en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

邱憬,E-mail:qiujing@njmu.edu.cn

中图分类号:R574

文献标识码:A

文章编号:1007-4368(2024)04-475-08

DOI:10.7655/NYDXBNSN230741

参考文献 1
VOLMER T,EFFENBERGER T,TRAUTNER C,et al.Consequences of long ⁃ term oral corticosteroid therapy and its side⁃effects in severe asthma in adults:a focused review of the impact data in the literature[J].Eur Respir J,2018,52(4):1800703
参考文献 2
KORNBLUTH A,SACHAR D B.Ulcerative colitis prac⁃ tice guidelines in adults:American College of Gastroen⁃ terology,Practice Parameters Committee[J].Am J Gastro⁃ enterol,2010,105(3):501-523
参考文献 3
BILOTTA S,ARBOGAST J,SCHART N,et al.Resvera⁃ trol treatment prevents increase of mast cells in both mu⁃ rine ova enteritis and IL ⁃ 10(-/-)colitis[J].Int J Mol Sci,2022,23(3):1213
参考文献 4
LIU C,JIANG Y,LIU G,et al.PPARGC1A affects inflam⁃ matory responses in photodynamic therapy(PDT)⁃treated inflammatory bowel disease(IBD)[J].Biochem Pharma⁃ co,2022,202:115119
参考文献 5
MARTÍNEZ⁃MOYA P,ROMERO⁃CALVO I,REQUENA P,et al.Dose ⁃dependent antiinflammatory effect of urso⁃ deoxycholic acid in experimental colitis[J].Int Immuno⁃ pharmacol,2013,15(2):372-380
参考文献 6
RENGA B,MENCARELLI A,CIPRIANI S,et al.The bile acid sensor FXR is required for immune ⁃ regulatory activities of TLR ⁃ 9 in intestinal inflammation[J].PLoS One,2013,8(1):e54472
参考文献 7
STENMAN L K,HOLMA R,GYLLING H,et al.Geneti⁃ cally obese mice do not show increased gut permeabilityor faecal bile acid hydrophobicity[J].Br J Nutr,2013,110(6):1157-1164
参考文献 8
MIZOGUCHI A.Animal models of inflammatory bowel disease[J].Prog Mol Biol Transl Sci,2012,105:263-320
参考文献 9
BHAN A K,MIZOGUCHI E,SMITH R N,et al.Colitis in transgenic and knockout animals as models of human in⁃ flammatory bowel disease[J].Immunol Rev,1999,169:195-207
参考文献 10
FUCHS C D,TRAUNER M.Role of bile acids and their receptorsin gastrointestinal and hepatic pathophysiology[J].Nat Rev Gastroenterol Hepatol,2022,19(7):432-450
参考文献 11
BA L,HAO D,WANG X,et al.Transcriptome investiga⁃ tion of anti⁃inflammation and immuno⁃regulation mecha⁃ nism of taurochenodeoxycholic acid[J].BMC Pharmacol Toxicol,2021,22(1):23
参考文献 12
LIU M,MAO W,GUAN H,et al.Effects of taurochenode⁃ oxycholic acid on adjuvant arthritis in rats[J].Int Immu⁃ nopharmacol,2011,11(12):2150-2158
参考文献 13
SETCHELL K D,RODRIGUES C M,CLERICI C,et al.Bile acid concentrations in human and rat liver tissue and in hepatocyte nuclei[J].Gastroenterology,1997,112(1):226-235
参考文献 14
李培锋,刘明强,关红.牛磺鹅去氧胆酸对小鼠脾脏中白介素⁃2基因表达的影响[J].中国畜牧兽医,2009,36(3):66-71
参考文献 15
CHOI S M,PARK J W.Multifunctional effects of a modifi⁃ cation of SLA titanium implant surface with strontium ⁃ containing nanostructures on immunoinflammatory and osteogenic cell function[J].J Biomed Mater Res A,2018,106(12):3009-3020
参考文献 16
LI Q,SHEN A,WANG Z.Enhanced osteogenic differentia⁃ tion of BMSCs and M2 phenotype polarization of macro⁃ phages on a titanium surface modified with graphene oxide for potential implant applications[J].RSC Adv,2020,10(28):16537-16550
参考文献 17
PATIL K R,MAHAJAN U B,UNGER B S,et al.Animal models of inflammation for screening of anti⁃inflammatory drugs:implications for the discovery and development of phytopharmaceuticals[J].Int J Mol Sci,2019,20(18):E4367
参考文献 18
HE J C,LI L,LIU X J,et al.Epoxymicheliolide prevents dextran sulfate sodium⁃induced colitis in mice by inhibi⁃ ting TAK1 ⁃ NF ⁃ kappaB pathway and activating Keap1 ⁃ NRF2 signaling in macrophages[J].Int Immunopharma⁃ col,2022,113(Pt A):109404
参考文献 19
LI L,LIU C,LIU M Q,et al.Taurochenodeoxycholic acid induces apoptosis of fibroblast ⁃like synoviocytes[J].Eur J Pharmaco,2013,706(1-3):36-40
参考文献 20
LI L,LIU C,MAO W,et al.Taurochenodeoxycholic acid inhibited AP ⁃ 1 activation via stimulating glucocorticoid receptor[J].Molecules,2019,24(24):E4513
参考文献 21
HUANG S S,ZHANG S,CHEN L M,et al.Lipopolysac⁃ charide induced intestinal epithelial injury:a novel orga⁃ noids⁃based model for sepsis in vitro[J].Chinese Medical Journal Chin Med J(Engl),2022,135(18):2232-2239
参考文献 22
BIRCHENOUGH G M H,NYSTRÖM E E L,JOHANS⁃ SON M E V,et al.A sentinel goblet cell guards the colonic crypt by triggering Nlrp6⁃ dependent Muc2 secretion[J].Science,2016,352(6293):1535-1542
参考文献 23
WU J W,WEI Z H,CHENG P,et al.Rhein modulates host purine metabolism in intestine through gut microbiota and ameliorates experimental colitis[J].Theranostics,2020,10(23):10665-10679
参考文献 24
VANCAMELBEKE M,VANUYTSEL T,FARRÉ R,et al.Genetic and transcriptomic bases of intestinal epithelial barrier dysfunction in inflammatory bowel disease[J].In⁃ flamm Bowel Dis,2017,23(10):1718-1729
参考文献 25
CAPRARA G,ALLAVENA P,ERRENI M.Intestinal macrophages at the crossroad between diet,inflamma⁃ tion,and cancer[J].Int J Mol Sci,2020,21(14):E4825
目录contents

