en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

张群虎,E-mail:zhang_9086@163.com;

刘畇,E-mail:15195969201@163.com

中图分类号:R591.44

文献标识码:A

文章编号:1007-4368(2024)04-455-08

DOI:10.7655/NYDXBNSN230997

参考文献 1
ASPRAY T J,HILL T R.Osteoporosis and the ageing skel⁃ eton[J].Subcell Biochem,2019,91:453-476
参考文献 2
SALARI N,GHASEMI H,MOHAMMADI L,et al.The global prevalence of osteoporosis in the world:a compre⁃ hensive systematic review and meta⁃analysis[J].J Orthop Surg Res,2021,16(1):609
参考文献 3
LU C,CHEN Y,ZHANG B,et al.Response to teripara⁃ tide in Chinese patients with established osteoporosis:os⁃ teocalcin and lumbar spine bone⁃mineral density changes from teriparatide phase Ⅲ study[J].Clin Interv Aging,2017,12:1717-1723
参考文献 4
TALEVSKI J,SANDERS K M,BUSIJA L,et al.Health service use pathways associated with recovery of quality of life at 12⁃months for individual fracture sites:analyses of the International Costs and Utilities Related to Osteopo⁃ rotic fractures Study(ICUROS)[J].Bone,2021,144:115805
参考文献 5
SAPONARO F,SABA A,ZUCCHI R.An update on vita⁃ min D metabolism[J].Int J Mol Sci,2020,21(18):6573
参考文献 6
GONG A,LIU Y,XU F,et al.Role of 1,25⁃dihydroxyvita⁃ min D in alleviating alveolar bone loss and gingival in⁃ flammation in ligature ⁃ induced periodontitis[J].Am J Transl Res,2022,14(5):3079-3091
参考文献 7
JI J,LU R,ZHOU X,et al.1,25 ⁃ Dihydroxyvitamin D3 contributes to regulating mammary calcium transport and modulates neonatal skeletal growth and turnover coopera⁃ tively with calcium[J].Am J Physiol Endocrinol Metab,2011,301(5):e889-900
参考文献 8
CHEN J,ZHANG J,LI J,et al.1,25⁃Dihydroxyvitamin D deficiency accelerates aging ⁃ related Osteoarthritis via Downregulation of Sirt1 in Mice[J].Int J Biol Sci,2023,19(2):610-624
参考文献 9
CAI Y,LIU H,S E,et al.Deficiency of telomere⁃associat⁃ ed repressor activator protein 1 precipitates cardiac aging in mice via p53/PPARα signaling [J].Theranostics,2021,11(10):4710-4727
参考文献 10
YANG Y,SUN Y,MAO W W,et al.Oxidative stress in⁃ duces downregulation of TP53INP2 and suppresses osteo⁃ genic differentiation of BMSCs during osteoporosis through the autophagy degradation pathway [J].Free Radic Biol Med,2021,166:226-237
参考文献 11
DONEHOWER L A,HARVEY M,SLAGLE B L,et al.Bradley,A.Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours[J].Na⁃ ture,1992,356(6366):215-221
参考文献 12
CHEN L,SHI X,XIE J,et al.Apelin⁃13 induces mitopha⁃ gy in bone marrow mesenchymal stem cells to suppress in⁃ tracellular oxidative stress and ameliorate osteoporosis by activation of AMPK signaling pathway[J].Free Radic Bi⁃ ol Med.2021,163:356-368
参考文献 13
LEE C W,LIN H C,WANG B Y,et al.Ginkgolide B monotherapy reverses osteoporosis by regulating oxidative stress ⁃ mediated bone homeostasis[J].Free Radic Biol Med,2021,168:234-246
参考文献 14
CHEN L,YANG R,QIAO W,et al.1,25⁃Dihydroxyvita⁃ min D exerts an antiaging role by activation of Nrf2⁃anti⁃ oxidant signaling and inactivation of p16/p53⁃senescence signaling[J].Aging Cell,2019,18(3):e12951
参考文献 15
YANG R,CHEN J,ZHANG J,et al.1,25⁃Dihydroxyvita⁃ min D protects against age⁃related osteoporosis by a novel VDR⁃Ezh2⁃p16 signal axis[J].Aging Cell,2020,19(2):e13095
参考文献 16
QIAO W,YU S,SUN H,et al.1,25⁃Dihydroxy vitamin D insufficiency accelerates age ⁃ related bone loss by in⁃ creasing oxidative stress and all senescence[J].Am J Transl Res,2020,12(2):507-518
参考文献 17
崔敏,刘轶宁,庄旻羽,等.Chk2敲除可通过增强抗氧化能力改善由Bmi⁃1缺失所致的小鼠脑衰老表型[J].南京医科大学学报(自然科学版),2021,41(7):963-969
参考文献 18
ZITTERMANN A,TRUMMER C,THEILER ⁃ SCHWETZ V,et al.Vitamin D and cardiovascular disease:an updat⁃ ed narrative review[J].Int J Mol Sci,2021,22(6):2896
参考文献 19
HAMPSON G,ELDER G J,COHEN ⁃SOLAL M,et al.A review and perspective on the assessment,management and prevention of fragility fractures in patients with osteo⁃ porosis and chronic kidney disease[J].Endocrine,2021,73(3):509-529
参考文献 20
LEBOFF M S,CHOU S H,RATLIFF K A,et al.Supple⁃ mental vitamin D and incident fractures in Midlife and Older Adults[J].N Engl J Med,2022,387(4):299-309
参考文献 21
ANBARCIOGLU E,KIRTILOGLU T,ÖZTÜRK A,et al.Vitamin D deficiency in patients with aggressive periodon⁃ titis[J].Oral Dis,2019,25(1):242-249
参考文献 22
GOLTZMAN D,MIAO D,PANDA D K,et al.Effects of calcium and of the vitamin D system on skeletal and calci⁃ um homeostasis:lessons from genetic models[J].J Ste⁃ roid Biochem Mol Biol,2004,89:485-489
参考文献 23
POLIDORO L,PROPERZI G,MARAMPON F,et al.Vita⁃ min D protects human endothelial cells from H2O2 oxidant injury through the Mek/Erk ⁃ Sirt1 axis activation[J].J Cardiovasc Trans Res,2013;6(2):221-231
参考文献 24
MANOLAGAS S C,PARFITT A M.What old means to bone[J].Trends Endocrin Met,2010,21(6):369⁃374
参考文献 25
SHARMA P,KAUSHAL N,SALETH L R,et al.Oxida⁃ tive stress ⁃ induced apoptosis and autophagy:balancing the contrary forces in spermatogenesis[J].biochim Bio⁃ phys Acta Mol Basis Dis,2023,1869(6):166742
参考文献 26
MOHAMMADZADEH A,MIRZA ⁃ AGHAZADEH ⁃ AT⁃ TARI M,HALLAJ S,et al.Crosstalk between p53 and DNA damage response in ageing[J].DNA Repair(Amst),2019,80:8-15
参考文献 27
GILLMAN R,LOPES FLORO K,WANKELL M,et al.The role of DNA damage and repair in liver cancer[J].Biochim Biophys Acta Rev Cancer,2021,1875(1):188493
目录contents

