en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

郁志明,E-mail:yuzhimi8660@sina.com

中图分类号:R541.9

文献标识码:A

文章编号:1007-4368(2024)04-573-07

DOI:10.7655/NYDXBNSN230749

参考文献 1
DEMIR S,NAWROTH P P,HERZIG S,et al.Emerging targets in type 2 diabetes and diabetic complications[J].Adv Sci(Weinh),2021,8(18):e2100275
参考文献 2
GLOVACI D,FAN W,WONG N D.Epidemiology of dia⁃ betes mellitus and cardiovascular disease[J].Curr Cardi⁃ ol Rep,2019,21(4):21
参考文献 3
JIN Z Q.MicroRNA targets and biomarker validation for diabetes ⁃associated cardiac fibrosis[J].Pharmacol Res,2021,174:105941
参考文献 4
YAO Y,SONG Q,HU C,et al.Endothelial cell metabolic memory causes cardiovascular dysfunction in diabetes[J].Cardiovasc Res,2022,118(1):196-211
参考文献 5
REILY⁃BELL M,BAHN A,KATARE R.Reactive oxygen species⁃mediated diabetic heart disease:mechanisms and therapies[J].Antioxid Redox Signal,2022,36(10⁃12):608-630
参考文献 6
DINESEN S,EL ⁃ FAITAROUNI A,FRISK N L S,et al.Circulating microRNA as biomarkers for gestational dia⁃ betes mellitus⁃a systematic review and meta⁃analysis[J].Int J Mol Sci,2023,24(7):6186
参考文献 7
CONSTANSO⁃CONDE I,HERMIDA⁃PRIETO M,BARGE⁃ CABALLERO E,et al.Circulating miR⁃181a⁃5p as a new biomarker for acute cellular rejection in heart transplanta⁃ tion[J].J Heart Lung Transplant,2020,39(10):1100-1108
参考文献 8
KALLURI R,LEBLEU V S.The biology,function,and biomedical applications of exosomes[J].Science,2020,367(6478):eaau6977
参考文献 9
MATHIEU M,MARTIN ⁃ JAULAR L,LAVIEU G,et al.Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell ⁃to ⁃ cell communication[J].Nat Cell Biol,2019,21(1):9-17
参考文献 10
MORI M A,LUDWIG R G,GARCIA ⁃MARTIN R,et al.Extracellular miRNAs:from biomarkers to mediators of physiology and disease[J].Cell Metab,2019,30(4):656-673
参考文献 11
WONNACOTT A,DENBY L,COWARD R J M,et al.Mi⁃ croRNAs and their delivery in diabetic fibrosis[J].Adv Drug Deliv Rev,2022,182:114045
参考文献 12
顾寰宇,李姗姗,王芹,等.血浆外泌体通过微小 RNA⁃25⁃3p对心肌纤维化影响的初步研究[J].南京医科大学学报(自然科学版),2022,42(11):1515-1522
参考文献 13
GU Y Y,LU F H,HUANG X R,et al.Non⁃coding RNAs as biomarkers and therapeutic targets for diabetic kidney disease[J].Front Pharmacol,2021,11:583528
参考文献 14
CASTAÑO C,KALKO S,NOVIALS A,et al.Obesity⁃as⁃ sociated exosomal miRNAs modulate glucose and lipid metabolism in mice[J].Proc Natl Acad Sci U S A,2018,115(48):12158-12163
参考文献 15
HUANG G,GARIKIPATI V N S,ZHOU Y,et al.Identifi⁃ cation and comparison of hyperglycemia⁃induced extracel⁃ lular vesicle transcriptome in different mouse stem cells[J].Cells,2020,9(9):2098
参考文献 16
SINGLA R,GARNER K H,SAMSAM M,et al.Exosomes derived from cardiac parasympathetic ganglionic neurons inhibit apoptosis in hyperglycemic cardiomyoblasts[J].Mol Cell Biochem,2019,462(1⁃2):1-10
参考文献 17
LIBBY P,BURING J E,BADIMON L,et al.Atherosclero⁃ sis[J].Nat Rev Dis Primers,2019,5(1):56
参考文献 18
IBRAHIM A A,WAHBY A A,ASHMAWY I,et al.Asso⁃ ciation of exosomal miR⁃34a with markers of dyslipidemia and endothelial dysfunction in children and adolescents with T1DM[J].J Clin Res Pediatr Endocrinol,2020,12(4):401-409
参考文献 19
LIN H,CHEN X,PAN J,et al.Secretion of miRNA⁃326⁃ 3p by senescent adipose exacerbates myocardial metabo⁃ lism in diabetic mice[J].J Transl Med,2022,20(1):278
参考文献 20
RAUCCI A,MACRÌ F,CASTIGLIONE S,et al.MicroR⁃ NA⁃34a:the bad guy in age⁃related vascular diseases[J].Cell Mol Life Sci,2021,78(23):7355-7378
参考文献 21
POZNYAK A,GRECHKO A V,POGGIO P,et al.The di⁃ abetes mellitus⁃atherosclerosis connection:the role of lip⁃ id and glucose metabolism and chronic inflammation[J].Int J Mol Sci,2020,21(5):1835
参考文献 22
ISMAIL N,WANG Y,DAKHLALLAH D,et al.Macro⁃ phage microvesicles induce macrophage differentiation and miR⁃223 transfer[J].Blood,2013,121(6):984-995
参考文献 23
SIWAPONANAN P,KAEWKUMDEE P,SUDCHAREE P,et al.Increased small extracellular vesicle levels and decreased miR ⁃ 126 levels associated with atrial fibrilla⁃ tion and coexisting diabetes mellitus[J].Clin Cardiol,2023,46(11):1326-1336
参考文献 24
LI Y,SUN W,SAAOUD F,et al.MiR155 modulates vas⁃cular calcification by regulating Akt ⁃ FOXO3a signalling and apoptosis in vascular smooth muscle cells[J].J Cell Mol Med,2021,25(1):535-548
参考文献 25
TOGLIATTO G,DENTELLI P,ROSSO A,et al.PDGF ⁃ BB carried by endothelial cell⁃derived extracellular vesi⁃ cles reduces vascular smooth muscle cell apoptosis in dia⁃ betes[J].Diabetes,2018,67(4):704-716
参考文献 26
刘盈,黄镇,郭淑媛,等.外泌体对动脉粥样硬化疾病的调控作用及其应用前景的研究进展[J].中华心血管病杂志,2022,50(6):610-614
参考文献 27
BOUCHAREYCHAS L,DUONG P,COVARRUBIAS S,et al.Macrophage exosomes resolve atherosclerosis by reg⁃ ulating hematopoiesis and inflammation via microRNA cargo[J].Cell Rep,2020,32(2):107881
参考文献 28
WANG R,SERRUYS P W,GAO C,et al.Ten ⁃year all ⁃ cause death after percutaneous or surgical revasculariza⁃ tion in diabetic patients with complex coronary artery dis⁃ ease[J].Eur Heart J,2021,43(1):56-67