    摘要

    目的:分析牛磺鹅去氧胆酸(taurochenodeoxycholic acid,TCDCA)对肠道炎症的疗效,为肠道急慢性炎症的治疗提供理论依据。方法:体内外实验分组均为对照组、脂多糖(lipopolysaccharide,LPS)组、LPS+TCDCA组。体外实验中首先应用MTT 法筛选TCDCA的适宜工作浓度,随后LPS组给予巨噬细胞LPS刺激,LPS+TCDCA组先后给予LPS与TCDCA刺激,RT-qPCR和 Western blot检测炎症相关mRNA和蛋白的表达。体内实验中,LPS组通过兔耳缘静脉注射LPS溶液,LPS+TCDCA组同上处理后通过饮水喂食TCDCA溶液。通过HE染色、过碘酸-雪夫染色和阿尔新蓝-核固红染色评估小肠的组织病理学改变。结果:体外实验结果显示,与LPS组相比,LPS+TCDCA组巨噬细胞中肿瘤坏死因子-α、白介素-1β、白介素-6、干扰素-γ表达量显著降低,白介素-10表达量升高。体内实验中,HE染色结果显示小肠组织炎症缓解,过碘酸-雪夫染色和阿尔新蓝-核固红染色结果显示LPS+TCDCA组杯状细胞数量和酸性、中性黏蛋白分泌量均较LPS组增多。结论:TCDCA可通过降低炎症因子的表达缓解兔肠道组织炎症,减轻LPS造成的肠道炎症损伤。

    Abstract

    Objective:To analyze the efficacy of taurochenodeoxycholic acid(TCDCA)on intestinal inflammation and to provide a theoretical basis for the treatment of acute and chronic intestinal inflammation. Methods:In the in vitro and in vitro experiments,the cells and animals were devided into the control group,lipopolysaccharide(LPS)group,and LPS + TCDCA group. In the in vitro experiments,MTT method was firstly applied to screen the appropriate working concentration of TCDCA,and then LPS stimulation was given to the LPS group,and LPS and TCDCA stimulation were given to the LPS + TCDCA group subsequently. The expression of inflammation-related mRNAs and proteins were examined by RT-qPCR and Western blot,respectively . In the in vivo experiments,the LPS group was injected with LPS solution intravenously through the ear margin of rabbits,and the LPS+TCDCA group was treated as above and then fed with TCDCA solution through drinking water. Histopathological alterations of the samples were assessed by HE staining,periodic acid-Schiff staining and Alcian blue-nuclear fast red staining after experimental sampling. Results:The results of in vitro experiments showed that the expression of tumor necrosis factor-α,interleukin-1β,interleukin-6,and interferon-γ indexes was significantly reduced and the expression of interleukin-10 indexes was elevated in macrophages in the LPS+TCDCA group compared with that in the LPS group. In the in vivo experiments,the results of HE staining showed that the inflammation of intestinal tissues was relieved,and the results of periodic acid-Schiff staining and Alcian blue-nucleic solid red staining showed that the number of cup cells and the secretion of acidic as well as neutral mucins in the LPS + TCDCA group increased compared with those in the LPS group. Conclusion:TCDCA alleviates intestinal tissue inflammation and reduces intestinal inflammatory damage caused by LPS by decreasing the expression of inflammatory factors.