    摘要

    目的:探索p53半剂量缺失杂合子小鼠能否通过增强抗氧化能力纠正活性维生素D(1,25(OH)2D3)缺乏引起的骨质疏松。方法:取10周龄高钙高磷饮食喂养的同窝野生型(wild type,WT)小鼠、p53半剂量缺失杂合子(p53+/-)小鼠、1α-羟化酶基因敲除[1α(OH)ase-/-]小鼠及p53半剂量缺失的1α羟化酶基因敲除[1α(OH)ase-/-p53+/-]小鼠的长骨,利用X线、micro-CT、组织病理学和分子生物学等方法,比较各组小鼠血清学、长骨骨矿化、骨形成、骨吸收以及氧化应激等表达变化。结果:与WT小鼠相比,p53+/-小鼠血清钙、磷、甲状旁腺素(parathyroid hormone,PTH)和1,25(OH)2D3水平差异无统计学意义,骨密度、总胶原 (total collagen,T-col)阳性面积、成骨细胞数量、碱性磷酸酶(alkaline phosphatase,ALP)和Ⅰ型胶原(collagen typeⅠ,Col-Ⅰ)阳性面积均有所增加,活性氧水平降低,抗氧化酶SOD1表达增加。与1α(OH)ase-/-小鼠相比,1α(OH)ase-/-p53+/-小鼠血清钙、磷和PTH差异无统计学意义,血清中检测不到1,25(OH)2D3,骨密度、T-col阳性面积、成骨细胞数量、ALP和Col-Ⅰ阳性面积均明显增加,破骨细胞数量减少,活性氧水平降低,抗氧化酶SOD1表达增加。结论:p53半剂量缺失可通过增强抗氧化能力纠正 1,25(OH)2D3缺乏小鼠的骨质疏松。

    Abstract

    Objective:To explore whether p53 heterozygote attenuates osteoporosis phenotype of 1,25(OH)2D3 deficient mice by enhancing the antioxidant capacity. Methods:The long bones of 10-week-old wild type(WT)mice,p53 heterozygote(p53+/-)mice, 1α-hydroxylase knockout[1α(OH)ase-/-]mice,and 1α(OH)ase-/-p53+/- mice,fed on a high-calcium and high-phosphorus diet,were analyzed and compared using X - ray,micro -CT,histopathological and molecular biology methods to observe and compare changes in serum levels,bone mineralization,bone formation,bone absorption,and oxidative stress expression. Results:Compared with WT mice, p53+/- mice showed no significant differences in serum calcium,phosphorus,parathyroid hormone(PTH),and 1,25(OH)2D3 levels,but had the increased bone density,total collagen(T-col)positive area,osteoblast number,alkaline phosphatase(ALP),and typeⅠcollagen (col-Ⅰ)positive area,along with the decreased levels of reactive oxygen species and the increased expression of the antioxidant enzyme SOD1. Compared with 1α(OH)ase-/- mice,1α(OH)ase-/-p53+/- mice showed no significant differences in serum calcium,phosphorus, and PTH levels,with undetectable levels of 1,25(OH)2D3 in the serum,but showed significantly increased bone density,T- col positive area,osteoblast number,ALP and Col-Ⅰ positive area,decreased osteoclast number and reactive oxygen species levels,and increased expression of SOD1. Conclusion:Half-dose deletion of p53 can attenuate osteoporosis phenotype of 1,25(OH)2D3 deficient mice by enhancing the antioxidant capacity.