参考文献 29
ARNOLD S V,BHATT D L,BARSNESS G W,et al.Clini⁃ cal management of stable coronary artery disease in pa⁃ tients with type 2 diabetes mellitus:a scientific statement from the American Heart Association[J].Circulation,2020,141(19):e779-e806
参考文献 30
LIU Y,XU J,GU R,et al.Circulating exosomal miR⁃144⁃ 3p inhibits the mobilization of endothelial progenitor cells post myocardial infarction via regulating the MMP9 path⁃ way[J].Aging(Albany NY),2020,12(16):16294-16303
参考文献 31
XIONG J,HU H,GUO R,et al.Mesenchymal stem cell exosomes as a new strategy for the treatment of diabetes complications[J].Front Endocrinol(Lausanne),2021,12:646233
参考文献 32
蒋日月,邓倾,周青.间充质干细胞来源外泌体治疗心肌梗死的研究进展[J].南京医科大学学报(自然科学版),2022,42(4):588-594
参考文献 33
GAN L,XIE D,LIU J,et al.Small extracellular microvesi⁃ cles mediated pathological communications between dys⁃ functional adipocytes and cardiomyocytes as a novel mechanism exacerbating ischemia/reperfusion injury in diabetic mice[J].Circulation,2020,141(12):968-983
参考文献 34
DILLMANN W H.Diabetic cardiomyopathy[J].Circ Res,2019,124(8):1160-1162
参考文献 35
RITCHIE R H,ABEL E D.Basic mechanisms of diabetic heart disease[J].Circ Res,2020,126(11):1501-1525
参考文献 36
LI H,FAN J,ZHAO Y,et al.Nuclear miR⁃320 mediates diabetes ⁃induced cardiac dysfunction by activating tran⁃ scription of fatty acid metabolic genes to cause lipotoxici⁃ ty in the heart[J].Circ Res,2019,125(12):1106-1120
参考文献 37
CHEN C,YANG S,LI H,et al.Mir30c is involved in dia⁃ betic cardiomyopathy through regulation of cardiac au⁃ tophagy via BECN1[J].Mol Ther Nucleic Acids,2017,7:127-139
参考文献 38
DE ABREU R C,FERNANDES H,DA COSTA MAR⁃ TINS P A,et al.Native and bioengineered extracellular vesicles for cardiovascular therapeutics[J].Nat Rev Car⁃ diol,2020,17(11):685-697
参考文献 39
YANG D,DESCHÊNES I,FU J D.Multilayer control of cardiac electrophysiology by microRNAs[J].J Mol Cell Cardiol,2022,166:107-115
参考文献 40
LAI Z,LIANG J,ZHANG J,et al.Exosomes as a delivery tool of exercise⁃induced beneficial factors for the preven⁃ tion and treatment of cardiovascular disease:a systematic review and meta ⁃ analysis[J].Front Physiol,2023,14:1190095
参考文献 41
GARCIA N A,ONTORIA⁃OVIEDO I,GONZÁLEZ⁃KING H,et al.Glucose starvation in cardiomyocytes enhances exosome secretion and promotes angiogenesis in endothe⁃ lial cells[J].PLoS One,2015,10(9):e0138849
参考文献 42
ZHANG Z,CHEN L,CHEN X,et al.Exosomes derived from human umbilical cord mesenchymal stem cells(HUCMSC ⁃ EXO)regulate autophagy through AMPK ⁃ ULK1 signaling pathway to ameliorate diabetic cardiomy⁃ opathy[J].Biochem Biophys Res Commun,2022,632:195-203
参考文献 43
WU C K,LEE J K,HSU J C,et al.Myocardial adipose de⁃ position and the development of heart failure with pre⁃ served ejection fraction[J].Eur J Heart Fail,2020,22(3):445-454
参考文献 44
DE GONZALO ⁃CALVO D,VAN DER MEER R W,RI⁃ JZEWIJK L J,et al.Serum microRNA⁃1 and microRNA⁃ 133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes[J].Sci Rep,2017,7(1):47
参考文献 45
WANG X,GU H,HUANG W,et al.Hsp20⁃mediated acti⁃ vation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice[J].Diabetes,2016,65(10):3111-3128
参考文献 46
SPALLONE V.Update on the impact,diagnosis and man⁃ agement of cardiovascular autonomic neuropathy in diabe⁃ tes:what is defined,what is new,and what is unmet[J].Diabetes Metab J,2019,43(1):3-30
参考文献 47
孙洪平,陈国芳,刘超.糖尿病心脏自主神经病变的新认识[J].中国实用内科杂志,2022,42(11):951-955
参考文献 48
LATINI A,BORGIANI P,DE BENEDITTIS G,et al.Mi⁃ tochondrial DNA copy number in peripheral blood is re⁃ duced in type 2 diabetes patients with polyneuropathy and associated with a MIR499A gene polymorphism[J].DNA Cell Biol,2020,39(8):1467-1472
参考文献 49
KANNEL W B,HJORTLAND M,CASTELLI W P.Role of diabetes in congestive heart failure:the Framingham study[J].Am J Cardiol,1974,34(1):29-34
参考文献 50
CHANG W T,SHIH J Y,LIN Y W,et al.miR⁃21 upregu⁃ lation exacerbates pressure overload ⁃induced cardiac hy⁃ pertrophy in aged hearts[J].Aging(Albany NY),2022,14(14):5925-5945
参考文献 51
YUAN J,YANG H,LIU C,et al.Microneedle patch loaded with exosomes containing microRNA ⁃29b prevents cardi⁃ ac fibrosis after myocardial infarction[J].Adv Healthc Mater,2023,12(13):e2202959
参考文献 52
WANG L,LIU J,XU B,et al.Reduced exosome miR⁃425 and miR ⁃744 in the plasma represents the progression of fibrosis and heart failure[J].Kaohsiung J Med Sci,2018,34(11):626-633
参考文献 53
PARVAN R,HOSSEINPOUR M,MORADI Y,et al.Diag⁃ nostic performance of microRNAs in the detection of heart failure with reduced or preserved ejection fraction:a systematic review and meta⁃analysis[J].Eur J Heart Fail,2022,24(12):2212-2225
参考文献 54
HUANG J P,CHANG C C,KUO C Y,et al.Exosomal mi⁃ croRNAs miR ⁃30d ⁃5p and miR ⁃126a ⁃5p are associated with heart failure with preserved ejection fraction in STZ⁃ Induced type 1 diabetic rats[J].Int J Mol Sci,2022,23(14):7514
目录contents