  • 肠道炎症性疾病以反复发作的急慢性炎症为特点,发病机制多样[1]。然而,目前临床上针对该疾病的常用药物疗效有限,多有不良反应[2-3],治疗的规范化标准尚未建立。

  • 化学试剂、基因敲除和转基因动物诱导的肠道炎症模型在科学研究中应用广泛,其中脂多糖 (lipopolysaccharide,LPS)是诱导炎症的常用实验试剂[4-5]。LPS 是革兰氏阴性菌外壁层的重要化学成分之一,是炎症的有效激活剂[6]。牛磺鹅去氧胆酸 (taurochenodeoxycholic acid,TCDCA)是鹅去氧胆酸的牛磺酸偶联形式,是一种结合型胆汁酸[7]。牛磺熊去氧胆酸和熊去氧胆酸已被证实可改善肠道屏障功能障碍[8] 和调节肠道微生物平衡[9]。已有研究发现,TCDCA可通过多种信号通路调节炎症反应与免疫功能[10-11],具有治疗肠道炎症的潜在价值。因此,本研究构建体内外炎症模型,评估 TCDCA 对 LPS 诱导的肠道炎症的影响及作用机制,以探索 TCDCA在治疗急慢性肠道炎症中的作用。

  • 1 材料和方法

  • 1.1 材料

  • Raw264.7巨噬细胞(中国科学院上海细胞库), DMEM 高糖培养基、胎牛血清、青霉素/链霉素双抗溶液(Gibco 公司,美国),TCDCA(纯度>98%;上海麦克林生化科技股份有限公司),LPS(Sigma⁃Aldrich 公司,美国),TRIzol(Invitrogen Carlsbad公司,美国), Prime Script RT Master Mix、SYBR Premix ExTaq Ⅱ (TaKaRa 公司,日本),PVDF 膜(Millipore 公司,美国),RIPA缓冲液、快速封闭液、ECL化学发光试剂盒(苏州新赛美生物科技有限公司),实验用新西兰白兔(邳州市东方养殖有限公司),盐酸赛拉嗪(陆眠宁;吉林省华牧动物保健品公司),4%多聚甲醛溶液(北京兰杰柯科技有限公司),苏木精⁃伊红 (hematoxylin⁃eosin,HE)染色试剂盒(南京建成生物工程研究所),MTT溶液、BCA蛋白质测定试剂盒、阿尔新蓝⁃核固红染色试剂盒、过碘酸⁃雪夫(periodic acid⁃Schiff,PAS)染色试剂盒(上海碧云天生物技术有限公司),白介素⁃1β(interleukin⁃1β,IL⁃1β)抗体、白介素⁃6(interleukin⁃6,IL⁃6)抗体、p65 抗体、 p⁃p65 抗体、ΙκBα抗体、p⁃ΙκBα抗体(CST 公司,美国),GAPDH 抗体(武汉三鹰技术有限公司),山羊抗兔IgG、山羊抗小鼠IgG(北京中杉金桥公司)。

  • 1.2 方法

  • 1.2.1 Raw264.7巨噬细胞培养

  • Raw264.7巨噬细胞在含有1%青霉素/链霉素和 10%胎牛血清的 DMEM 高糖培养基中培养,并在 5% CO2加湿培养箱中于37℃下生长,按规定更换培养基。

  • 1.2.2 细胞毒性实验

  • 实验分为 TCDCA 组和 LPS+TCDCA 组。在 96 孔板中接种Raw264.7巨噬细胞(5×103 个/孔),培养箱中培养24 h后,TCDCA组加入不同浓度的TCDCA 溶液(0、0.1、1.0、10.0、100.0 μmol/L)刺激 4 h,LPS+ TCDCA组先加入含100 mg/mL LPS的完全培养基培养 2 h,后将培养基更换为上述含梯度浓度 TCDCA 的完全培养基继续培养4 h。后续实验步骤两组一致,均为刺激结束后将培养基替换为含10 μL MTT 溶液的100 μL新鲜培养基,37℃孵育4 h。每孔加入100 μL Formazan溶解液、混匀、37℃孵育4 h。使用微孔板分光光度计测量波长490 nm处的吸光度,每组设3个重复孔。

  • 1.2.3 定量实时聚合酶链反应(RT⁃qPCR)检测巨噬细胞炎症相关mRNA的表达

  • Raw264.7巨噬细胞接种于6孔板(1×105 个/孔),培养24 h后,对照组更换新鲜培养基,LPS组更换含 100 mg/mL LPS 的完全培养基,LPS+TCDCA 组更换上述含 100 mg/mL LPS 的完全培养基刺激 2 h,PBS 漂洗3遍,更换含1 μmol/L TCDCA的完全培养基培养 4 h。根据制造商的说明使用 TRIzol 试剂从细胞中提取总 RNA,然后使用 Prime Script RT Master Mix 逆转录成互补 DNA(cDNA)。然后使用 SYBR Premix ExTaq Ⅱ 和 QuantStudioTM 7 Flex System 以cDNA为模板进行RT⁃qPCR扩增。RT⁃qPCR反应条件:预变性95℃ 30 s;40次循环95℃变性10 s,60℃ 退火30 s;95℃变性15 s,60℃退火60 s,95℃变性 15 s。以GAPDH作为内参,采用2-ΔΔCt法计算目的基因mRNA相对表达量。引物序列见表1。

  • 表1 Real⁃time PCR引物序列

  • Table1 Primer sequences used for real⁃time PCR

  • F: forward;R:reverse.