    关键词

    骨质疏松p53125(OH)2D3氧化应激

    Keywords

    osteoporosisp53125(OH)2D3oxidative stress

  • 骨质疏松(osteoporosis,OP)是一种全身性骨骼疾病,以骨量减少、骨组织的微结构恶化、易引发脆性骨折为主要病理特征[1]。骨质疏松是一种衰老相关的慢性疾病,常见于中老年患者。全球骨质疏松患病率约为18.3%[2],且脆性骨折发生率随年龄增长明显增加[3-4]。因此,深入研究骨质疏松发生发展的分子机制对其早期诊断及防治具有重要意义。

  • 在肝脏25⁃羟化酶的作用下,维生素D原被转化成 25(OH)D3,后通过肾脏 1α⁃羟化酶[1α(OH)ase] 转化成活性维生素D[1,25(OH)2D3],再与维生素D 受体(vitamin D receptor,VDR)结合发挥其功能[5]。维生素D能促进肠道对钙、磷的吸收,维持体内钙磷平衡,对骨骼矿化和骨量维持有重要意义[6]。研究显示,1α(OH)ase-/-及VDR-/-小鼠均表现佝偻病、骨质疏松等早衰表型,补充内源性或外源性1,25(OH)2D3均能促进成骨细胞骨形成[7-8],然而,1,25(OH)2D3缺失导致骨质疏松发生发展的分子机制有待进一步研究。

  • p53⁃ p21 是介导细胞衰老的经典通路之一, DNA损伤激活 p53 信号通路在细胞衰老中起重要作用[9]。p53 敲除(p53-/-)小鼠的成骨细胞衰老减少,分化加速,骨密度增加[10]。但 p53 作为重要的抑癌基因,p53-/-小鼠仅能存活 6 个月[11]。研究表明,氧化应激反应抑制骨形成,导致骨损伤,而抗氧化剂能够促进骨髓间充质干细胞(bone marrow mesenchymal stem cell,BM ⁃ MSC)向成骨细胞分化,抑制破骨细胞活性,从而预防骨质疏松的发生[12-13]。也有研究发现,1,25(OH)2D3通过 VDR 介导转录调控核因子 E2 相关因子(nuclear factor erythroid⁃derived factor 2⁃related factor,Nrf2)的基因转录,增强其下游抗氧化酶的表达,从而发挥抗氧化剂的作用[14]

  • 本研究通过建立p53半剂量缺失伴1,25(OH)2D3 缺乏[1α(OH)ase-/-p53+/-]的小鼠模型,给予高钙高磷饮食,利用X线、CT、组织病理学和分子生物学等方法,比较它们与同窝野生型(wild type,WT)小鼠、 p53 半剂量缺失杂合子(p53+/-)小鼠和 1α羟化酶基因敲除[1α(OH)ase-/-]小鼠的长骨表型差异以及氧化应激等相关指标的表达变化,探索p53半剂量缺失能否通过增强抗氧化能力纠正活性维生素D缺乏所致的骨质疏松。

  • 1 材料和方法

  • 1.1 材料

  • 1.1.1 动物

  • 本研究所用1α(OH)ase+/-小鼠由加拿大麦吉尔大学引进,亲代p53+/-小鼠通过南京大学模式动物中心代为从美国Jackson lab引进。成年1α(OH)ase+/- 小鼠与 p53+/-小鼠雌雄合笼,获得1α(OH)ase+/-p53+/-双杂基因型小鼠,再将双杂基因型小鼠雌雄合笼,获得5组同窝WT、p53+/-、1α(OH)ase-/-及1α(OH)ase-/- p53+/-小鼠,雌雄不限,3周龄分笼后,给予高钙高磷饮食(含 2%钙、1.25%磷、20%乳糖)喂养至 10 周龄。动物使用均严格遵照南京医科大学实验动物管理规范进行(IACUC:1802007)。

  • 1.1.2 试剂

  • 兔抗Ι型胶原(collagen typeⅠ,Col⁃Ⅰ)抗体(Chem⁃ icon 公司,美国),兔抗超氧化物歧化酶(superoxide dismutase,SOD)1 抗体(Abcam 公司,美国),2’,7’⁃ 二氯二氢荧光素二乙酯(DCF ⁃DA,Sigma 公司,美国)。

  • 1.2 方法

  • 1.2.1 组织取材及切片

  • 采用0.3%的戊巴比妥钠溶液(0.2 mL/10 g体重) 腹腔注射麻醉小鼠后,经心脏穿刺取外周血,静置4 h 后离心分离血清做血清生化检测。取股骨和胫骨,使用 PLP(2%副醛,75 mmol/L 赖氨酸,10 mmol/L过碘酸钠)固定液固定,骨组织经过脱钙、脱水、浸蜡及石蜡包埋后切片,片厚5 μm。同时取新鲜胫骨冻存,用于提取蛋白做Western blot检测。

  • 1.2.2 X射线摄影、micro CT扫描及三维重建分析

  • 取各组小鼠,解剖分离胫骨或股骨,PLP 固定后,先进行X射线摄影,再进行micro⁃CT扫描,扫描后分别利用 NRecon、Dataviewer、CTan、ANT 软件进行三维重建分析。