    摘要

    外泌体微小核糖核酸(microRNA,miRNA)是由外泌体介导分泌的一类非编码单链RNA,通过抑制信使RNA的翻译在转录后改变蛋白质表达。糖尿病时,基因编码区发生的改变会导致miRNA表达的变化,这些变化诱导诸如氧化应激、线粒体功能障碍、心肌细胞凋亡与焦亡、血管重塑、纤维化等一系列病理生理改变,进而参与糖尿病性心脏病的发生发展。文章就外泌体miRNA的特性,及其在糖尿病性心脏病中的作用和治疗潜力进行综述。

    Abstract

    Exosome-derived microRNAs(miRNA)are a class of non-coding single-stranded RNA secreted by exosomes,which alter protein expression by inhibiting the translation of messenger RNA. In diabetes,alterations in the coding regions of genes lead to changes in miRNA expression. These variations induce a series of pathophysiological changes,such as oxidative stress,mitochondrial dysfunction,myocardial apoptosis and pyroptosis,vascular remodeling,and fibrosis,thereby participating in the occurrence and development of diabetic heart disease. This article reviews the characteristics of exosome-derived miRNAs and summarizes their roles and therapeutic potential in diabetic heart disease.

  • 糖尿病(diabetes mellitus,DM)的全球发病率逐年上升,心血管疾病是DM的并发症之一,且是DM 患者致死的主要原因[1]。糖尿病性心脏病(diabetic heart disease,DHD)是 DM 患者并发或伴发的心脏病[2],其发生机制十分复杂,氧化应激、炎症反应、代谢途径的改变(底物利用异常、线粒体功能异常、糖基化终产物形成和氧化应激),以及胰岛素信号水平的改变、基因调控、内质网应激、神经体液激活和心肌细胞死亡,目前都被广泛认为是DM诱导心肌重构和功能障碍的中介[3-5]。在这些机制中,微小核糖核酸(microRNA,miRNA)已被广泛研究,miRNA 失调与DHD之间存在明显的联系,循环miRNA已被证实具有生物标志物的水平[6-7]。外泌体(exosome)是血浆游离 miRNA 的主要载体,外泌体 miRNA 作为细胞通讯和表观遗传调控的关键因子,在DHD的发展中起着重要作用。本文就外泌体miRNA 的特性及其在DHD中的研究进展进行综述。

  • 1 外泌体及miRNA

  • 1.1 外泌体

  • 外泌体是细胞分泌到胞外的一种囊泡(extracel⁃ lular vesicle,EV),其产生过程涉及质膜的双重内陷和含有管腔内小泡(intraluminal vesicle,ILV)的细胞内多泡体(multivesicular body,MVB)的形成[8]。转运所需的核内体分选复合体(endosomal sorting com⁃ plex required for transport,ESCRT)是MVB 膜形成和破裂的重要驱动因素。MVB 可以与溶酶体或自噬体融合得以降解,或者在Rab蛋白(Ras超级家族成员的小GTP酶,小G蛋白)的作用下借助质膜融合、胞吐作用,将ILV以直径为40~160 nm的外泌体形式释放到细胞外空间[8]。外泌体来源于供体细胞的核内体,其携带大量特异性的蛋白质以及功能性的 DNA、mRNA、miRNA、环状 RNA 和 lncRNA 等,可作为重要的信息传递分子,以一种全新的细胞⁃细胞间信息传递模式,参与细胞通讯、细胞迁移、血管新生和肿瘤生长等过程[9]。目前研究表明外泌体中各个组分不仅可以成为疾病诊断的标志物,而且作为干细胞治疗旁分泌效应的重要组成部分,参与抗衰老、复衡免疫系统、改善心血管功能、抑制肿瘤生长等[81542]

  • 1.2 miRNA

  • miRNA是调节人类基因组编码的大多数基因表达的内源性RNA转录本。miRNA被RNA聚合酶Ⅱ 转录为初级 miRNA,从细胞核输出,并产生长度在 18~24个核苷酸之间的短单链成熟miRNA。miRNA 与 AGO 蛋白和 RNA 诱导沉默的复合物(RNA⁃ induced silencing complex,RISC)中的其他关键因子相互作用,破坏或抑制mRNA序列的翻译[10]。miRNA 主要在器官纤维化中发挥作用,包括糖尿病视网膜病变、糖尿病心肌病、糖尿病肝纤维化和糖尿病肺纤维化等[11-12],还调节肾脏发育和维持稳态,以及驱动许多肾脏疾病的进展,包括糖尿病肾病等[13]。外泌体作为血浆游离miRNA的主要载体,可以通过与靶细胞融合介导miRNA在细胞间传递信息,调控细胞功能[8-9]

  • 2 外泌体miRNA与DHD

  • DM 是一种慢性代谢紊乱性疾病,与心血管疾病的发生发展密切相关。DHD 涵盖了包括冠状动脉疾病、糖尿病性心肌病、心脏自主神经病变等,最终导致心功能不全、心力衰竭[2]。先前的研究证明了外泌体miRNA在DM中的关键作用。来自肥胖小鼠的血浆外泌体 miR⁃192、miR⁃122、miR⁃27a⁃3p 和 miR⁃27b⁃3p 转移可在瘦小鼠中诱导葡萄糖耐受不良和胰岛素抵抗(T2DM 的标志性特征)[14],而这些分子改变也被认为是DM诱导的诸如心血管并发症发展的基础。另一项研究证明高血糖诱导的干/祖细胞衍生的外泌体转录组谱的显著改变,可影响高血糖条件下心肌细胞的存活、内皮细胞的增殖和迁移,在一定程度上也可以反映外泌体miRNA具有成为DHD新型非入侵生物标志物的潜力[15]。此外,还有研究表明副交感神经节神经元来源的外泌体可以抑制心肌细胞凋亡,改善DHD,借助外泌体旁分泌效应的干细胞疗法,或可有助于预防DM介导的心脏损伤[16]

  • 2.1 外泌体miRNA与糖尿病冠状动脉病变

  • 动脉粥样硬化(atherosclerosis,AS)是由于代谢异常或血液凝固导致动脉壁增厚、硬化,进而致使血管管腔狭窄、阻塞[17]。DM 患者加速的冠脉粥样硬化进程除高血糖外,往往还合并脂质代谢异常。血脂异常是AS的前驱因素,Ibrahim等[18] 发现,在患有血脂异常的T1DM患者中,外泌体miR⁃34a显著上调,进一步回归分析证实外泌体miR⁃34a与总胆固醇、低密度脂蛋白和血清内皮糖蛋白 endoglin 之间存在强烈的独立相关性。另外一项研究中,血浆外泌体 miRNA 图谱显示,T2DM 患者外泌体 miR⁃326 表达显著增加,miR⁃326是脂联素受体的直接靶点,其与脂联素表达水平呈负相关,而脂联素的减少又与低密度脂蛋白和极低密度脂蛋白的增加相关[19]。多项循证数据证实,miR⁃34a和miR⁃326可诱导血管内干细胞分化为血管平滑肌细胞(vascular smooth muscle cell,VSMC),促进向炎症和骨化转向,导致斑块形成和血管钙化[20]

  • 持续高血糖引起体内多种蛋白质非酶糖基化及由此形成的晚期糖基化终末产物(advanced glyca⁃ tion end products,AGE)参与DM慢性并发症的发病机制中,AGE在加快冠脉粥样硬化进程中起着至关重要的作用,活性氧簇产生增多,炎症状态增强,冠脉粥样硬化更加弥漫,病变中坏死核心区域更大[21]。Ismail 等[22] 发现在AGE的诱导下,血小板外泌体和巨噬细胞外泌体携带的miR⁃223可以减少胰岛素样生长因子(insulin like growth factor,IGF)⁃1R 表达,进而诱导血管内皮细胞凋亡,加重糖尿病冠脉病变。另有研究发现糖尿病患者循环血中外泌体携带 miR⁃126 表达下调,通过负性调节选择素 E (selectin E,SELE)、选择素P(selectin P,SELP)水平抑制冠脉血管内皮细胞增殖、迁移和血管形成,加重内皮功能障碍和冠脉粥样硬化[23]。此外,高糖诱导下,单核细胞释放外泌体携带miR⁃155水平上调,激活PTEN⁃AKT 通路,促进VSMC增殖、迁移,加重冠脉血管钙化进程[24]。VSMC 钙化程度同时也可以影响细胞释放外泌体miRNA 水平。Toliatto等[25]从糖尿病患者个体分离的VSMC中发现,内皮细胞来源的外泌体介导 miR⁃296⁃5p 的表达上调可以破坏细胞凋亡⁃VSMC增殖之间的平衡,促使动脉内膜⁃ 中膜增厚,加重冠脉粥样硬化,介导斑块破裂。有趣的是,目前也有证据表明外泌体miRNA可减轻糖尿病冠脉粥样硬化病变。AS初期,内皮细胞外泌体 miRNA可以发挥抗AS作用。持续的血液湍流产生的血管剪切力能使内皮细胞负性调节因子Kruppel 样转录因子(Kruppel⁃like factors,KLF)⁃2高表达,进而促使内皮细胞分泌包含 miR⁃143/145 的外泌体,其运输至VSMC内,下调转录因子ELK1和KLF⁃4的表达水平,阻止VSMC去分化,从而发挥抗炎、抗AS 作用[26]。骨髓源性巨噬细胞产生的外泌体携带和转移miR⁃146b⁃5p、miR⁃378⁃3p和miR⁃99a⁃5p,通过 NF⁃κB和肿瘤坏死因子(tumor necrosis factor,TNF)⁃α 信号通路可抑制炎症反应,减少DM冠脉粥样硬化中坏死病变范围[27]

