的,与静脉的流动方向相反[7]。再者,目前已经明确麻醉(以异氟醚为例)阻断了 ISF 外排,从而阻断了CSF⁃淋巴管流出[7],而麻醉药在动物实验中广泛应用,要充分考虑各种麻醉药物对胶质淋巴引流的影响。因此,在使用小鼠实验试图解释 MLV 功能且外推至人类时,应考虑物种间的差异。由此可见,基于人体的研究相对小鼠会更有指导意义,探索一种无创、有效、标准化的临床影像学检查来评估胶质淋巴系统功能势在必行。

  • 7 总结与展望

  • 脑膜免疫作为一个新兴神经科学领域,打破了人们对大脑固有的“免疫赦免”观念,将胶质淋巴系统、MLV以及BBB等结构联系起来,使人们对中枢神经系统的认知更加完整和深入。现已初步明确,脑膜承担着中枢与外周免疫信息的桥接作用,其通过调控大脑免疫细胞群及细胞因子的水平,参与维持生理状态下脑的功能和免疫稳态,其失调参与病理状态下神经系统的疾病进程。神经科学界和免疫学界后续需要进行更多的研究以阐明此领域的更多细节,如生理状态下,脑膜免疫在婴幼儿发育中的时序变化,其与脑发育相关疾病的具体关系; 脑膜及其免疫细胞群及细胞因子相关蛋白和分子信号是否存在差异及与年龄的相关性,脑膜调控大脑以及外周的具体信号通路等科学问题的阐明有助于进一步完善脑膜免疫参与大脑稳态的机制,为我们理解中枢神经系统疾病的发病机制提供更充分的理论依据,为包括神经退行性疾病在内的多种中枢神经系统疾病的早期诊断、临床干预和预后判断提供新的思路。

  • 表1 各类中枢神经系统疾病相关脑膜免疫变化

  • Table1 Immune changes in the meninges associated with various central nervous system disorders

  • MS:multiple sclerosis;AD:Alzheimer’s disease;MLV:meningeal lymphatic vessel;DC:dendritic cell;APC:antigen⁃presenting cell.

  • 参考文献

    • [1] DASGUPTA K,JEONG J.Developmental biology of the meninges[J].Genesis,2019,57(5):e23288

    • [2] AHN J H,CHO H,KIM J H,et al.Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid[J].Na⁃ ture,2019,572(7767):62-66

    • [3] MØLLGÅRD K,BEINLICH F R M,KUSK P,et al.A me⁃ sothelium divides the subarachnoid space into functional compartments[J].Science,2023,379(6627):84-88

    • [4] YANG T,GUO R M,ZHANG F.Brain perivascular macro⁃ phages:recent advances and implications in health and diseases[J].CNS Neurosci Ther,2019,25(12):1318-1328

    • [5] RUA R,MCGAVERN D B.Advances in meningeal immu⁃ nity[J].Trends Mol Med,2018,24(6):542-559

    • [6] RANSOHOFF R M,ENGELHARDT B.The anatomical and cellular basis of immune surveillance in the central nervous system[J].Nat Rev Immunol,2012,12(9):623-635

    • [7] LEE D S,SUH M,SARKER A,et al.Brain glymphatic/lymphatic imaging by MRI and PET[J].Nucl Med Mol Imaging,2020,54(5):207-223

    • [8] ILIFF J J,WANG M H,LIAO Y H,et al.A paravascular pathway facilitates CSF flow through the brain parenchy⁃ ma and the clearance of interstitial solutes,including amy⁃ loid Β[J].Sci Transl Med,2012,4(147):147ra111

    • [9] SILVA I,SILVA J,FERREIRA R,et al.Glymphatic sys⁃ tem,AQP4,and their implications in Alzheimer’s disease [J].Neurol Res Pract,2021,3(1):5

    • [10] ALVES DE LIMA K,RUSTENHOVEN J,KIPNIS J.Men⁃ ingeal immunity and its function in maintenance of the central nervous system in health and disease[J].Annu Rev Immunol,2020,38:597-620

    • [11] LOUVEAU A,SMIRNOV I,KEYES T J,et al.Structural and functional features of central nervous system lymphatic vessels[J].Nature,2015,523(7560):337-341

    • [12] ASPELUND A,ANTILA S,PROULX S T,et al.A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules[J].J Exp Med,2015,212(7):991-999