  • 1.2.3 组织化学和免疫组织化学染色

  • 石蜡切片经常规脱蜡水化,参照参考文献[15] 进行苏木素⁃伊红(hematoxylin and eosin,HE)、总胶原(total collagen,T⁃col)、碱性磷酸酶(alkaline phos⁃phatase,ALP)、抗酒石酸酸性磷酸酶(tartrate⁃resis⁃ tant acid phosphatase,TRAP)染色和Col⁃Ⅰ免疫组织化学染色[16]

  • 1.2.4 ROS流式细胞仪检测

  • 小鼠麻醉后,取股骨,减去股骨两端抽出骨髓,经过300目筛网获得单细胞悬液,加预冷的PBS 将细胞浓度调整为1×106 个/mL。取1 mL单细胞悬液,加5 μL DCF⁃DA混匀,37℃孵育30 min,PBS清洗多余的染液后通过流式仪检测细胞内荧光探针的平均荧光强度。

  • 1.2.5 Western blot实验

  • 参照参考文献[17]提取骨组织蛋白后进行 Western blot 实验和结果分析。骨组织按质量/体积约为 1∶25加入RIPA裂解,剪碎、匀浆后,于冰盒中静置30 min。裂解液13 000 r/min 4℃离心15 min,取上清使用 BCA 法进行定量。蛋白样 100℃水浴 10 min,-80℃冰箱保存。每组蛋白加样 20 μg 至 10%SDS⁃PAGE 胶,110 V 恒压电泳 2 h。300 mA 恒流转膜 90 min,使蛋白湿转至硝酸纤维素膜。用含 5%脱脂奶粉PBST于37℃条件下封闭60 min。加入适量一抗[兔抗β actin抗体(1∶1 000)、兔抗SOD1抗体(1∶1 000)]在 4℃条件下孵育过夜。5%PBST洗涤后,加入特异性二抗,室温条件下孵育60 min。洗膜后,滴加ECL混合液,自动成像仪曝光,保存显影图像。采用Image Pro Plus 6.0软件分析图像。

  • 1.3 统计学方法

  • 采用 GraphPad Prism 8.0 软件进行数据分析及作图。各组计量结果以均数±标准差(x-±s)表示,采用t检验和单因素方差(one⁃way ANOVA)进行分析, P <0.05为差异有统计学意义。

  • 2 结果

  • 2.1 p53半剂量缺失对1,25(OH)2D3缺乏小鼠血清指标的影响

  • 检测了 10 周龄高钙磷饮食同窝 WT、p53 +/-、 1α(OH)ase-/-和1α(OH)ase-/- p53 +/-小鼠血清钙、磷、 1,25(OH)2D3和甲状旁腺素(parathyroid hormone, PTH)水平的变化。结果发现:给予高钙磷饮食喂养后,各组小鼠血清钙(图1A)、磷(图1B)和PTH(图1C) 水平差异无统计学意义。p53+/-小鼠与WT小鼠的血清 1,25(OH)2D3水平差异无统计学意义,而1α(OH)ase-/- 小鼠和1α(OH)ase-/-p53+/-小鼠均检测不到1,25(OH)2D3 (图1D),以上实验结果提示 p53 半剂量缺失改善 1,25(OH)2D3缺乏小鼠的骨质疏松与钙磷变化无关。

  • 图1 p53半剂量缺失对1,25(OH)2D3缺乏小鼠血清钙、磷、PTH和1,25(OH)2D3水平的影响

  • Figure1 Effects of half⁃dose deletion of p53 on mouse serum levels of calcium,phosphorus,PTH and 1,25(OH)2D3 in 1,25(OH)2D3 deficient mice

  • 2.2 p53半剂量缺失对1,25(OH)2D3缺乏小鼠骨矿化和骨容量的影响

  • 为了明确p53半剂量缺失能否改善活性维生素 D缺乏引起的骨骼矿化和骨容量减少,利用X线摄影、micro⁃CT扫描、三维重建分析和总胶原组织化学染色的方法,比较分析了 10 周龄高钙磷饮食 WT、 p53+/-、1α(OH)ase-/-和1α(OH)ase-/-p53+/-小鼠骨矿化程度与骨容量的变化。结果显示:与WT小鼠相比, p53+/-小鼠骨矿化和骨容量增加,1α(OH)ase-/-小鼠显著降低。与1α(OH)ase-/-小鼠相比,1α(OH)ase-/- p53 +/-小鼠骨容量(图2A、D、E)与骨矿化程度(图2B、C)显著增加。上述结果证明p53半剂量缺失能够改善1,25(OH)2D3缺乏小鼠的骨矿化降低和骨容量减少。

  • 图2 p53半剂量缺失对1,25(OH)2D3缺乏小鼠骨矿化和骨容量的影响

  • Figure2 Effects of half⁃dose deletion of p53 on bone mineralization and volume in 1,25(OH)2D3 deficient mice