  • 冠状动脉血管内皮修复及快速的血管再生对心肌梗死后心脏修复具有重要作用,而DM患者因心肌梗死所致的死亡率远高于年龄与性别匹配的非DM患者[28-29],其发生缺血事件后预后不良,相关研究表明与血管内皮修复能力下降和血管新生障碍有关。Liu 等[30] 证明 miR⁃144⁃3p 在糖尿病外泌体中表达升高,与缺血诱导的新生血管受损有关, miR⁃144⁃3p 可以下调间充质干细胞(mesenchymal stem cell,MSC)中的成红细胞增多症病毒E26癌基因同源体(erythroblastosis virus E26 oncogene homolog, Ets)⁃1 干扰基质金属蛋白酶(matrix metalloprotein, MMP)⁃9 通路,进而影响内皮祖细胞对新生血管的动员。另外一项研究表明,在患有心梗的糖尿病大鼠中通过静脉注射 MSC 来源的外泌体可通过抑制 TGFβ1/Smad2 信号通路显著减少心肌损伤和纤维化,同时还显示出左心室胶原水平的显著降低以及心肌组织中脂质相关酶的改善[31],MSC来源的外泌体miRNA 可以实现从移植的干细胞转移至缺血损伤的心肌细胞,进而调节心肌细胞的增殖、凋亡、炎症和血管生成,修复损伤心脏[31-32]。另外,糖尿病小鼠脂肪细胞衍生的外泌体中 miR⁃130b⁃3p 表达显著升高,可加重心肌缺血/再灌注损伤,其机制与 miR⁃130b⁃3p 直接负性调节腺苷酸活化蛋白激酶 (adenosine activated protein kinase,AMPK)⁃α表达有关,其过表达可以逆转miR⁃130b⁃3p诱导的促凋亡/ 心脏有害作用。同时心肌注射miR⁃130b⁃3p增加了非糖尿病的心肌缺血/再灌注损伤,而miR⁃130b⁃3p抑制剂可逆转这一过程[33]。这样就解释了心肌梗死后 DM 患者死亡率增加的原因,同时外泌体 miR⁃130b⁃3p靶向介导的脂肪细胞和心肌细胞间的信息传递也可能是减轻糖尿病缺血/再灌注损伤的新策略。

  • 2.2 外泌体 miRNA 与糖尿病性心肌病(diabetic cardiomyopathy,DCM)

  • DCM 首先是由 Dillmann 等[34] 根据诊断为心力衰竭而无其他心血管并发症的糖尿病患者的心脏尸检结果确定。作为持续性高血糖的一种长期慢性严重并发症,DCM与心脏氧化应激增加、心肌细胞凋亡和焦亡、Ca2+ 处理和线粒体功能异常、炎症、纤维化相关[35]。研究表明,高血糖可以改变糖尿病心肌细胞的外泌体“货物”,借助细胞通讯、细胞迁移,转移到邻近细胞(内皮细胞或成纤维细胞),以调节其功能[35-37]。比如Li等[36] 发现从糖尿病大鼠心肌细胞中分离出的外泌体具有减少心脏内皮细胞迁移和增殖的作用,而非糖尿病大鼠心肌细胞中分离的外泌体却促进了心脏内皮细胞的迁移和增殖。同时还观察到糖尿病大鼠心肌细胞外泌体中促凋亡miR⁃320显著上调,miR⁃320可以通过靶向调控 Ets2、热休克蛋白(heat shock protein,HSP)⁃20 和 IGF⁃1的表达来抑制大鼠心脏内皮细胞的增殖和迁移,进而导致心肌细胞凋亡和血管损伤[36]。miR⁃30c 过表达可抑制糖尿病心肌中BECN1转录以及随后的自噬,并改善糖尿病小鼠的心脏结构和功能。 miR⁃30d可通过调节 foxo3a 促进 DCM 心肌细胞焦亡,此外,心肌细胞外泌体中 miR⁃9 通过靶向抑制 EVAVL1 减少高糖诱导的心肌细胞焦亡[37]。外泌体 miRNA 还可以影响细胞电生理活动,携带 miR⁃199a⁃3p的心脏细胞外基质衍生的外泌体可通过增加GATA结合蛋白4乙酰化进而增强心肌电活动信号[38]。心外膜细胞分泌外泌体携带miR⁃301a 介导电压门控钾通道 kv4.3 的调节,并参与了 DCM 的心肌电重构[39]

  • 由于各个细胞分泌的外泌体含有特异性miRNA,进而激活或抑制不同的信号传导途径,对 DCM 的发展可起到截然相反的作用。内皮细胞外泌体 miR⁃126 可减少心肌中免疫细胞的聚集,抑制DCM 中的炎症反应。在 db/db 糖尿病小鼠模型中,运动可以增加心肌细胞来源的外泌体miR⁃455、miR⁃29b 的表达,降低其下游靶基因MMP⁃9的表达,该基因在基质降低中发挥作用,导致纤维化和心肌细胞解偶联,延缓DCM的进展[40]。而在葡萄糖缺乏状态下,心肌细胞衍生的外泌体及其 miR⁃126⁃3p、miR⁃23a 的表达上调,从而促进人脐静脉内皮细胞(human umbilical vein endothelial cell,HUVEC)的血管生成[41],心肌细胞和 HUVEC 之间的通讯可能影响 DCM 相关的心肌损伤及修复。最新的一项研究也证实人脐带间充质干细胞衍生的外泌体可以激活 AMPK/ULK1信号通路,抑制心肌细胞过度自噬,对 DCM心肌损伤具有保护作用[42]

  • DCM的特征病变之一是左心室舒张功能障碍,这是 DCM 的最早表现。心肌脂肪变性被认为是 T2DM 患者心脏舒张功能障碍的独立预测因素[43],相关研究显示,脂质负载的HL⁃1心肌细胞中分离的外泌体具有心脏特异性miR⁃1、miR⁃133a的表达上调,同时在T2DM个体中,循环miR⁃1、miR⁃133a的表达也显著增加,凸显了循环miRNA作为DCM诊断标志物的价值[44]。然而,外泌体miR⁃1、miR⁃133a在循环中的作用有待进一步研究,以确定外泌体miRNA 在DCM诊断中生物标志物潜力[44]。目前,通过敲除或过表达修饰其基因内容的外泌体已被用于治疗 DCM。在T1DM小鼠模型中,与野生型对照组相比,过表达 HSP20 的转基因小鼠会产生更多有益的外泌体,转移到邻近细胞,诱导血管再生,降低氧化应激,改善心肌细胞凋亡[45]。依靠外泌体的多功能性和低免疫原性,使用直接干细胞或者带有miRNA过表达或敲除的转基因外泌体,可成为DCM有效的替代治疗手段。