  • 1.2.4 Western blot 检测巨噬细胞炎症相关蛋白水平和NF⁃κB信号通路的活性

  • 细胞培养同前。使用含1% PMSF的RIPA缓冲液提取总蛋白,使用BCA 蛋白质测定试剂盒定量。提取的蛋白质样品通过10% SDS⁃PAGE分离、转移到PVDF膜、快速封闭液中封闭1 h、4℃下与一抗杂交过夜,TBST 漂洗3次,加二抗室温孵育1 h,TBST 漂洗 3 次。加入 ECL 化学发光试剂,使用多功能化学发光凝胶成像系统检测内参 GAPDH、炎症相关蛋白(IL⁃1β和 IL⁃6)、NF⁃κB 信号通路相关蛋白 (p⁃IκBα、ΙκBα、p⁃p65 和 p65)的表达水平。使用 Image J 软件定量分析蛋白条带灰度值并计算相对表达水平。

  • 1.2.5 动物实验操作

  • 所有动物实验均经南京医科大学实验动物伦理委员会批准,批准文号:IACUC⁃2303028。实验用新西兰白兔12只,体重(2.5±0.2)kg,适应性饲养 1周,均采用单笼饲养,自由进食。12只新西兰白兔分3组:空白组、LPS组、LPS+TCDCA 组。术前24 h 实验动物禁食。实验开始前配制0.09%生理盐水、 20 μg/mL LPS溶液、10 mg/L TCDCA溶液,所有溶液现配现用。每只兔称重,使用0.05 mL/kg 盐酸赛拉嗪肌肉注射,全身肌肉松弛后,俯卧位固定于手术台。取兔一侧耳缘静脉注射,对照组注射0.09%生理盐水 1.5 mL,LPS 组和 LPS+TCDCA 组均注射 20 μg/mL LPS 溶液 10 μg/kg。术后第 2 天起,每 2 d 喂食LPS+TCDCA组10 mg/L TCDCA溶液20 mL/kg,饮水喂药结束后其他时间自由进水,饮水喂药持续2周。

  • 饮水喂药2周后处死实验动物,观察肠道色泽、形态,取小肠中上段标本使用 4%多聚甲醛溶液固定,4℃冰箱中保存备用。

  • 1.2.6 小肠组织石蜡切片染色观察组织病理变化

  • 肠道样本于 4%多聚甲醛中固定 48 h 后取出,流水冲洗过夜,自动组织脱水机脱水、石蜡包埋、全自动半薄轮转切片机切成5 μm薄片,分别使用HE 染色试剂盒、阿尔新蓝⁃核固红染色试剂盒、PAS染色试剂盒染色,正置荧光显微镜下观察染色结果。

  • 1.3 统计学方法

  • 所有数据均采用SPSS 23.0分析,计量资料以均数±标准差(x-±s)表示,进行方差齐性检验,显示方差齐,两组间比较采用t检验,多组间进行单因素方差分析和 SNK 多重比较,P <0.05 为差异有统计学意义。

  • 2 结果

  • 2.1 细胞毒性实验

  • 探究 TCDCA 对巨噬细胞活性的影响,筛选 TCDCA的适宜浓度。MTT法检测不同浓度TCDCA 溶液(0、0.1、1.0、10.0、100.0 μmol/L)刺激 4 h 后 Raw264.7巨噬细胞的细胞活性。如图所示,TCDCA 组中,与0、0.1、10.0、100.0 μmol/L TCDCA溶液相比, 1.0 μmol/L TCDCA溶液刺激下,Raw264.7显示较高的细胞活性。LPS+TCDCA组在LPS刺激2 h后更换为含不同浓度TCDCA的培养基。如图1所示,综合考虑两组实验结果,当 TCDCA 浓度为 1.0 μmol/L 时,细胞呈现较高的活性,故选取该浓度作为后续细胞实验的工作浓度。

  • 2.2 TCDCA降低Raw264.7细胞中炎症相关细胞因子的表达水平

  • 采用RT⁃qPCR和Western blot检测细胞中促炎和抗炎因子的基因表达,探究TCDCA是否能够缓解LPS 刺激下的炎症反应。肿瘤坏死因子⁃α(tumor necrosis factor⁃α,TNF⁃α)、IL⁃1β和干扰素⁃γ(interferon⁃γ, IFN⁃ γ)为促炎因子,白介素⁃10(interleukin⁃10, IL⁃10)为抗炎因子,CD80 是巨噬细胞 M1 型极化的标志,CD206是巨噬细胞M2型极化的标志。RT⁃qP⁃ CR 检测结果显示,与 LPS 组相比,LPS+TCDCA 组 TNF⁃α、IL⁃1β和 IFN⁃γ显著下调,IL⁃10 显著上调, CD80 显著下调,CD206 显著上调(图2)。Western blot结果显示LPS+TCDCA组IL⁃1β和IL⁃6较LPS组显著下调(图3)。该结果提示 TCDCA 具有一定的抗炎活性。