  • 2.3 p53半剂量缺失对1,25(OH)2D3缺乏小鼠成骨细胞骨形成的影响

  • 为探索p53半剂量缺失改善1,25(OH)2D3缺乏小鼠的骨骼矿化和骨容量减少是否与成骨细胞骨形成增加有关,通过 HE、ALP 和 Col⁃Ⅰ免疫组织化学染色,比较分析了10周龄高钙磷饮食WT、p53+/-、 1α(OH)ase-/-和 1α(OH)ase-/-p53+/-小鼠成骨细胞骨形成的变化。结果显示:与WT小鼠相比,p53+/-小鼠成骨细胞数量、ALP 和 Col⁃Ⅰ阳性面积有所增加, 1α(OH)ase-/-小鼠则显著降低,而与1α(OH)ase-/-小鼠相比,1α(OH)ase-/-p53+/-小鼠成骨细胞数量(图3A、 D)、ALP(图3B、E)和Col⁃Ⅰ(图3C、F)阳性面积均显著增加。这些结果证明 p53 半剂量缺失能够改善 1,25(OH)2D3缺乏引起的成骨细胞骨形成减少。

  • 2.4 p53半剂量缺失对1,25(OH)2D3缺乏小鼠破骨细胞骨吸收的影响

  • 为研究p53半剂量缺失改善1,25(OH)2D3缺乏引起的骨骼矿化和骨容量减少是否与破骨细胞骨吸收有关,利用TRAP组织化学染色的方法,比较分析了10周龄高钙磷饮食WT、p53+/-、1α(OH)ase-/-和 1α(OH)ase-/-p53+/-小鼠破骨细胞骨吸收的变化。结果显示:与WT小鼠相比,p53+/-小鼠TRAP阳性破骨细胞无显著变化,1α(OH)ase-/-小鼠则显著增多。而与1α(OH)ase-/-小鼠相比,1α(OH)ase-/-p53+/-小鼠 TRAP 阳性破骨细胞(图4A、B)显著减少。这些结果证明p53半剂量缺失能够减少1,25(OH)2D3缺乏引起的破骨细胞骨吸收。

  • 2.5 p53半剂量缺失对活性维生素D缺乏小鼠骨组织氧化损伤的影响

  • 为研究p53半剂量缺失改善活性维生素D缺乏引起的骨质疏松是否与抗氧化能力增强有关,利用 DCF⁃DA标记、流式细胞检测和Western blot,比较分析了10周龄高钙磷饮食WT、p53+/-、1α(OH)ase-/-和 1α(OH)ase-/-p53+/-小鼠骨髓细胞活性氧(reactive oxygen species,ROS)和骨组织抗氧化酶 SOD1 蛋白表达水平的变化。结果显示:与WT小鼠相比,p53+/- 小鼠 ROS 水平降低、SOD1 蛋白表达水平增加。而与1α(OH)ase-/-小鼠相比,1α(OH)ase-/-p53+/-小鼠活性氧ROS水平(图5A、B)显著降低、SOD1蛋白表达水平(图5C、D)显著增加。这些结果证明p53半剂量缺失能够纠正活性维生素D缺乏引起的骨质疏松与抗氧化能力增强有关。

  • 图3 p53半剂量缺失对活性维生素D缺乏小鼠成骨细胞骨形成的影响

  • Figure3 Effects of half⁃dose deletion of p53 on bone formation by osteoblasts in 1,25(OH)2D3 deficient mice

  • 3 讨论

  • 维生素 D 缺乏和不足是一个全球性的健康问题,维生素D缺乏与多种急慢性疾病有关,包括免疫性疾病、骨软化、肿瘤和心血管疾病等[18-19]。维生素D 代谢物1,25(OH)2D3的主要作用是刺激肠道对钙的吸收,维生素D缺乏的后果是继发性甲状旁腺功能亢进和骨质流失,导致骨质疏松和骨折[20-21],然而具体的分子机制尚不清楚。本研究使用已经较为成熟的活性维生素D缺失小鼠模型,即1α(OH)ase基因敲除小鼠[1α(OH)ase-/-],以进一步验证活性维生素D缺失导致骨质疏松的分子机制。

  • 骨质疏松是衰老相关疾病,而 p53⁃p21 是介导衰老的经典通路之一,先前研究已经证明p53基因敲除小鼠骨容量增加[10]。因此设想p53敲除能够纠正活性维生素 D 缺失导致的骨质疏松表型。由于 p53-/-小鼠仅能存活 6 个月,为排除肿瘤的影响,本研究使用 p53 半剂量缺失的 1α(OH)ase-/-p53+/-小鼠模型。

  • 图4 p53半剂量缺失对1,25(OH)2D3缺乏小鼠破骨细胞骨吸收的影响

  • Figure4 Effects of half⁃dose deletion of p53 on bone resorption by osteoclasts in 1,25(OH)2D3 deficient mice

  • 图5 p53半剂量缺失对活性维生素D缺乏小鼠骨组织氧化损伤的影响

  • Figure5 Effects of half⁃dose deletion of p53 on oxidative damage to bone tissue in 1,25(OH)2D3 deficient mice