    • [13] NAGRA G,JOHNSTON M G.Impact of ageing on lym⁃ phatic cerebrospinal fluid absorption in the rat[J].Neuro⁃ pathology Appl Neurobio,2007,33(6):684-691

    • [14] KWON S,MORENO ⁃GONZALEZ I,TAYLOR ⁃ PRESSE K,et al.Impaired peripheral lymphatic function and cere⁃ brospinal fluid outflow in a mouse model of Alzheimer’s disease[J].J Alzheimers Dis,2019,69(2):585-593

    • [15] KIVISÄKK P,MAHAD D J,CALLAHAN M K,et al.Human cerebrospinal fluid central memory CD4+ T cells:evidence for trafficking through choroid plexus and meninges via P ⁃ selectin[J].Proc Natl Acad Sci USA,2003,100(14):8389-8394

    • [16] ELLWARDT E,WALSH J T,KIPNIS J,et al.Understand⁃ ing the role of T cells in CNS homeostasis[J].Trends Im⁃ munol,2016,37(2):154-165

    • [17] FILIANO A J,GADANI S P,KIPNIS J.How and why do T cells and their derived cytokines affect the injured and healthy brain?[J].Nat Rev Neurosci,2017,18(6):375-384

    • [18] LOUVEAU A,HERZ J,ALME M N,et al.CNS lymphatic drainage and neuroinflammation are regulated by menin⁃ geal lymphatic vasculature[J].Nat Neurosci,2018,21(10):1380-1391

    • [19] VAN HOVE H,MARTENS L,SCHEYLTJENS I,et al.A single ⁃ cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment[J].Nat Neurosci,2019,22(6):1021-1035

    • [20] MA T Y,WANG F S,XU S J,et al.Meningeal immunity:structure,function and a potential therapeutic target of neurodegenerative diseases[J].Brain Behav Immun,2021,93:264-276

    • [21] DERECKI N C,CARDANI A N,YANG C H,et al.Regu⁃ lation of learning and memory by meningeal immunity:a key role for IL ⁃4[J].J Exp Med,2010,207(5):1067-1080

    • [22] HENDRIKSEN E,VAN BERGEIJK D,OOSTING R S,et al.Mast cells in neuroinflammation and brain disorders [J].Neurosci Biobehav Rev,2017,79:119-133

    • [23] FILIANO A J,XU Y,TUSTISON N J,et al.Unexpected role of interferon ⁃ γ in regulating neuronal connectivity and social behaviour[J].Nature,2016,535(7612):425-429

    • [24] ALVES DE L K,RUSTENHOVEN J,DA MESQUITA S,et al.Meningeal γδ T cells regulate anxiety⁃like behavior via IL⁃17a signaling in neurons[J].Nat Immunol,2020,21(11):1421-1429

    • [25] SHI L G,SUN Z Y,SU W,et al.Treg cell⁃derived osteo⁃ pontin promotes microglia ⁃ mediated white matter repair after ischemic stroke[J].Immunity,2021,54(7):1527-1542

    • [26] CHIKAHISA S,KODAMA T,SOYA A,et al.Histamine from brain resident MAST cells promotes wakefulness and modulates behavioral states[J].PLoS One,2013,8(10):e78434

    • [27] SOCAŁA K,DOBOSZEWSKA U,SZOPA A,et al.The role of microbiota ⁃gut ⁃brain axis in neuropsychiatric and neurological disorders[J].Pharmacol Res,2021,172:105840

    • [28] FITZPATRICK Z,FRAZER G,FERRO A,et al.Gut⁃edu⁃ cated IgA plasma cells defend the meningeal venous si⁃ nuses[J].Nature,2020,587(7834):472-476

    • [29] BENAKIS C,BREA D,CABALLERO S,et al.Commen⁃ sal microbiota affects ischemic stroke outcome by regulat⁃ ing intestinal γδ T cells[J].Nat Med,2016,22(5):516-523

    • [30] DI MARCO BARROS R,FITZPATRICK Z,CLATWOR⁃ THY M R.The gut ⁃ meningeal immune axis:priming brain defense against the most likely invaders[J].J Exp Med,2022,219(3):e20211520

    • [31] SAMPSON T R,DEBELIUS J W,THRON T,et al.Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease[J].Cell,2016,167(6):1469-1480

    • [32] HAUSER S L,OKSENBERG J R.The neurobiology of multiple sclerosis:genes,inflammation,and neurodegen⁃ eration[J].Neuron,2006,52(1):61-76