  • 图1 MTT法检测巨噬细胞活性

  • Figure1 The activity of macrophages detected by MTT

  • 2.3 TCDCA对Raw264.7细胞中NF⁃κB信号通路的调控

  • 采用Western blot检测p65、p⁃p65、IκBα和p⁃IκBα 的表达,实验结果如图4 所示。与对照组相比,p⁃p65/p⁃65和p⁃IκBα/IκBα在LPS组中显著增加。与 LPS组相比,LPS+TCDCA组中p⁃p65/p⁃65和p⁃IκBα/ IκBα显著降低。该结果提示,TCDCA可通过NF⁃κB 信号通路来减轻LPS诱导的细胞炎症。

  • 2.4 TCDCA缓解LPS刺激的肠道炎症性损伤

  • 小肠中上段组织实体图如图5 所示。对小肠组织石蜡切片进行 HE 染色、PAS 染色和阿尔新蓝⁃核固红染色评估小肠组织样本的组织病理学特征。

  • HE染色结果如图6所示,LPS组小肠绒毛间可见明显新生血管及血管性渗出,同时,在LPS组可以看到明显的炎性细胞浸润,而在TCDCA作用下血管性渗出较少,炎性细胞浸润较少。

  • 图2 TCDCA对LPS刺激作用下巨噬细胞中炎症相关因子及巨噬细胞M1、M2极化标志物表达量的影响

  • Figure2 The effect of TCDCA on the expression of inflammatory related factors and polarization markers M1 and M2 in macrophages under LPS stimulation

  • 图3 TCDCA对LPS刺激作用下巨噬细胞中炎症相关蛋白表达量的影响

  • Figure3 The effect of TCDCA on the expression of inflammation⁃related proteins in macrophages under LPS stimulation

  • 图4 TCDCA对LPS刺激作用下的巨噬细胞中NF⁃κB信号通路的影响

  • Figure4 The effect of TCDCA on the NF⁃κB signaling pathway in macrophages stimulated by LPS

  • 图5 动物实验及肠道组织大体表现

  • Figure5 Animal experiment and the gross manifestation of animal intestinal tissue

  • 小肠绒毛上皮细胞中有大量的杯状细胞,杯状细胞分泌黏蛋白和黏多糖组成的凝胶状黏液,维护小肠正常功能。PAS 染色结果显示,杯状细胞分泌的黏蛋白呈现紫红色。与对照组相比,LPS 诱导小肠绒毛中的黏蛋白分泌量减少,而 TCDCA 干预后,黏蛋白分泌量较 LPS 组增多(图7),表明 TCDCA在一定程度上恢复了杯状细胞的分泌功能。

  • 使用阿尔新蓝⁃核固红染色评估杯状细胞中的酸性黏蛋白水平,染色结果如图8所示,酸性黏蛋白染色呈蓝色,杯状细胞核染色呈红色。与对照组相比,LPS组杯状细胞数量显著降低,酸性黏蛋白分泌量较低,而TCDCA组中,杯状细胞数量与酸性黏蛋白分泌量均较LPS组有所改善。由此可见,TCDCA 可以恢复由LPS导致的杯状细胞损伤。

  • 图6 Control组、LPS组、LPS+TCDCA组新西兰白兔小肠石蜡切片HE染色结果

  • Figure6 HE staining results of small intestine paraffin sections of New Zealand white rabbits in the control group,LPS group,and LPS+TCDCA group

  • 图7 Control组、LPS组、LPS+TCDCA组新西兰白兔小肠石蜡切片PAS染色结果

  • Figure7 PAS staining results of small intestine paraffin sections of New Zealand white rabbits in the control group,LPS group,and LPS+TCDCA group

  • 3 讨论

  • TCDCA 是一种结合型胆汁酸,是胆汁的主要活性物质之一,在肝脏和胃肠道的代谢中有重要的调控作用[12]。研究表明,大鼠肝细胞在胆汁酸浓度约 50 μmol/L 时会发生细胞死亡,而小鼠肝细胞在 500 μmol/L 时存活,人肝细胞在 0.5~1.0 mmol/L 时依然有活性[13]。TCDCA 对小鼠血清中IL⁃1β水平以及脾细胞IL⁃2 基因表达呈现药物剂量依赖性的调节作用[14]。本研究同样证实,适宜浓度的TCDCA 对肠道炎症有一定的缓解作用。

  • 本研究结果显示,一定浓度的TCDCA可以减轻 LPS刺激引起的炎症反应。巨噬细胞可以根据环境刺激的不同转化为不同表型,包括经典活化的促炎 M1 型和选择性活化的抗炎 M2 型,进而分泌相应的促炎/抗炎因子来调节免疫微环境[15-16]。CD80和 CD86是M1型极化的标志,CD163和CD206是M2型极化的标志。在本研究中,TCDCA 作用下 CD80 表达量下调,CD206 表达量较 LPS 组增高,表明 TCDCA使巨噬细胞促炎极化减少,可以缓解炎症反应。目前普遍认为,细胞因子在调节免疫反应和炎症过程发挥着关键作用。TNF⁃α、IL⁃1β和IL⁃6等参与调节靶细胞中的黏附分子表达、细胞生长、凋亡等[17]。既往研究发现,TCDCA 可抑制炎症反应,参与宿主免疫调节[18]。Li等[19] 研究发现TCDCA降低毛细血管通透性,对二甲苯诱导的小鼠耳垂水肿具有抗炎活性。此外,它抑制关节炎大鼠滑膜组织和血浆中TNF⁃α、IL⁃1β和IL⁃6的表达[20]。以上结果表明,TCDCA 能显著抑制疾病中的炎症反应,与本研究结果一致。但TCDCA在肠道炎症方面的研究较少。肠道固有层含有丰富的巨噬细胞群,巨噬细胞对于炎症过程至关重要[21]。本研究发现,TCDCA 可以显著抑制巨噬细胞中促炎因子表达,减轻炎症反应。