  • 活性维生素 D 生物学效应的发挥既有 VDR 介导的直接作用,也可有细胞外钙磷介导的间接作用,而活性维生素D调节骨矿化的经典作用是通过提高细胞外钙磷水平[22]。1α(OH)ase基因敲除小鼠表现为血清低钙低磷且无活性维生素D,为了排除钙磷的影响,给予各组小鼠高钙高磷饮食。结果发现,高钙磷饮食喂养后,WT和p53+/-小鼠血清钙、磷、 1,25(OH)2D3和PTH水平在正常范围内;1α(OH)ase-/- 小鼠、1α(OH)ase-/-p53+/-小鼠的血清钙、磷和PTH可以被高钙磷饮食矫正至正常水平,仅表现为无血清 1,25(OH)2D3。此模型观察了活性维生素D缺乏对骨质疏松的影响。结果发现:活性维生素D缺乏小鼠骨容量和矿化程度较WT小鼠明显减少,但p53半剂量缺失能够明显增加活性维生素D缺乏小鼠的骨容量及骨矿化程度。骨量的增加可能与成骨细胞骨形成增加有关,也可能与破骨细胞骨吸收的减少有关。因此检测了各组小鼠成骨细胞骨形成和破骨细胞骨吸收的变化。结果显示1α(OH)ase-/-小鼠表现为骨形成明显降低,破骨细胞骨吸收显著增加,p53 半剂量缺失能增加活性维生素 D 缺乏小鼠骨形成,也能降低破骨细胞骨吸收。

  • 大量的研究证实活性维生素D具有保护正常细胞免受氧化应激攻击的作用。补充活性维生素D能够显著提高红细胞的 SOD 和过氧化氢酶活性[23]。氧化应激抑制骨形成,导致骨损伤,而抗氧化剂补充能够促进骨髓间充质干细胞向成骨细胞分化,抑制破骨细胞活性,从而预防骨质疏松的发生[24]。研究表明,当细胞产生的ROS水平高于自身清除能力时,会发生氧化应激反应,导致端粒氧化、DNA 损伤,并激活 ATM 激酶活性,促进组蛋白 H2AX 的磷酸化,直接或间接使p53发生磷酸化,上调p53的活性,促进细胞衰老[25-27]。本研究中,活性维生素D缺乏小鼠细胞 ROS 水平明显升高,抗氧化酶 SOD1 表达降低,而p53半剂量缺失能够较好地纠正活性维生素D缺乏小鼠的高氧化应激水平。

  • 综上所述,当给予 1α(OH)ase-/-p53+/-小鼠高钙磷补充后,随着血清钙、磷和PTH水平纠正,p53半剂量缺失则呈现了其在改善活性维生素D缺失引起的骨质疏松中的纠正作用,包括抑制氧化应激,促进成骨细胞骨形成,抑制破骨细胞骨吸收。因此, p53 半剂量缺失可通过增强抗氧化能力纠正 1,25 (OH)2D3缺乏小鼠的骨质疏松。

  • 参考文献

    • [1] ASPRAY T J,HILL T R.Osteoporosis and the ageing skel⁃ eton[J].Subcell Biochem,2019,91:453-476

    • [2] SALARI N,GHASEMI H,MOHAMMADI L,et al.The global prevalence of osteoporosis in the world:a compre⁃ hensive systematic review and meta⁃analysis[J].J Orthop Surg Res,2021,16(1):609

    • [3] LU C,CHEN Y,ZHANG B,et al.Response to teripara⁃ tide in Chinese patients with established osteoporosis:os⁃ teocalcin and lumbar spine bone⁃mineral density changes from teriparatide phase Ⅲ study[J].Clin Interv Aging,2017,12:1717-1723

    • [4] TALEVSKI J,SANDERS K M,BUSIJA L,et al.Health service use pathways associated with recovery of quality of life at 12⁃months for individual fracture sites:analyses of the International Costs and Utilities Related to Osteopo⁃ rotic fractures Study(ICUROS)[J].Bone,2021,144:115805

    • [5] SAPONARO F,SABA A,ZUCCHI R.An update on vita⁃ min D metabolism[J].Int J Mol Sci,2020,21(18):6573

    • [6] GONG A,LIU Y,XU F,et al.Role of 1,25⁃dihydroxyvita⁃ min D in alleviating alveolar bone loss and gingival in⁃ flammation in ligature ⁃ induced periodontitis[J].Am J Transl Res,2022,14(5):3079-3091

    • [7] JI J,LU R,ZHOU X,et al.1,25 ⁃ Dihydroxyvitamin D3 contributes to regulating mammary calcium transport and modulates neonatal skeletal growth and turnover coopera⁃ tively with calcium[J].Am J Physiol Endocrinol Metab,2011,301(5):e889-900

    • [8] CHEN J,ZHANG J,LI J,et al.1,25⁃Dihydroxyvitamin D deficiency accelerates aging ⁃ related Osteoarthritis via Downregulation of Sirt1 in Mice[J].Int J Biol Sci,2023,19(2):610-624

    • [9] CAI Y,LIU H,S E,et al.Deficiency of telomere⁃associat⁃ ed repressor activator protein 1 precipitates cardiac aging in mice via p53/PPARα signaling [J].Theranostics,2021,11(10):4710-4727

    • [10] YANG Y,SUN Y,MAO W W,et al.Oxidative stress in⁃ duces downregulation of TP53INP2 and suppresses osteo⁃ genic differentiation of BMSCs during osteoporosis through the autophagy degradation pathway [J].Free Radic Biol Med,2021,166:226-237

    • [11] DONEHOWER L A,HARVEY M,SLAGLE B L,et al.Bradley,A.Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours[J].Na⁃ ture,1992,356(6366):215-221

    • [12] CHEN L,SHI X,XIE J,et al.Apelin⁃13 induces mitopha⁃ gy in bone marrow mesenchymal stem cells to suppress in⁃ tracellular oxidative stress and ameliorate osteoporosis by activation of AMPK signaling pathway[J].Free Radic Bi⁃ ol Med.2021,163:356-368