    • [33] CHOI S R,HOWELL O W,CARASSITI D,et al.Menin⁃ geal inflammation plays a role in the pathology of primary progressive multiple sclerosis[J].Brain,2012,135(10):2925-2937

    • [34] LUCCHINETTI C F,POPESCU B F G,BUNYAN R F,et al.Inflammatory cortical demyelination in early multiple sclerosis[J].N Engl J Med,2011,365(23):2188-2197

    • [35] KWONG B,RUA R,GAO Y Y,et al.T ⁃ bet ⁃ dependent NKp46+ innate lymphoid cells regulate the onset of TH17⁃ induced neuroinflammation[J].Nat Immunol,2017,18(10):1117-1127

    • [36] SCHLÄGER C,KÖRNER H,KRUEGER M,et al.Effec⁃ tor T ⁃ cell trafficking between the leptomeninges and the cerebrospinal fluid[J].Nature,2016,530(7590):349-353

    • [37] FURTADO G C,MARCONDES M C G,LATKOWSKI J A,et al.Swift entry of myelin⁃specific T lymphocytes into the central nervous system in spontaneous autoimmune encephalomyelitis[J].J Immunol,2008,181(7):4648-4655

    • [38] RUSSI A E,BROWN M A.The meninges:new therapeu⁃ tic targets for multiple sclerosis[J].Transl Res,2015,165(2):255-269

    • [39] BURGALETTO C,MUNAFÒ A,BENEDETTO G,et al.The immune system on the TRAIL of Alzheimer’s disease [J].J Neuroinflammation,2020,17(1):1-11

    • [40] BOON B D C,BULK M,JONKER A J,et al.The coarse⁃ grained plaque:a divergent Aβ plaque⁃type in early⁃onset Alzheimer’s disease[J].Acta Neuropathol,2020,140(6):811-830

    • [41] CHEN W W,ZHANG X,HUANG W J.Role of neuroin⁃ flammation in neurodegenerative diseases(review)[J].Mol Med Rep,2016,13(4):3391-3396

    • [42] DA MESQUITA S,LOUVEAU A,VACCARI A,et al.Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease[J].Nature,2018,560(7717):185-191

    • [43] DA MESQUITA S,PAPADOPOULOS Z,DYKSTRA T,et al.Meningeal lymphatics affect microglia responses and anti ⁃Aβ immunotherapy[J].Nature,2021,593(7858):255-260

    • [44] EL KHOURY J,LUSTER A D.Mechanisms of microglia accumulation in Alzheimer’s disease:therapeutic impli⁃ cations[J].Trends Pharmacol Sci,2008,29(12):626-632

    • [45] OXANA S G,ALEXANDER S,INNA B,et al.Mecha⁃ nisms of phototherapy of Alzheimer’s disease during sleep and walcefulness:the role of meningeal lymphatics [J].Front Optcelectron,2023,16(1):22

    • [46] LI X A,CHEN G.CNS⁃peripheral immune interactions in hemorrhagic stroke[J].J Cereb Blood Flow Metab,2023,43(2):185-197

    • [47] DIENER H C,HANKEY G J.Primary and secondary pre⁃ vention of ischemic stroke and cerebral hemorrhage:JACC focus seminar[J].J Am Coll Cardiol,2020,75(15):1804-1818

    • [48] CHEN J M,WANG L M,XU H,et al.Meningeal lymphat⁃ ics clear erythrocytes that arise from subarachnoid hemor⁃ rhage[J].Nat Commun,2020,11(1):3159

    • [49] LV T,ZHAO B,HU Q,et al.The glymphatic system:a novel therapeutic target for stroke treatment[J].Front Aging Neurosci,2021,13:689098

    • [50] PETROVIC ⁃ DJERGOVIC D,GOONEWARDENA S N,PINSKY D J.Inflammatory disequilibrium in stroke[J].Circ Res,2016,119(1):142-158

    • [51] PERLA M,CARETTI V,MORO M A,et al.Role of the meningeal lymphatics in strock[J].stroke,2023,54(6):1670-1672

    • [52] SI J C,CHEN L B,XIA Z L.Effects of cervical⁃lymphatic blockade on brain edema and infarction volume in cerebral ischemic rats[J].Chin J Physiol,2006,49(5):258-265

    • [53] ZHANG D H,REN J X,LUO Y,et al.T cell response in ischemic stroke:from mechanisms to translational insights [J].Front Immunol,2021,12:707972