  • 2.3 外泌体miRNA与糖尿病自主神经病变

  • 糖尿病心脏自主神经病变(diabetic cardiac au⁃ tonomic neuropathy,DCAN)包括心动过速、QT 间期延长、直立性低血压、血压方向倾斜和心率变异性受损,其机制主要与氧化应激和炎症、遗传易感性及胰岛素抵抗等相关[46]。随着表观遗传学的不断进展,发现心脏自主神经病变(cardiac autonomic neuropathy,CAN)与编码少量miRNA的基因多态性之间存在关联,即miR⁃146a、miR⁃27a和miR⁃499,其中,miR⁃499在心脏和中枢自主神经网络中优势表达,并参与到心血管疾病和代谢综合征之中[47]。研究发现,miR⁃499A基因变异可能与糖尿病神经病变易感性有关,且携带rs3746444 GG基因型的患者发生CAN的风险更高,且CAN的形式更严重[48]。但目前暂未有研究发现 DCAN 与外泌体 miRNA 之间的直接联系。

  • 2.4 外泌体miRNA与糖尿病心力衰竭

  • DM 的心血管并发症,逐步进展至血管病变和心肌功能障碍、心力衰竭(heart failure,HF),最终以心血管死亡告终。大约50年前的研究就已经确立了 DM 与 HF 风险增加之间的流行病学联系,且有 DM的HF患者往往预后更差[49]

  • 在 HF 的诊断和治疗中,外泌体 miRNA 已经得到证实。心脏成纤维细胞来源的外泌体miR⁃21靶点心肌细胞并诱导心肌肥厚[50],边缘缺血区增加的外泌体miR⁃29a介导抗纤维化作用并预防心室功能障碍[51]。外泌体miR⁃425和miR⁃744可以减少血管紧张素诱导的胶原蛋白和纤维素的合成,抑制心肌重构,其减少与Ⅰ型胶原和α⁃平滑肌肌动蛋白表达增加有关,导致心肌成纤维细胞的激活[52]。急性HF患者血清外泌体miR⁃92b表达升高,与左室射血分数呈负相关,因此,外泌体miR⁃92b⁃5p水平可作为诊断射血分数降低的心衰(heart failure with reduced ejection fraction,HFrEF)的生物标志物[53]

  • 在T2DM个体中,射血分数保留的心衰(heart fail⁃ ure with preserved ejection frcation,HFpEF)更为常见。Huang 等[54] 发现在链脲佐菌素(streptozotocin, STZ)诱导的糖尿病大鼠中构建 HFpEF 心脏,包括 miR⁃1⁃3p、miR⁃21⁃5p、miR⁃30d⁃5p 在内的 6 种循环 miRNA 表达下降,1种miRNA(miR⁃34a)表达上调。在外泌体中miR⁃30d⁃5p、miR⁃126a⁃5p表达下降,与心脏表达、心输出量降低显著相关,但目前机制尚不清楚,可能与降低应激条件下STZ大鼠的心脏保护作用并刺激病理性重构相关。现阶段仍缺乏针对糖尿病心衰群体的临床大样本分析,miRNA在糖尿病心力衰竭中的生物预测及标记作用有待进一步研究。

  • 3 挑战与展望

  • 本文主要总结了外泌体miRNA在DHD中的作用。来源于机体不同组织细胞来源的外泌体通过转运特异性蛋白质、功能性DNA、mRNA、miRNA以及细胞因子等内容物参与细胞通讯,介导DHD的发生发展。不同来源的外泌体内容物的差异使得外泌体功能具有高度异质性。但外泌体 miRNA 与 DHD 的研究仍处于起步阶段,在将其转化为 DHD 的常规诊疗手段之前,仍需克服一些挑战。一是多项研究已证明了外泌体miRNA 的潜在治疗效应和生物标志物能力,但只有少数涉及miRNA基因组直接参与到DHD的病理生理过程中,并且目前已知的 miRNA 只是 DHD 相关 miRNA 中的一小部分;二是外泌体miRNA对DHD调控的具体下游分子机制尚不完全清楚,缺乏与外泌体miRNA相互串联的功能元件和分子信号通路,大多数研究停留在评估个体疾病状况阶段;三是针对外泌体的标准化分离方案缺乏一个统一的标准,外泌体主要是由于其特异性表面标志物的表达而被鉴定,但外泌体是否会因为 DM或其他并发症而发生该改变仍然存疑。尽管仍然面临诸多挑战,但外泌体miRNA作为一种非侵入性生物标志物,在DHD的发生发展、诊断及预后策略中具有重要作用。目前已有研究证实外泌体作为靶向药物载体释放特异性 miRNA,对糖尿病、心血管疾病具有治疗作用。期待未来会有更加完备的综合分析深刻解释外泌体miRNA作为DHD的生物标志物和治疗靶点的全部潜力。

  • 参考文献

    • [1] DEMIR S,NAWROTH P P,HERZIG S,et al.Emerging targets in type 2 diabetes and diabetic complications[J].Adv Sci(Weinh),2021,8(18):e2100275

    • [2] GLOVACI D,FAN W,WONG N D.Epidemiology of dia⁃ betes mellitus and cardiovascular disease[J].Curr Cardi⁃ ol Rep,2019,21(4):21

    • [3] JIN Z Q.MicroRNA targets and biomarker validation for diabetes ⁃associated cardiac fibrosis[J].Pharmacol Res,2021,174:105941

    • [4] YAO Y,SONG Q,HU C,et al.Endothelial cell metabolic memory causes cardiovascular dysfunction in diabetes[J].Cardiovasc Res,2022,118(1):196-211

    • [5] REILY⁃BELL M,BAHN A,KATARE R.Reactive oxygen species⁃mediated diabetic heart disease:mechanisms and therapies[J].Antioxid Redox Signal,2022,36(10⁃12):608-630

    • [6] DINESEN S,EL ⁃ FAITAROUNI A,FRISK N L S,et al.Circulating microRNA as biomarkers for gestational dia⁃ betes mellitus⁃a systematic review and meta⁃analysis[J].Int J Mol Sci,2023,24(7):6186

    • [7] CONSTANSO⁃CONDE I,HERMIDA⁃PRIETO M,BARGE⁃ CABALLERO E,et al.Circulating miR⁃181a⁃5p as a new biomarker for acute cellular rejection in heart transplanta⁃ tion[J].J Heart Lung Transplant,2020,39(10):1100-1108

    • [8] KALLURI R,LEBLEU V S.The biology,function,and biomedical applications of exosomes[J].Science,2020,367(6478):eaau6977

    • [9] MATHIEU M,MARTIN ⁃ JAULAR L,LAVIEU G,et al.Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell ⁃to ⁃ cell communication[J].Nat Cell Biol,2019,21(1):9-17

    • [10] MORI M A,LUDWIG R G,GARCIA ⁃MARTIN R,et al.Extracellular miRNAs:from biomarkers to mediators of physiology and disease[J].Cell Metab,2019,30(4):656-673

    • [11] WONNACOTT A,DENBY L,COWARD R J M,et al.Mi⁃ croRNAs and their delivery in diabetic fibrosis[J].Adv Drug Deliv Rev,2022,182:114045

    • [12] 顾寰宇,李姗姗,王芹,等.血浆外泌体通过微小 RNA⁃25⁃3p对心肌纤维化影响的初步研究[J].南京医科大学学报(自然科学版),2022,42(11):1515-1522

    • [13] GU Y Y,LU F H,HUANG X R,et al.Non⁃coding RNAs as biomarkers and therapeutic targets for diabetic kidney disease[J].Front Pharmacol,2021,11:583528

    • [14] CASTAÑO C,KALKO S,NOVIALS A,et al.Obesity⁃as⁃ sociated exosomal miRNAs modulate glucose and lipid metabolism in mice[J].Proc Natl Acad Sci U S A,2018,115(48):12158-12163

    • [15] HUANG G,GARIKIPATI V N S,ZHOU Y,et al.Identifi⁃ cation and comparison of hyperglycemia⁃induced extracel⁃ lular vesicle transcriptome in different mouse stem cells[J].Cells,2020,9(9):2098