  • 图8 Control组、LPS组、LPS+TCDCA组新西兰白兔小肠石蜡切片阿利新蓝⁃核固红染色结果

  • Figure8 Alcian blue⁃nuclear fast red staining results of small intestine paraffin sections of New Zealand white rabbits in the control group,LPS group,and LPS+TCDCA group

  • 关于TCDCA调控炎症反应的机制,Birchenough 等[22] 研究发现,TCDCA可能通过激活NF⁃κB通路,促进辅助关节炎成纤维细胞样滑膜细胞凋亡而抑制类风湿性关节炎的发生发展,可作为类风湿性关节炎的潜在治疗剂。TCDCA 也可抑制激活蛋白 AP⁃1的转录和表达而发挥抗炎和免疫调节特性[23]。NF⁃κB一旦被磷酸化激活,就会诱导产生大量炎症因子,如 TNF⁃α、IL⁃1β、IL⁃6 等,对加剧炎症反应和导致组织损伤起协同作用[24]。在本研究中,加入 TCDCA 后 p⁃p65/p65 和 p⁃IκBα/IκBα的比值显著降低,表明TCDCA可以降低NF⁃κB通路活性,进而缓解巨噬细胞的炎症反应,这与之前的研究结果一致。

  • 本研究发现,TCDCA 可降低小肠炎症反应程度,中性黏蛋白、酸性黏蛋白分泌量及杯状细胞数量显著增加。大量研究表明,LPS可以破坏肠道屏障,导致小肠绒毛萎缩、隐窝丢失、炎症细胞浸润、肠道通透性增加[25]。这与动物实验LPS组的染色结果相一致。实验结果显示,TCDCA恢复了小肠杯状细胞数量和分泌功能,在一定程度上增强肠道屏障完整性,减轻肠道损伤程度。

  • 综上所述,本研究证实 TCDCA 可缓解 LPS 诱导的兔小肠炎症反应,初步探索了 TCDCA 可通过 NF⁃κB通路发挥其抗炎作用,拓展了TCDCA在治疗肠道炎症性疾病中的潜在应用。但TCDCA发挥抗炎作用的机制尚未完全明确,TCDCA的临床应用尚处于实验阶段,其不良反应、用法、用量及机制等还有待进一步的科学验证。

  • 参考文献

    • [1] VOLMER T,EFFENBERGER T,TRAUTNER C,et al.Consequences of long ⁃ term oral corticosteroid therapy and its side⁃effects in severe asthma in adults:a focused review of the impact data in the literature[J].Eur Respir J,2018,52(4):1800703

    • [2] KORNBLUTH A,SACHAR D B.Ulcerative colitis prac⁃ tice guidelines in adults:American College of Gastroen⁃ terology,Practice Parameters Committee[J].Am J Gastro⁃ enterol,2010,105(3):501-523

    • [3] BILOTTA S,ARBOGAST J,SCHART N,et al.Resvera⁃ trol treatment prevents increase of mast cells in both mu⁃ rine ova enteritis and IL ⁃ 10(-/-)colitis[J].Int J Mol Sci,2022,23(3):1213

    • [4] LIU C,JIANG Y,LIU G,et al.PPARGC1A affects inflam⁃ matory responses in photodynamic therapy(PDT)⁃treated inflammatory bowel disease(IBD)[J].Biochem Pharma⁃ co,2022,202:115119

    • [5] MARTÍNEZ⁃MOYA P,ROMERO⁃CALVO I,REQUENA P,et al.Dose ⁃dependent antiinflammatory effect of urso⁃ deoxycholic acid in experimental colitis[J].Int Immuno⁃ pharmacol,2013,15(2):372-380

    • [6] RENGA B,MENCARELLI A,CIPRIANI S,et al.The bile acid sensor FXR is required for immune ⁃ regulatory activities of TLR ⁃ 9 in intestinal inflammation[J].PLoS One,2013,8(1):e54472

    • [7] STENMAN L K,HOLMA R,GYLLING H,et al.Geneti⁃ cally obese mice do not show increased gut permeabilityor faecal bile acid hydrophobicity[J].Br J Nutr,2013,110(6):1157-1164

    • [8] MIZOGUCHI A.Animal models of inflammatory bowel disease[J].Prog Mol Biol Transl Sci,2012,105:263-320

    • [9] BHAN A K,MIZOGUCHI E,SMITH R N,et al.Colitis in transgenic and knockout animals as models of human in⁃ flammatory bowel disease[J].Immunol Rev,1999,169:195-207