    • [54] BENAKIS C,LLOVERA G,LIESZ A.The meningeal and choroidal infiltration routes for leukocytes in stroke[J].Ther Adv Neurol Disord,2018,11:1756286418783708

    • [55] ESPOSITO E,AHN B J,SHI J F,et al.Brain⁃to⁃cervical lymph node signaling after stroke[J].Nat Commun,2019,10:5306

    • [56] XIANG T T,FENG D Y,ZHANG X J,et al.Effects of in⁃ creased intracranial pressure on cerebrospinal fluid in⁃ flux,cerebral vascular hemodynamic indexes,and cere⁃ brospinal fluid lymphatic efflux[J].J Cereb Blood Flow Metab,2022,42(12):2287-2302

    • [57] SUÁREZ⁃PIÑERA M,PUDIS M,VILARIÑO N,et al.Cer⁃ vical lymph node metastasis from recurrent glioblastoma detected by MRI and 2⁃[18F]FDG PET/CT[J].Clin Nucl Med,2023,48(3):118-120

    • [58] MA Q L,SCHLEGEL F,BACHMANN S B,et al.Lym⁃ phatic outflow of cerebrospinal fluid is reduced in glioma [J].Sci Rep,2019,9(1):14815

    • [59] LU H B,CAO Y,HU J Z,et al.The lymphatic system:a therapeutic target for central nervous system disorders [J].Neural Regen Res,2023,18(6):1249

    • [60] CAO P,CHEN C M,LIU A,et al.Early⁃life inflammation promotes depressive symptoms in adolescence via microg⁃ lial engulfment of dendritic spines[J].Neuron,2021,109(16):2573-2589

    • [61] BAH T M,SILER D A,IBRAHIM A H,et al.Fluid dy⁃ namics in aging ⁃ related dementias[J].Neurobiol Dis,2023,177:105986

    • [62] SEMYACHKINA⁃GLUSHKOVSKAYA O,ABDURASHI⁃ TOV A,DUBROVSKY A,et al.Application of optical co⁃ herence tomography for in vivo monitoring of the meninge⁃ al lymphatic vessels during opening of blood⁃brain barri⁃ er:mechanisms of brain clearing[J].JBO,2017,22(12):121719

    • [63] WANG X Y,ZHANG A K,YU Q,et al.Single⁃cell RNA sequencing and spatial transcriptomics reveal pathogene⁃ sis of meningeal lymphatic dysfunction after experimental subarachnoid hemorrhage[J].Adv Sci,2023,10(21):e2301428

    • [64] WOJCIECHOWSKI S,VIRENQUE A,VIHMA M,et al.Developmental dysfunction of the central nervous system lymphatics modulates the adaptive neuro ⁃ immune re⁃ sponse in the perilesional cortex in a mouse model of trau⁃ matic brain injury[J].Front Immunol,2021,11:559810

    • [65] ARAC A,GRIMBALDESTON M A,NEPOMUCENO A R B,et al.Evidence that meningeal mast cells can worsen stroke pathology in mice[J].Am J Pathol,2014,184(9):2493-2504

    • [66] NEDERGAARD M,GOLDMAN S A.Glymphatic failure as a final common pathway to dementia[J].Science,2020,370(6512):50-56

    • [67] OZTURK B,KOUNDAL S,AL BIZRI E,et al.Conti ⁃ nuous positive airway pressure increases CSF flow and glymphatic transport[J].JCI Insight,2023,8(12):e170270

    • [68] LIAO J W,ZHANG M C,SHI Z C,et al.Improving the function of meningeal lymphatic vessels to promote brain edema absorption after traumatic brain injury[J].J Neu⁃ rotrauma,2023,40(3/4):383-394

    • [69] LI G W,CAO Y,TANG X,et al.The meningeal lymphatic vessels and the glymphatic system:potential therapeutic targets in neurological disorders[J].J Cereb Blood Flow Metab,2022,42(8):1364-1382

    • [70] 谢雯,董洪权,侍崇龙,等.脑膜淋巴管转运功能障碍加重脂多糖诱导的小鼠中枢炎症[J].南京医科大学学报(自然科学版),2023,43(7):927-933

    • [71] ZHAO Q,CHENG W J,XI Y B,et al.IFN ⁃β regulates Th17 differentiation partly through the inhibition of osteo⁃ pontin in experimental autoimmune encephalomyelitis [J].Molecular Immunology,2018,93:20-30