    • [13] LEE C W,LIN H C,WANG B Y,et al.Ginkgolide B monotherapy reverses osteoporosis by regulating oxidative stress ⁃ mediated bone homeostasis[J].Free Radic Biol Med,2021,168:234-246

    • [14] CHEN L,YANG R,QIAO W,et al.1,25⁃Dihydroxyvita⁃ min D exerts an antiaging role by activation of Nrf2⁃anti⁃ oxidant signaling and inactivation of p16/p53⁃senescence signaling[J].Aging Cell,2019,18(3):e12951

    • [15] YANG R,CHEN J,ZHANG J,et al.1,25⁃Dihydroxyvita⁃ min D protects against age⁃related osteoporosis by a novel VDR⁃Ezh2⁃p16 signal axis[J].Aging Cell,2020,19(2):e13095

    • [16] QIAO W,YU S,SUN H,et al.1,25⁃Dihydroxy vitamin D insufficiency accelerates age ⁃ related bone loss by in⁃ creasing oxidative stress and all senescence[J].Am J Transl Res,2020,12(2):507-518

    • [17] 崔敏,刘轶宁,庄旻羽,等.Chk2敲除可通过增强抗氧化能力改善由Bmi⁃1缺失所致的小鼠脑衰老表型[J].南京医科大学学报(自然科学版),2021,41(7):963-969

    • [18] ZITTERMANN A,TRUMMER C,THEILER ⁃ SCHWETZ V,et al.Vitamin D and cardiovascular disease:an updat⁃ ed narrative review[J].Int J Mol Sci,2021,22(6):2896

    • [19] HAMPSON G,ELDER G J,COHEN ⁃SOLAL M,et al.A review and perspective on the assessment,management and prevention of fragility fractures in patients with osteo⁃ porosis and chronic kidney disease[J].Endocrine,2021,73(3):509-529

    • [20] LEBOFF M S,CHOU S H,RATLIFF K A,et al.Supple⁃ mental vitamin D and incident fractures in Midlife and Older Adults[J].N Engl J Med,2022,387(4):299-309

    • [21] ANBARCIOGLU E,KIRTILOGLU T,ÖZTÜRK A,et al.Vitamin D deficiency in patients with aggressive periodon⁃ titis[J].Oral Dis,2019,25(1):242-249

    • [22] GOLTZMAN D,MIAO D,PANDA D K,et al.Effects of calcium and of the vitamin D system on skeletal and calci⁃ um homeostasis:lessons from genetic models[J].J Ste⁃ roid Biochem Mol Biol,2004,89:485-489

    • [23] POLIDORO L,PROPERZI G,MARAMPON F,et al.Vita⁃ min D protects human endothelial cells from H2O2 oxidant injury through the Mek/Erk ⁃ Sirt1 axis activation[J].J Cardiovasc Trans Res,2013;6(2):221-231

    • [24] MANOLAGAS S C,PARFITT A M.What old means to bone[J].Trends Endocrin Met,2010,21(6):369⁃374

    • [25] SHARMA P,KAUSHAL N,SALETH L R,et al.Oxida⁃ tive stress ⁃ induced apoptosis and autophagy:balancing the contrary forces in spermatogenesis[J].biochim Bio⁃ phys Acta Mol Basis Dis,2023,1869(6):166742

    • [26] MOHAMMADZADEH A,MIRZA ⁃ AGHAZADEH ⁃ AT⁃ TARI M,HALLAJ S,et al.Crosstalk between p53 and DNA damage response in ageing[J].DNA Repair(Amst),2019,80:8-15

    • [27] GILLMAN R,LOPES FLORO K,WANKELL M,et al.The role of DNA damage and repair in liver cancer[J].Biochim Biophys Acta Rev Cancer,2021,1875(1):188493

  • 参考文献

    • [1] ASPRAY T J,HILL T R.Osteoporosis and the ageing skel⁃ eton[J].Subcell Biochem,2019,91:453-476

    • [2] SALARI N,GHASEMI H,MOHAMMADI L,et al.The global prevalence of osteoporosis in the world:a compre⁃ hensive systematic review and meta⁃analysis[J].J Orthop Surg Res,2021,16(1):609

    • [3] LU C,CHEN Y,ZHANG B,et al.Response to teripara⁃ tide in Chinese patients with established osteoporosis:os⁃ teocalcin and lumbar spine bone⁃mineral density changes from teriparatide phase Ⅲ study[J].Clin Interv Aging,2017,12:1717-1723

    • [4] TALEVSKI J,SANDERS K M,BUSIJA L,et al.Health service use pathways associated with recovery of quality of life at 12⁃months for individual fracture sites:analyses of the International Costs and Utilities Related to Osteopo⁃ rotic fractures Study(ICUROS)[J].Bone,2021,144:115805

    • [5] SAPONARO F,SABA A,ZUCCHI R.An update on vita⁃ min D metabolism[J].Int J Mol Sci,2020,21(18):6573

    • [6] GONG A,LIU Y,XU F,et al.Role of 1,25⁃dihydroxyvita⁃ min D in alleviating alveolar bone loss and gingival in⁃ flammation in ligature ⁃ induced periodontitis[J].Am J Transl Res,2022,14(5):3079-3091