    • [10] FUCHS C D,TRAUNER M.Role of bile acids and their receptorsin gastrointestinal and hepatic pathophysiology[J].Nat Rev Gastroenterol Hepatol,2022,19(7):432-450

    • [11] BA L,HAO D,WANG X,et al.Transcriptome investiga⁃ tion of anti⁃inflammation and immuno⁃regulation mecha⁃ nism of taurochenodeoxycholic acid[J].BMC Pharmacol Toxicol,2021,22(1):23

    • [12] LIU M,MAO W,GUAN H,et al.Effects of taurochenode⁃ oxycholic acid on adjuvant arthritis in rats[J].Int Immu⁃ nopharmacol,2011,11(12):2150-2158

    • [13] SETCHELL K D,RODRIGUES C M,CLERICI C,et al.Bile acid concentrations in human and rat liver tissue and in hepatocyte nuclei[J].Gastroenterology,1997,112(1):226-235

    • [14] 李培锋,刘明强,关红.牛磺鹅去氧胆酸对小鼠脾脏中白介素⁃2基因表达的影响[J].中国畜牧兽医,2009,36(3):66-71

    • [15] CHOI S M,PARK J W.Multifunctional effects of a modifi⁃ cation of SLA titanium implant surface with strontium ⁃ containing nanostructures on immunoinflammatory and osteogenic cell function[J].J Biomed Mater Res A,2018,106(12):3009-3020

    • [16] LI Q,SHEN A,WANG Z.Enhanced osteogenic differentia⁃ tion of BMSCs and M2 phenotype polarization of macro⁃ phages on a titanium surface modified with graphene oxide for potential implant applications[J].RSC Adv,2020,10(28):16537-16550

    • [17] PATIL K R,MAHAJAN U B,UNGER B S,et al.Animal models of inflammation for screening of anti⁃inflammatory drugs:implications for the discovery and development of phytopharmaceuticals[J].Int J Mol Sci,2019,20(18):E4367

    • [18] HE J C,LI L,LIU X J,et al.Epoxymicheliolide prevents dextran sulfate sodium⁃induced colitis in mice by inhibi⁃ ting TAK1 ⁃ NF ⁃ kappaB pathway and activating Keap1 ⁃ NRF2 signaling in macrophages[J].Int Immunopharma⁃ col,2022,113(Pt A):109404

    • [19] LI L,LIU C,LIU M Q,et al.Taurochenodeoxycholic acid induces apoptosis of fibroblast ⁃like synoviocytes[J].Eur J Pharmaco,2013,706(1-3):36-40

    • [20] LI L,LIU C,MAO W,et al.Taurochenodeoxycholic acid inhibited AP ⁃ 1 activation via stimulating glucocorticoid receptor[J].Molecules,2019,24(24):E4513

    • [21] HUANG S S,ZHANG S,CHEN L M,et al.Lipopolysac⁃ charide induced intestinal epithelial injury:a novel orga⁃ noids⁃based model for sepsis in vitro[J].Chinese Medical Journal Chin Med J(Engl),2022,135(18):2232-2239

    • [22] BIRCHENOUGH G M H,NYSTRÖM E E L,JOHANS⁃ SON M E V,et al.A sentinel goblet cell guards the colonic crypt by triggering Nlrp6⁃ dependent Muc2 secretion[J].Science,2016,352(6293):1535-1542

    • [23] WU J W,WEI Z H,CHENG P,et al.Rhein modulates host purine metabolism in intestine through gut microbiota and ameliorates experimental colitis[J].Theranostics,2020,10(23):10665-10679

    • [24] VANCAMELBEKE M,VANUYTSEL T,FARRÉ R,et al.Genetic and transcriptomic bases of intestinal epithelial barrier dysfunction in inflammatory bowel disease[J].In⁃ flamm Bowel Dis,2017,23(10):1718-1729

    • [25] CAPRARA G,ALLAVENA P,ERRENI M.Intestinal macrophages at the crossroad between diet,inflamma⁃ tion,and cancer[J].Int J Mol Sci,2020,21(14):E4825

  • 参考文献

    • [1] VOLMER T,EFFENBERGER T,TRAUTNER C,et al.Consequences of long ⁃ term oral corticosteroid therapy and its side⁃effects in severe asthma in adults:a focused review of the impact data in the literature[J].Eur Respir J,2018,52(4):1800703

    • [2] KORNBLUTH A,SACHAR D B.Ulcerative colitis prac⁃ tice guidelines in adults:American College of Gastroen⁃ terology,Practice Parameters Committee[J].Am J Gastro⁃ enterol,2010,105(3):501-523

    • [3] BILOTTA S,ARBOGAST J,SCHART N,et al.Resvera⁃ trol treatment prevents increase of mast cells in both mu⁃ rine ova enteritis and IL ⁃ 10(-/-)colitis[J].Int J Mol Sci,2022,23(3):1213

    • [4] LIU C,JIANG Y,LIU G,et al.PPARGC1A affects inflam⁃ matory responses in photodynamic therapy(PDT)⁃treated inflammatory bowel disease(IBD)[J].Biochem Pharma⁃ co,2022,202:115119