    • [72] MANGALAM A K,LUCKEY D,GIRI S,et al.Two dis⁃ creet subsets of CD8 T cells modulate PLP(91⁃110)in⁃ duced experimental autoimmune encephalomyelitis in HLA ⁃ DR3 transgenic mice[J].J Autoimmun,2012,38(4):344-353

    • [73] BROWNE T C,MCQUILLAN K,MCMANUS R M,et al.IFN ⁃ gamma production by amyloid beta ⁃ specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer's disease[J].J Im⁃ munol,2013,190(5):2241-2251

    • [74] CAO C,ARENDASH G W,DICKSON A,et al.Abeta⁃spe⁃ cific Th2 cells provide cognitive and pathological benefits to Alzheimer’s mice without infiltrating the CNS[J].Neu⁃ robiol Dis,2009,34(1):63-70

    • [75] SONG E,MAO T,DONG H,et al.VEGF ⁃C ⁃driven lym⁃ phatic drainage enables immunosurveillance of brain tu⁃ mours[J].Nature,2020,577(7792):689-694

  • 参考文献

    • [1] DASGUPTA K,JEONG J.Developmental biology of the meninges[J].Genesis,2019,57(5):e23288

    • [2] AHN J H,CHO H,KIM J H,et al.Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid[J].Na⁃ ture,2019,572(7767):62-66

    • [3] MØLLGÅRD K,BEINLICH F R M,KUSK P,et al.A me⁃ sothelium divides the subarachnoid space into functional compartments[J].Science,2023,379(6627):84-88

    • [4] YANG T,GUO R M,ZHANG F.Brain perivascular macro⁃ phages:recent advances and implications in health and diseases[J].CNS Neurosci Ther,2019,25(12):1318-1328

    • [5] RUA R,MCGAVERN D B.Advances in meningeal immu⁃ nity[J].Trends Mol Med,2018,24(6):542-559

    • [6] RANSOHOFF R M,ENGELHARDT B.The anatomical and cellular basis of immune surveillance in the central nervous system[J].Nat Rev Immunol,2012,12(9):623-635

    • [7] LEE D S,SUH M,SARKER A,et al.Brain glymphatic/lymphatic imaging by MRI and PET[J].Nucl Med Mol Imaging,2020,54(5):207-223

    • [8] ILIFF J J,WANG M H,LIAO Y H,et al.A paravascular pathway facilitates CSF flow through the brain parenchy⁃ ma and the clearance of interstitial solutes,including amy⁃ loid Β[J].Sci Transl Med,2012,4(147):147ra111

    • [9] SILVA I,SILVA J,FERREIRA R,et al.Glymphatic sys⁃ tem,AQP4,and their implications in Alzheimer’s disease [J].Neurol Res Pract,2021,3(1):5

    • [10] ALVES DE LIMA K,RUSTENHOVEN J,KIPNIS J.Men⁃ ingeal immunity and its function in maintenance of the central nervous system in health and disease[J].Annu Rev Immunol,2020,38:597-620

    • [11] LOUVEAU A,SMIRNOV I,KEYES T J,et al.Structural and functional features of central nervous system lymphatic vessels[J].Nature,2015,523(7560):337-341

    • [12] ASPELUND A,ANTILA S,PROULX S T,et al.A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules[J].J Exp Med,2015,212(7):991-999

    • [13] NAGRA G,JOHNSTON M G.Impact of ageing on lym⁃ phatic cerebrospinal fluid absorption in the rat[J].Neuro⁃ pathology Appl Neurobio,2007,33(6):684-691

    • [14] KWON S,MORENO ⁃GONZALEZ I,TAYLOR ⁃ PRESSE K,et al.Impaired peripheral lymphatic function and cere⁃ brospinal fluid outflow in a mouse model of Alzheimer’s disease[J].J Alzheimers Dis,2019,69(2):585-593

    • [15] KIVISÄKK P,MAHAD D J,CALLAHAN M K,et al.Human cerebrospinal fluid central memory CD4+ T cells:evidence for trafficking through choroid plexus and meninges via P ⁃ selectin[J].Proc Natl Acad Sci USA,2003,100(14):8389-8394

    • [16] ELLWARDT E,WALSH J T,KIPNIS J,et al.Understand⁃ ing the role of T cells in CNS homeostasis[J].Trends Im⁃ munol,2016,37(2):154-165