    • [16] SINGLA R,GARNER K H,SAMSAM M,et al.Exosomes derived from cardiac parasympathetic ganglionic neurons inhibit apoptosis in hyperglycemic cardiomyoblasts[J].Mol Cell Biochem,2019,462(1⁃2):1-10

    • [17] LIBBY P,BURING J E,BADIMON L,et al.Atherosclero⁃ sis[J].Nat Rev Dis Primers,2019,5(1):56

    • [18] IBRAHIM A A,WAHBY A A,ASHMAWY I,et al.Asso⁃ ciation of exosomal miR⁃34a with markers of dyslipidemia and endothelial dysfunction in children and adolescents with T1DM[J].J Clin Res Pediatr Endocrinol,2020,12(4):401-409

    • [19] LIN H,CHEN X,PAN J,et al.Secretion of miRNA⁃326⁃ 3p by senescent adipose exacerbates myocardial metabo⁃ lism in diabetic mice[J].J Transl Med,2022,20(1):278

    • [20] RAUCCI A,MACRÌ F,CASTIGLIONE S,et al.MicroR⁃ NA⁃34a:the bad guy in age⁃related vascular diseases[J].Cell Mol Life Sci,2021,78(23):7355-7378

    • [21] POZNYAK A,GRECHKO A V,POGGIO P,et al.The di⁃ abetes mellitus⁃atherosclerosis connection:the role of lip⁃ id and glucose metabolism and chronic inflammation[J].Int J Mol Sci,2020,21(5):1835

    • [22] ISMAIL N,WANG Y,DAKHLALLAH D,et al.Macro⁃ phage microvesicles induce macrophage differentiation and miR⁃223 transfer[J].Blood,2013,121(6):984-995

    • [23] SIWAPONANAN P,KAEWKUMDEE P,SUDCHAREE P,et al.Increased small extracellular vesicle levels and decreased miR ⁃ 126 levels associated with atrial fibrilla⁃ tion and coexisting diabetes mellitus[J].Clin Cardiol,2023,46(11):1326-1336

    • [24] LI Y,SUN W,SAAOUD F,et al.MiR155 modulates vas⁃cular calcification by regulating Akt ⁃ FOXO3a signalling and apoptosis in vascular smooth muscle cells[J].J Cell Mol Med,2021,25(1):535-548

    • [25] TOGLIATTO G,DENTELLI P,ROSSO A,et al.PDGF ⁃ BB carried by endothelial cell⁃derived extracellular vesi⁃ cles reduces vascular smooth muscle cell apoptosis in dia⁃ betes[J].Diabetes,2018,67(4):704-716

    • [26] 刘盈,黄镇,郭淑媛,等.外泌体对动脉粥样硬化疾病的调控作用及其应用前景的研究进展[J].中华心血管病杂志,2022,50(6):610-614

    • [27] BOUCHAREYCHAS L,DUONG P,COVARRUBIAS S,et al.Macrophage exosomes resolve atherosclerosis by reg⁃ ulating hematopoiesis and inflammation via microRNA cargo[J].Cell Rep,2020,32(2):107881

    • [28] WANG R,SERRUYS P W,GAO C,et al.Ten ⁃year all ⁃ cause death after percutaneous or surgical revasculariza⁃ tion in diabetic patients with complex coronary artery dis⁃ ease[J].Eur Heart J,2021,43(1):56-67

    • [29] ARNOLD S V,BHATT D L,BARSNESS G W,et al.Clini⁃ cal management of stable coronary artery disease in pa⁃ tients with type 2 diabetes mellitus:a scientific statement from the American Heart Association[J].Circulation,2020,141(19):e779-e806

    • [30] LIU Y,XU J,GU R,et al.Circulating exosomal miR⁃144⁃ 3p inhibits the mobilization of endothelial progenitor cells post myocardial infarction via regulating the MMP9 path⁃ way[J].Aging(Albany NY),2020,12(16):16294-16303

    • [31] XIONG J,HU H,GUO R,et al.Mesenchymal stem cell exosomes as a new strategy for the treatment of diabetes complications[J].Front Endocrinol(Lausanne),2021,12:646233

    • [32] 蒋日月,邓倾,周青.间充质干细胞来源外泌体治疗心肌梗死的研究进展[J].南京医科大学学报(自然科学版),2022,42(4):588-594

    • [33] GAN L,XIE D,LIU J,et al.Small extracellular microvesi⁃ cles mediated pathological communications between dys⁃ functional adipocytes and cardiomyocytes as a novel mechanism exacerbating ischemia/reperfusion injury in diabetic mice[J].Circulation,2020,141(12):968-983

    • [34] DILLMANN W H.Diabetic cardiomyopathy[J].Circ Res,2019,124(8):1160-1162

    • [35] RITCHIE R H,ABEL E D.Basic mechanisms of diabetic heart disease[J].Circ Res,2020,126(11):1501-1525

    • [36] LI H,FAN J,ZHAO Y,et al.Nuclear miR⁃320 mediates diabetes ⁃induced cardiac dysfunction by activating tran⁃ scription of fatty acid metabolic genes to cause lipotoxici⁃ ty in the heart[J].Circ Res,2019,125(12):1106-1120

    • [37] CHEN C,YANG S,LI H,et al.Mir30c is involved in dia⁃ betic cardiomyopathy through regulation of cardiac au⁃ tophagy via BECN1[J].Mol Ther Nucleic Acids,2017,7:127-139

    • [38] DE ABREU R C,FERNANDES H,DA COSTA MAR⁃ TINS P A,et al.Native and bioengineered extracellular vesicles for cardiovascular therapeutics[J].Nat Rev Car⁃ diol,2020,17(11):685-697

    • [39] YANG D,DESCHÊNES I,FU J D.Multilayer control of cardiac electrophysiology by microRNAs[J].J Mol Cell Cardiol,2022,166:107-115

    • [40] LAI Z,LIANG J,ZHANG J,et al.Exosomes as a delivery tool of exercise⁃induced beneficial factors for the preven⁃ tion and treatment of cardiovascular disease:a systematic review and meta ⁃ analysis[J].Front Physiol,2023,14:1190095

    • [41] GARCIA N A,ONTORIA⁃OVIEDO I,GONZÁLEZ⁃KING H,et al.Glucose starvation in cardiomyocytes enhances exosome secretion and promotes angiogenesis in endothe⁃ lial cells[J].PLoS One,2015,10(9):e0138849

    • [42] ZHANG Z,CHEN L,CHEN X,et al.Exosomes derived from human umbilical cord mesenchymal stem cells(HUCMSC ⁃ EXO)regulate autophagy through AMPK ⁃ ULK1 signaling pathway to ameliorate diabetic cardiomy⁃ opathy[J].Biochem Biophys Res Commun,2022,632:195-203

    • [43] WU C K,LEE J K,HSU J C,et al.Myocardial adipose de⁃ position and the development of heart failure with pre⁃ served ejection fraction[J].Eur J Heart Fail,2020,22(3):445-454

    • [44] DE GONZALO ⁃CALVO D,VAN DER MEER R W,RI⁃ JZEWIJK L J,et al.Serum microRNA⁃1 and microRNA⁃ 133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes[J].Sci Rep,2017,7(1):47

    • [45] WANG X,GU H,HUANG W,et al.Hsp20⁃mediated acti⁃ vation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice[J].Diabetes,2016,65(10):3111-3128

    • [46] SPALLONE V.Update on the impact,diagnosis and man⁃ agement of cardiovascular autonomic neuropathy in diabe⁃ tes:what is defined,what is new,and what is unmet[J].Diabetes Metab J,2019,43(1):3-30