    • [5] MARTÍNEZ⁃MOYA P,ROMERO⁃CALVO I,REQUENA P,et al.Dose ⁃dependent antiinflammatory effect of urso⁃ deoxycholic acid in experimental colitis[J].Int Immuno⁃ pharmacol,2013,15(2):372-380

    • [6] RENGA B,MENCARELLI A,CIPRIANI S,et al.The bile acid sensor FXR is required for immune ⁃ regulatory activities of TLR ⁃ 9 in intestinal inflammation[J].PLoS One,2013,8(1):e54472

    • [7] STENMAN L K,HOLMA R,GYLLING H,et al.Geneti⁃ cally obese mice do not show increased gut permeabilityor faecal bile acid hydrophobicity[J].Br J Nutr,2013,110(6):1157-1164

    • [8] MIZOGUCHI A.Animal models of inflammatory bowel disease[J].Prog Mol Biol Transl Sci,2012,105:263-320

    • [9] BHAN A K,MIZOGUCHI E,SMITH R N,et al.Colitis in transgenic and knockout animals as models of human in⁃ flammatory bowel disease[J].Immunol Rev,1999,169:195-207

    • [10] FUCHS C D,TRAUNER M.Role of bile acids and their receptorsin gastrointestinal and hepatic pathophysiology[J].Nat Rev Gastroenterol Hepatol,2022,19(7):432-450

    • [11] BA L,HAO D,WANG X,et al.Transcriptome investiga⁃ tion of anti⁃inflammation and immuno⁃regulation mecha⁃ nism of taurochenodeoxycholic acid[J].BMC Pharmacol Toxicol,2021,22(1):23

    • [12] LIU M,MAO W,GUAN H,et al.Effects of taurochenode⁃ oxycholic acid on adjuvant arthritis in rats[J].Int Immu⁃ nopharmacol,2011,11(12):2150-2158

    • [13] SETCHELL K D,RODRIGUES C M,CLERICI C,et al.Bile acid concentrations in human and rat liver tissue and in hepatocyte nuclei[J].Gastroenterology,1997,112(1):226-235

    • [14] 李培锋,刘明强,关红.牛磺鹅去氧胆酸对小鼠脾脏中白介素⁃2基因表达的影响[J].中国畜牧兽医,2009,36(3):66-71

    • [15] CHOI S M,PARK J W.Multifunctional effects of a modifi⁃ cation of SLA titanium implant surface with strontium ⁃ containing nanostructures on immunoinflammatory and osteogenic cell function[J].J Biomed Mater Res A,2018,106(12):3009-3020

    • [16] LI Q,SHEN A,WANG Z.Enhanced osteogenic differentia⁃ tion of BMSCs and M2 phenotype polarization of macro⁃ phages on a titanium surface modified with graphene oxide for potential implant applications[J].RSC Adv,2020,10(28):16537-16550

    • [17] PATIL K R,MAHAJAN U B,UNGER B S,et al.Animal models of inflammation for screening of anti⁃inflammatory drugs:implications for the discovery and development of phytopharmaceuticals[J].Int J Mol Sci,2019,20(18):E4367

    • [18] HE J C,LI L,LIU X J,et al.Epoxymicheliolide prevents dextran sulfate sodium⁃induced colitis in mice by inhibi⁃ ting TAK1 ⁃ NF ⁃ kappaB pathway and activating Keap1 ⁃ NRF2 signaling in macrophages[J].Int Immunopharma⁃ col,2022,113(Pt A):109404

    • [19] LI L,LIU C,LIU M Q,et al.Taurochenodeoxycholic acid induces apoptosis of fibroblast ⁃like synoviocytes[J].Eur J Pharmaco,2013,706(1-3):36-40

    • [20] LI L,LIU C,MAO W,et al.Taurochenodeoxycholic acid inhibited AP ⁃ 1 activation via stimulating glucocorticoid receptor[J].Molecules,2019,24(24):E4513

    • [21] HUANG S S,ZHANG S,CHEN L M,et al.Lipopolysac⁃ charide induced intestinal epithelial injury:a novel orga⁃ noids⁃based model for sepsis in vitro[J].Chinese Medical Journal Chin Med J(Engl),2022,135(18):2232-2239

    • [22] BIRCHENOUGH G M H,NYSTRÖM E E L,JOHANS⁃ SON M E V,et al.A sentinel goblet cell guards the colonic crypt by triggering Nlrp6⁃ dependent Muc2 secretion[J].Science,2016,352(6293):1535-1542

    • [23] WU J W,WEI Z H,CHENG P,et al.Rhein modulates host purine metabolism in intestine through gut microbiota and ameliorates experimental colitis[J].Theranostics,2020,10(23):10665-10679

    • [24] VANCAMELBEKE M,VANUYTSEL T,FARRÉ R,et al.Genetic and transcriptomic bases of intestinal epithelial barrier dysfunction in inflammatory bowel disease[J].In⁃ flamm Bowel Dis,2017,23(10):1718-1729

    • [25] CAPRARA G,ALLAVENA P,ERRENI M.Intestinal macrophages at the crossroad between diet,inflamma⁃ tion,and cancer[J].Int J Mol Sci,2020,21(14):E4825