    • [17] FILIANO A J,GADANI S P,KIPNIS J.How and why do T cells and their derived cytokines affect the injured and healthy brain?[J].Nat Rev Neurosci,2017,18(6):375-384

    • [18] LOUVEAU A,HERZ J,ALME M N,et al.CNS lymphatic drainage and neuroinflammation are regulated by menin⁃ geal lymphatic vasculature[J].Nat Neurosci,2018,21(10):1380-1391

    • [19] VAN HOVE H,MARTENS L,SCHEYLTJENS I,et al.A single ⁃ cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment[J].Nat Neurosci,2019,22(6):1021-1035

    • [20] MA T Y,WANG F S,XU S J,et al.Meningeal immunity:structure,function and a potential therapeutic target of neurodegenerative diseases[J].Brain Behav Immun,2021,93:264-276

    • [21] DERECKI N C,CARDANI A N,YANG C H,et al.Regu⁃ lation of learning and memory by meningeal immunity:a key role for IL ⁃4[J].J Exp Med,2010,207(5):1067-1080

    • [22] HENDRIKSEN E,VAN BERGEIJK D,OOSTING R S,et al.Mast cells in neuroinflammation and brain disorders [J].Neurosci Biobehav Rev,2017,79:119-133

    • [23] FILIANO A J,XU Y,TUSTISON N J,et al.Unexpected role of interferon ⁃ γ in regulating neuronal connectivity and social behaviour[J].Nature,2016,535(7612):425-429

    • [24] ALVES DE L K,RUSTENHOVEN J,DA MESQUITA S,et al.Meningeal γδ T cells regulate anxiety⁃like behavior via IL⁃17a signaling in neurons[J].Nat Immunol,2020,21(11):1421-1429

    • [25] SHI L G,SUN Z Y,SU W,et al.Treg cell⁃derived osteo⁃ pontin promotes microglia ⁃ mediated white matter repair after ischemic stroke[J].Immunity,2021,54(7):1527-1542

    • [26] CHIKAHISA S,KODAMA T,SOYA A,et al.Histamine from brain resident MAST cells promotes wakefulness and modulates behavioral states[J].PLoS One,2013,8(10):e78434

    • [27] SOCAŁA K,DOBOSZEWSKA U,SZOPA A,et al.The role of microbiota ⁃gut ⁃brain axis in neuropsychiatric and neurological disorders[J].Pharmacol Res,2021,172:105840

    • [28] FITZPATRICK Z,FRAZER G,FERRO A,et al.Gut⁃edu⁃ cated IgA plasma cells defend the meningeal venous si⁃ nuses[J].Nature,2020,587(7834):472-476

    • [29] BENAKIS C,BREA D,CABALLERO S,et al.Commen⁃ sal microbiota affects ischemic stroke outcome by regulat⁃ ing intestinal γδ T cells[J].Nat Med,2016,22(5):516-523

    • [30] DI MARCO BARROS R,FITZPATRICK Z,CLATWOR⁃ THY M R.The gut ⁃ meningeal immune axis:priming brain defense against the most likely invaders[J].J Exp Med,2022,219(3):e20211520

    • [31] SAMPSON T R,DEBELIUS J W,THRON T,et al.Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease[J].Cell,2016,167(6):1469-1480

    • [32] HAUSER S L,OKSENBERG J R.The neurobiology of multiple sclerosis:genes,inflammation,and neurodegen⁃ eration[J].Neuron,2006,52(1):61-76

    • [33] CHOI S R,HOWELL O W,CARASSITI D,et al.Menin⁃ geal inflammation plays a role in the pathology of primary progressive multiple sclerosis[J].Brain,2012,135(10):2925-2937

    • [34] LUCCHINETTI C F,POPESCU B F G,BUNYAN R F,et al.Inflammatory cortical demyelination in early multiple sclerosis[J].N Engl J Med,2011,365(23):2188-2197

    • [35] KWONG B,RUA R,GAO Y Y,et al.T ⁃ bet ⁃ dependent NKp46+ innate lymphoid cells regulate the onset of TH17⁃ induced neuroinflammation[J].Nat Immunol,2017,18(10):1117-1127

    • [36] SCHLÄGER C,KÖRNER H,KRUEGER M,et al.Effec⁃ tor T ⁃ cell trafficking between the leptomeninges and the cerebrospinal fluid[J].Nature,2016,530(7590):349-353