    • [7] JI J,LU R,ZHOU X,et al.1,25 ⁃ Dihydroxyvitamin D3 contributes to regulating mammary calcium transport and modulates neonatal skeletal growth and turnover coopera⁃ tively with calcium[J].Am J Physiol Endocrinol Metab,2011,301(5):e889-900

    • [8] CHEN J,ZHANG J,LI J,et al.1,25⁃Dihydroxyvitamin D deficiency accelerates aging ⁃ related Osteoarthritis via Downregulation of Sirt1 in Mice[J].Int J Biol Sci,2023,19(2):610-624

    • [9] CAI Y,LIU H,S E,et al.Deficiency of telomere⁃associat⁃ ed repressor activator protein 1 precipitates cardiac aging in mice via p53/PPARα signaling [J].Theranostics,2021,11(10):4710-4727

    • [10] YANG Y,SUN Y,MAO W W,et al.Oxidative stress in⁃ duces downregulation of TP53INP2 and suppresses osteo⁃ genic differentiation of BMSCs during osteoporosis through the autophagy degradation pathway [J].Free Radic Biol Med,2021,166:226-237

    • [11] DONEHOWER L A,HARVEY M,SLAGLE B L,et al.Bradley,A.Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours[J].Na⁃ ture,1992,356(6366):215-221

    • [12] CHEN L,SHI X,XIE J,et al.Apelin⁃13 induces mitopha⁃ gy in bone marrow mesenchymal stem cells to suppress in⁃ tracellular oxidative stress and ameliorate osteoporosis by activation of AMPK signaling pathway[J].Free Radic Bi⁃ ol Med.2021,163:356-368

    • [13] LEE C W,LIN H C,WANG B Y,et al.Ginkgolide B monotherapy reverses osteoporosis by regulating oxidative stress ⁃ mediated bone homeostasis[J].Free Radic Biol Med,2021,168:234-246

    • [14] CHEN L,YANG R,QIAO W,et al.1,25⁃Dihydroxyvita⁃ min D exerts an antiaging role by activation of Nrf2⁃anti⁃ oxidant signaling and inactivation of p16/p53⁃senescence signaling[J].Aging Cell,2019,18(3):e12951

    • [15] YANG R,CHEN J,ZHANG J,et al.1,25⁃Dihydroxyvita⁃ min D protects against age⁃related osteoporosis by a novel VDR⁃Ezh2⁃p16 signal axis[J].Aging Cell,2020,19(2):e13095

    • [16] QIAO W,YU S,SUN H,et al.1,25⁃Dihydroxy vitamin D insufficiency accelerates age ⁃ related bone loss by in⁃ creasing oxidative stress and all senescence[J].Am J Transl Res,2020,12(2):507-518

    • [17] 崔敏,刘轶宁,庄旻羽,等.Chk2敲除可通过增强抗氧化能力改善由Bmi⁃1缺失所致的小鼠脑衰老表型[J].南京医科大学学报(自然科学版),2021,41(7):963-969

    • [18] ZITTERMANN A,TRUMMER C,THEILER ⁃ SCHWETZ V,et al.Vitamin D and cardiovascular disease:an updat⁃ ed narrative review[J].Int J Mol Sci,2021,22(6):2896

    • [19] HAMPSON G,ELDER G J,COHEN ⁃SOLAL M,et al.A review and perspective on the assessment,management and prevention of fragility fractures in patients with osteo⁃ porosis and chronic kidney disease[J].Endocrine,2021,73(3):509-529

    • [20] LEBOFF M S,CHOU S H,RATLIFF K A,et al.Supple⁃ mental vitamin D and incident fractures in Midlife and Older Adults[J].N Engl J Med,2022,387(4):299-309

    • [21] ANBARCIOGLU E,KIRTILOGLU T,ÖZTÜRK A,et al.Vitamin D deficiency in patients with aggressive periodon⁃ titis[J].Oral Dis,2019,25(1):242-249

    • [22] GOLTZMAN D,MIAO D,PANDA D K,et al.Effects of calcium and of the vitamin D system on skeletal and calci⁃ um homeostasis:lessons from genetic models[J].J Ste⁃ roid Biochem Mol Biol,2004,89:485-489

    • [23] POLIDORO L,PROPERZI G,MARAMPON F,et al.Vita⁃ min D protects human endothelial cells from H2O2 oxidant injury through the Mek/Erk ⁃ Sirt1 axis activation[J].J Cardiovasc Trans Res,2013;6(2):221-231

    • [24] MANOLAGAS S C,PARFITT A M.What old means to bone[J].Trends Endocrin Met,2010,21(6):369⁃374

    • [25] SHARMA P,KAUSHAL N,SALETH L R,et al.Oxida⁃ tive stress ⁃ induced apoptosis and autophagy:balancing the contrary forces in spermatogenesis[J].biochim Bio⁃ phys Acta Mol Basis Dis,2023,1869(6):166742

    • [26] MOHAMMADZADEH A,MIRZA ⁃ AGHAZADEH ⁃ AT⁃ TARI M,HALLAJ S,et al.Crosstalk between p53 and DNA damage response in ageing[J].DNA Repair(Amst),2019,80:8-15

    • [27] GILLMAN R,LOPES FLORO K,WANKELL M,et al.The role of DNA damage and repair in liver cancer[J].Biochim Biophys Acta Rev Cancer,2021,1875(1):188493