    • [47] 孙洪平,陈国芳,刘超.糖尿病心脏自主神经病变的新认识[J].中国实用内科杂志,2022,42(11):951-955

    • [48] LATINI A,BORGIANI P,DE BENEDITTIS G,et al.Mi⁃ tochondrial DNA copy number in peripheral blood is re⁃ duced in type 2 diabetes patients with polyneuropathy and associated with a MIR499A gene polymorphism[J].DNA Cell Biol,2020,39(8):1467-1472

    • [49] KANNEL W B,HJORTLAND M,CASTELLI W P.Role of diabetes in congestive heart failure:the Framingham study[J].Am J Cardiol,1974,34(1):29-34

    • [50] CHANG W T,SHIH J Y,LIN Y W,et al.miR⁃21 upregu⁃ lation exacerbates pressure overload ⁃induced cardiac hy⁃ pertrophy in aged hearts[J].Aging(Albany NY),2022,14(14):5925-5945

    • [51] YUAN J,YANG H,LIU C,et al.Microneedle patch loaded with exosomes containing microRNA ⁃29b prevents cardi⁃ ac fibrosis after myocardial infarction[J].Adv Healthc Mater,2023,12(13):e2202959

    • [52] WANG L,LIU J,XU B,et al.Reduced exosome miR⁃425 and miR ⁃744 in the plasma represents the progression of fibrosis and heart failure[J].Kaohsiung J Med Sci,2018,34(11):626-633

    • [53] PARVAN R,HOSSEINPOUR M,MORADI Y,et al.Diag⁃ nostic performance of microRNAs in the detection of heart failure with reduced or preserved ejection fraction:a systematic review and meta⁃analysis[J].Eur J Heart Fail,2022,24(12):2212-2225

    • [54] HUANG J P,CHANG C C,KUO C Y,et al.Exosomal mi⁃ croRNAs miR ⁃30d ⁃5p and miR ⁃126a ⁃5p are associated with heart failure with preserved ejection fraction in STZ⁃ Induced type 1 diabetic rats[J].Int J Mol Sci,2022,23(14):7514

  • 参考文献

    • [1] DEMIR S,NAWROTH P P,HERZIG S,et al.Emerging targets in type 2 diabetes and diabetic complications[J].Adv Sci(Weinh),2021,8(18):e2100275

    • [2] GLOVACI D,FAN W,WONG N D.Epidemiology of dia⁃ betes mellitus and cardiovascular disease[J].Curr Cardi⁃ ol Rep,2019,21(4):21

    • [3] JIN Z Q.MicroRNA targets and biomarker validation for diabetes ⁃associated cardiac fibrosis[J].Pharmacol Res,2021,174:105941

    • [4] YAO Y,SONG Q,HU C,et al.Endothelial cell metabolic memory causes cardiovascular dysfunction in diabetes[J].Cardiovasc Res,2022,118(1):196-211

    • [5] REILY⁃BELL M,BAHN A,KATARE R.Reactive oxygen species⁃mediated diabetic heart disease:mechanisms and therapies[J].Antioxid Redox Signal,2022,36(10⁃12):608-630

    • [6] DINESEN S,EL ⁃ FAITAROUNI A,FRISK N L S,et al.Circulating microRNA as biomarkers for gestational dia⁃ betes mellitus⁃a systematic review and meta⁃analysis[J].Int J Mol Sci,2023,24(7):6186

    • [7] CONSTANSO⁃CONDE I,HERMIDA⁃PRIETO M,BARGE⁃ CABALLERO E,et al.Circulating miR⁃181a⁃5p as a new biomarker for acute cellular rejection in heart transplanta⁃ tion[J].J Heart Lung Transplant,2020,39(10):1100-1108

    • [8] KALLURI R,LEBLEU V S.The biology,function,and biomedical applications of exosomes[J].Science,2020,367(6478):eaau6977

    • [9] MATHIEU M,MARTIN ⁃ JAULAR L,LAVIEU G,et al.Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell ⁃to ⁃ cell communication[J].Nat Cell Biol,2019,21(1):9-17

    • [10] MORI M A,LUDWIG R G,GARCIA ⁃MARTIN R,et al.Extracellular miRNAs:from biomarkers to mediators of physiology and disease[J].Cell Metab,2019,30(4):656-673

    • [11] WONNACOTT A,DENBY L,COWARD R J M,et al.Mi⁃ croRNAs and their delivery in diabetic fibrosis[J].Adv Drug Deliv Rev,2022,182:114045

    • [12] 顾寰宇,李姗姗,王芹,等.血浆外泌体通过微小 RNA⁃25⁃3p对心肌纤维化影响的初步研究[J].南京医科大学学报(自然科学版),2022,42(11):1515-1522

    • [13] GU Y Y,LU F H,HUANG X R,et al.Non⁃coding RNAs as biomarkers and therapeutic targets for diabetic kidney disease[J].Front Pharmacol,2021,11:583528

    • [14] CASTAÑO C,KALKO S,NOVIALS A,et al.Obesity⁃as⁃ sociated exosomal miRNAs modulate glucose and lipid metabolism in mice[J].Proc Natl Acad Sci U S A,2018,115(48):12158-12163

    • [15] HUANG G,GARIKIPATI V N S,ZHOU Y,et al.Identifi⁃ cation and comparison of hyperglycemia⁃induced extracel⁃ lular vesicle transcriptome in different mouse stem cells[J].Cells,2020,9(9):2098

    • [16] SINGLA R,GARNER K H,SAMSAM M,et al.Exosomes derived from cardiac parasympathetic ganglionic neurons inhibit apoptosis in hyperglycemic cardiomyoblasts[J].Mol Cell Biochem,2019,462(1⁃2):1-10

    • [17] LIBBY P,BURING J E,BADIMON L,et al.Atherosclero⁃ sis[J].Nat Rev Dis Primers,2019,5(1):56

    • [18] IBRAHIM A A,WAHBY A A,ASHMAWY I,et al.Asso⁃ ciation of exosomal miR⁃34a with markers of dyslipidemia and endothelial dysfunction in children and adolescents with T1DM[J].J Clin Res Pediatr Endocrinol,2020,12(4):401-409

    • [19] LIN H,CHEN X,PAN J,et al.Secretion of miRNA⁃326⁃ 3p by senescent adipose exacerbates myocardial metabo⁃ lism in diabetic mice[J].J Transl Med,2022,20(1):278

    • [20] RAUCCI A,MACRÌ F,CASTIGLIONE S,et al.MicroR⁃ NA⁃34a:the bad guy in age⁃related vascular diseases[J].Cell Mol Life Sci,2021,78(23):7355-7378

    • [21] POZNYAK A,GRECHKO A V,POGGIO P,et al.The di⁃ abetes mellitus⁃atherosclerosis connection:the role of lip⁃ id and glucose metabolism and chronic inflammation[J].Int J Mol Sci,2020,21(5):1835

    • [22] ISMAIL N,WANG Y,DAKHLALLAH D,et al.Macro⁃ phage microvesicles induce macrophage differentiation and miR⁃223 transfer[J].Blood,2013,121(6):984-995

    • [23] SIWAPONANAN P,KAEWKUMDEE P,SUDCHAREE P,et al.Increased small extracellular vesicle levels and decreased miR ⁃ 126 levels associated with atrial fibrilla⁃ tion and coexisting diabetes mellitus[J].Clin Cardiol,2023,46(11):1326-1336