    • [37] FURTADO G C,MARCONDES M C G,LATKOWSKI J A,et al.Swift entry of myelin⁃specific T lymphocytes into the central nervous system in spontaneous autoimmune encephalomyelitis[J].J Immunol,2008,181(7):4648-4655

    • [38] RUSSI A E,BROWN M A.The meninges:new therapeu⁃ tic targets for multiple sclerosis[J].Transl Res,2015,165(2):255-269

    • [39] BURGALETTO C,MUNAFÒ A,BENEDETTO G,et al.The immune system on the TRAIL of Alzheimer’s disease [J].J Neuroinflammation,2020,17(1):1-11

    • [40] BOON B D C,BULK M,JONKER A J,et al.The coarse⁃ grained plaque:a divergent Aβ plaque⁃type in early⁃onset Alzheimer’s disease[J].Acta Neuropathol,2020,140(6):811-830

    • [41] CHEN W W,ZHANG X,HUANG W J.Role of neuroin⁃ flammation in neurodegenerative diseases(review)[J].Mol Med Rep,2016,13(4):3391-3396

    • [42] DA MESQUITA S,LOUVEAU A,VACCARI A,et al.Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease[J].Nature,2018,560(7717):185-191

    • [43] DA MESQUITA S,PAPADOPOULOS Z,DYKSTRA T,et al.Meningeal lymphatics affect microglia responses and anti ⁃Aβ immunotherapy[J].Nature,2021,593(7858):255-260

    • [44] EL KHOURY J,LUSTER A D.Mechanisms of microglia accumulation in Alzheimer’s disease:therapeutic impli⁃ cations[J].Trends Pharmacol Sci,2008,29(12):626-632

    • [45] OXANA S G,ALEXANDER S,INNA B,et al.Mecha⁃ nisms of phototherapy of Alzheimer’s disease during sleep and walcefulness:the role of meningeal lymphatics [J].Front Optcelectron,2023,16(1):22

    • [46] LI X A,CHEN G.CNS⁃peripheral immune interactions in hemorrhagic stroke[J].J Cereb Blood Flow Metab,2023,43(2):185-197

    • [47] DIENER H C,HANKEY G J.Primary and secondary pre⁃ vention of ischemic stroke and cerebral hemorrhage:JACC focus seminar[J].J Am Coll Cardiol,2020,75(15):1804-1818

    • [48] CHEN J M,WANG L M,XU H,et al.Meningeal lymphat⁃ ics clear erythrocytes that arise from subarachnoid hemor⁃ rhage[J].Nat Commun,2020,11(1):3159

    • [49] LV T,ZHAO B,HU Q,et al.The glymphatic system:a novel therapeutic target for stroke treatment[J].Front Aging Neurosci,2021,13:689098

    • [50] PETROVIC ⁃ DJERGOVIC D,GOONEWARDENA S N,PINSKY D J.Inflammatory disequilibrium in stroke[J].Circ Res,2016,119(1):142-158

    • [51] PERLA M,CARETTI V,MORO M A,et al.Role of the meningeal lymphatics in strock[J].stroke,2023,54(6):1670-1672

    • [52] SI J C,CHEN L B,XIA Z L.Effects of cervical⁃lymphatic blockade on brain edema and infarction volume in cerebral ischemic rats[J].Chin J Physiol,2006,49(5):258-265

    • [53] ZHANG D H,REN J X,LUO Y,et al.T cell response in ischemic stroke:from mechanisms to translational insights [J].Front Immunol,2021,12:707972

    • [54] BENAKIS C,LLOVERA G,LIESZ A.The meningeal and choroidal infiltration routes for leukocytes in stroke[J].Ther Adv Neurol Disord,2018,11:1756286418783708

    • [55] ESPOSITO E,AHN B J,SHI J F,et al.Brain⁃to⁃cervical lymph node signaling after stroke[J].Nat Commun,2019,10:5306

    • [56] XIANG T T,FENG D Y,ZHANG X J,et al.Effects of in⁃ creased intracranial pressure on cerebrospinal fluid in⁃ flux,cerebral vascular hemodynamic indexes,and cere⁃ brospinal fluid lymphatic efflux[J].J Cereb Blood Flow Metab,2022,42(12):2287-2302

    • [57] SUÁREZ⁃PIÑERA M,PUDIS M,VILARIÑO N,et al.Cer⁃ vical lymph node metastasis from recurrent glioblastoma detected by MRI and 2⁃[18F]FDG PET/CT[J].Clin Nucl Med,2023,48(3):118-120