    • [24] LI Y,SUN W,SAAOUD F,et al.MiR155 modulates vas⁃cular calcification by regulating Akt ⁃ FOXO3a signalling and apoptosis in vascular smooth muscle cells[J].J Cell Mol Med,2021,25(1):535-548

    • [25] TOGLIATTO G,DENTELLI P,ROSSO A,et al.PDGF ⁃ BB carried by endothelial cell⁃derived extracellular vesi⁃ cles reduces vascular smooth muscle cell apoptosis in dia⁃ betes[J].Diabetes,2018,67(4):704-716

    • [26] 刘盈,黄镇,郭淑媛,等.外泌体对动脉粥样硬化疾病的调控作用及其应用前景的研究进展[J].中华心血管病杂志,2022,50(6):610-614

    • [27] BOUCHAREYCHAS L,DUONG P,COVARRUBIAS S,et al.Macrophage exosomes resolve atherosclerosis by reg⁃ ulating hematopoiesis and inflammation via microRNA cargo[J].Cell Rep,2020,32(2):107881

    • [28] WANG R,SERRUYS P W,GAO C,et al.Ten ⁃year all ⁃ cause death after percutaneous or surgical revasculariza⁃ tion in diabetic patients with complex coronary artery dis⁃ ease[J].Eur Heart J,2021,43(1):56-67

    • [29] ARNOLD S V,BHATT D L,BARSNESS G W,et al.Clini⁃ cal management of stable coronary artery disease in pa⁃ tients with type 2 diabetes mellitus:a scientific statement from the American Heart Association[J].Circulation,2020,141(19):e779-e806

    • [30] LIU Y,XU J,GU R,et al.Circulating exosomal miR⁃144⁃ 3p inhibits the mobilization of endothelial progenitor cells post myocardial infarction via regulating the MMP9 path⁃ way[J].Aging(Albany NY),2020,12(16):16294-16303

    • [31] XIONG J,HU H,GUO R,et al.Mesenchymal stem cell exosomes as a new strategy for the treatment of diabetes complications[J].Front Endocrinol(Lausanne),2021,12:646233

    • [32] 蒋日月,邓倾,周青.间充质干细胞来源外泌体治疗心肌梗死的研究进展[J].南京医科大学学报(自然科学版),2022,42(4):588-594

    • [33] GAN L,XIE D,LIU J,et al.Small extracellular microvesi⁃ cles mediated pathological communications between dys⁃ functional adipocytes and cardiomyocytes as a novel mechanism exacerbating ischemia/reperfusion injury in diabetic mice[J].Circulation,2020,141(12):968-983

    • [34] DILLMANN W H.Diabetic cardiomyopathy[J].Circ Res,2019,124(8):1160-1162

    • [35] RITCHIE R H,ABEL E D.Basic mechanisms of diabetic heart disease[J].Circ Res,2020,126(11):1501-1525

    • [36] LI H,FAN J,ZHAO Y,et al.Nuclear miR⁃320 mediates diabetes ⁃induced cardiac dysfunction by activating tran⁃ scription of fatty acid metabolic genes to cause lipotoxici⁃ ty in the heart[J].Circ Res,2019,125(12):1106-1120

    • [37] CHEN C,YANG S,LI H,et al.Mir30c is involved in dia⁃ betic cardiomyopathy through regulation of cardiac au⁃ tophagy via BECN1[J].Mol Ther Nucleic Acids,2017,7:127-139

    • [38] DE ABREU R C,FERNANDES H,DA COSTA MAR⁃ TINS P A,et al.Native and bioengineered extracellular vesicles for cardiovascular therapeutics[J].Nat Rev Car⁃ diol,2020,17(11):685-697

    • [39] YANG D,DESCHÊNES I,FU J D.Multilayer control of cardiac electrophysiology by microRNAs[J].J Mol Cell Cardiol,2022,166:107-115

    • [40] LAI Z,LIANG J,ZHANG J,et al.Exosomes as a delivery tool of exercise⁃induced beneficial factors for the preven⁃ tion and treatment of cardiovascular disease:a systematic review and meta ⁃ analysis[J].Front Physiol,2023,14:1190095

    • [41] GARCIA N A,ONTORIA⁃OVIEDO I,GONZÁLEZ⁃KING H,et al.Glucose starvation in cardiomyocytes enhances exosome secretion and promotes angiogenesis in endothe⁃ lial cells[J].PLoS One,2015,10(9):e0138849

    • [42] ZHANG Z,CHEN L,CHEN X,et al.Exosomes derived from human umbilical cord mesenchymal stem cells(HUCMSC ⁃ EXO)regulate autophagy through AMPK ⁃ ULK1 signaling pathway to ameliorate diabetic cardiomy⁃ opathy[J].Biochem Biophys Res Commun,2022,632:195-203

    • [43] WU C K,LEE J K,HSU J C,et al.Myocardial adipose de⁃ position and the development of heart failure with pre⁃ served ejection fraction[J].Eur J Heart Fail,2020,22(3):445-454

    • [44] DE GONZALO ⁃CALVO D,VAN DER MEER R W,RI⁃ JZEWIJK L J,et al.Serum microRNA⁃1 and microRNA⁃ 133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes[J].Sci Rep,2017,7(1):47

    • [45] WANG X,GU H,HUANG W,et al.Hsp20⁃mediated acti⁃ vation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice[J].Diabetes,2016,65(10):3111-3128

    • [46] SPALLONE V.Update on the impact,diagnosis and man⁃ agement of cardiovascular autonomic neuropathy in diabe⁃ tes:what is defined,what is new,and what is unmet[J].Diabetes Metab J,2019,43(1):3-30

    • [47] 孙洪平,陈国芳,刘超.糖尿病心脏自主神经病变的新认识[J].中国实用内科杂志,2022,42(11):951-955

    • [48] LATINI A,BORGIANI P,DE BENEDITTIS G,et al.Mi⁃ tochondrial DNA copy number in peripheral blood is re⁃ duced in type 2 diabetes patients with polyneuropathy and associated with a MIR499A gene polymorphism[J].DNA Cell Biol,2020,39(8):1467-1472

    • [49] KANNEL W B,HJORTLAND M,CASTELLI W P.Role of diabetes in congestive heart failure:the Framingham study[J].Am J Cardiol,1974,34(1):29-34

    • [50] CHANG W T,SHIH J Y,LIN Y W,et al.miR⁃21 upregu⁃ lation exacerbates pressure overload ⁃induced cardiac hy⁃ pertrophy in aged hearts[J].Aging(Albany NY),2022,14(14):5925-5945

    • [51] YUAN J,YANG H,LIU C,et al.Microneedle patch loaded with exosomes containing microRNA ⁃29b prevents cardi⁃ ac fibrosis after myocardial infarction[J].Adv Healthc Mater,2023,12(13):e2202959

    • [52] WANG L,LIU J,XU B,et al.Reduced exosome miR⁃425 and miR ⁃744 in the plasma represents the progression of fibrosis and heart failure[J].Kaohsiung J Med Sci,2018,34(11):626-633

    • [53] PARVAN R,HOSSEINPOUR M,MORADI Y,et al.Diag⁃ nostic performance of microRNAs in the detection of heart failure with reduced or preserved ejection fraction:a systematic review and meta⁃analysis[J].Eur J Heart Fail,2022,24(12):2212-2225

    • [54] HUANG J P,CHANG C C,KUO C Y,et al.Exosomal mi⁃ croRNAs miR ⁃30d ⁃5p and miR ⁃126a ⁃5p are associated with heart failure with preserved ejection fraction in STZ⁃ Induced type 1 diabetic rats[J].Int J Mol Sci,2022,23(14):7514