    • [58] MA Q L,SCHLEGEL F,BACHMANN S B,et al.Lym⁃ phatic outflow of cerebrospinal fluid is reduced in glioma [J].Sci Rep,2019,9(1):14815

    • [59] LU H B,CAO Y,HU J Z,et al.The lymphatic system:a therapeutic target for central nervous system disorders [J].Neural Regen Res,2023,18(6):1249

    • [60] CAO P,CHEN C M,LIU A,et al.Early⁃life inflammation promotes depressive symptoms in adolescence via microg⁃ lial engulfment of dendritic spines[J].Neuron,2021,109(16):2573-2589

    • [61] BAH T M,SILER D A,IBRAHIM A H,et al.Fluid dy⁃ namics in aging ⁃ related dementias[J].Neurobiol Dis,2023,177:105986

    • [62] SEMYACHKINA⁃GLUSHKOVSKAYA O,ABDURASHI⁃ TOV A,DUBROVSKY A,et al.Application of optical co⁃ herence tomography for in vivo monitoring of the meninge⁃ al lymphatic vessels during opening of blood⁃brain barri⁃ er:mechanisms of brain clearing[J].JBO,2017,22(12):121719

    • [63] WANG X Y,ZHANG A K,YU Q,et al.Single⁃cell RNA sequencing and spatial transcriptomics reveal pathogene⁃ sis of meningeal lymphatic dysfunction after experimental subarachnoid hemorrhage[J].Adv Sci,2023,10(21):e2301428

    • [64] WOJCIECHOWSKI S,VIRENQUE A,VIHMA M,et al.Developmental dysfunction of the central nervous system lymphatics modulates the adaptive neuro ⁃ immune re⁃ sponse in the perilesional cortex in a mouse model of trau⁃ matic brain injury[J].Front Immunol,2021,11:559810

    • [65] ARAC A,GRIMBALDESTON M A,NEPOMUCENO A R B,et al.Evidence that meningeal mast cells can worsen stroke pathology in mice[J].Am J Pathol,2014,184(9):2493-2504

    • [66] NEDERGAARD M,GOLDMAN S A.Glymphatic failure as a final common pathway to dementia[J].Science,2020,370(6512):50-56

    • [67] OZTURK B,KOUNDAL S,AL BIZRI E,et al.Conti ⁃ nuous positive airway pressure increases CSF flow and glymphatic transport[J].JCI Insight,2023,8(12):e170270

    • [68] LIAO J W,ZHANG M C,SHI Z C,et al.Improving the function of meningeal lymphatic vessels to promote brain edema absorption after traumatic brain injury[J].J Neu⁃ rotrauma,2023,40(3/4):383-394

    • [69] LI G W,CAO Y,TANG X,et al.The meningeal lymphatic vessels and the glymphatic system:potential therapeutic targets in neurological disorders[J].J Cereb Blood Flow Metab,2022,42(8):1364-1382

    • [70] 谢雯,董洪权,侍崇龙,等.脑膜淋巴管转运功能障碍加重脂多糖诱导的小鼠中枢炎症[J].南京医科大学学报(自然科学版),2023,43(7):927-933

    • [71] ZHAO Q,CHENG W J,XI Y B,et al.IFN ⁃β regulates Th17 differentiation partly through the inhibition of osteo⁃ pontin in experimental autoimmune encephalomyelitis [J].Molecular Immunology,2018,93:20-30

    • [72] MANGALAM A K,LUCKEY D,GIRI S,et al.Two dis⁃ creet subsets of CD8 T cells modulate PLP(91⁃110)in⁃ duced experimental autoimmune encephalomyelitis in HLA ⁃ DR3 transgenic mice[J].J Autoimmun,2012,38(4):344-353

    • [73] BROWNE T C,MCQUILLAN K,MCMANUS R M,et al.IFN ⁃ gamma production by amyloid beta ⁃ specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer's disease[J].J Im⁃ munol,2013,190(5):2241-2251

    • [74] CAO C,ARENDASH G W,DICKSON A,et al.Abeta⁃spe⁃ cific Th2 cells provide cognitive and pathological benefits to Alzheimer’s mice without infiltrating the CNS[J].Neu⁃ robiol Dis,2009,34(1):63-70

    • [75] SONG E,MAO T,DONG H,et al.VEGF ⁃C ⁃driven lym⁃ phatic drainage enables immunosurveillance of brain tu⁃ mours[J].Nature,2020,577(7792):689-694