en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

韩峰,E-mail:fenghan169@njmu.edu.cn

中图分类号:R739.41

文献标识码:A

文章编号:1007-4368(2024)05-688-10

DOI:10.7655/NYDXBNSN240078

参考文献 1
WELLER M,VAN DEN BENT M,PREUSSER M,et al.EANO guidelines on the diagnosis and treatment of dif⁃ fuse gliomas of adulthood[J].Nat Rev Clin Oncol,2021,18(3):170-186
参考文献 2
STUPP R,MASON W P,VAN DEN BENT M J,et al.Ra⁃ diotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J].N Engl J Med,2005,352(10):987-996
参考文献 3
MEDICAL RESEARCH COUNCIL BRAIN TUMOR WORKING PARTY.Randomized trial of procarbazine,lomustine,and vincristine in the adjuvant treatment of high⁃ grade astrocytoma:a medical research council trial[J].J Clin Oncol,2001,19(2):509-518
参考文献 4
KIM S H,YOO H,CHANG J H,et al.Procarbazine and CCNU chemotherapy for recurrent glioblastoma with MGMT promoter methylation[J].J Korean Med Sci,2018,33(24):167
参考文献 5
LOMBARDI G,DE SALVO G L,BRANDES A A,et al.Regorafenib compared with lomustine in patients with re⁃ lapsed glioblastoma(REGOMA):a multicentre,open ⁃la⁃ bel,randomised,controlled,phase 2 trial[J].Lancet On⁃ col,2019,20(1):110-119
参考文献 6
REARDON D A,BRANDES A A,OMURO A,et al.Effect of nivolumab vs bevacizumab in patients with re⁃ current glioblastoma:the checkmate 143 phase 3 random⁃ ized clinical trial[J].JAMA Oncol,2020,6(7):1003-1010
参考文献 7
TSIEN C I,PUGH S L,DICKER A P,et al.NRG oncolo⁃ gy/RTOG1205:a randomized phase Ⅱ trial of concurrent bevacizumab and reirradiation versus bevacizumab alone as treatment for recurrent glioblastoma[J].J Clin Oncol,2023,41(6):1285-1295
参考文献 8
LIM M,WELLER M,IDBAIH A,et al.Phase Ⅲ trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter[J].Neuro ⁃ oncology,2022,24(11):1935-1949
参考文献 9
OMURO A,BRANDES A A,CARPENTIER A F,et al.Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter:an international randomized phase Ⅲ trial[J].Neuro Oncol,2023,25(1):123-134
参考文献 10
TOMAR M S,KUMAR A,SRIVASTAVA C,et al.Eluci⁃ dating the mechanisms of temozolomide resistance in glio⁃ mas and the strategies to overcome the resistance[J].Bio⁃ chim Biophys Acta Rev Cancer,2021,1876(2):188616
参考文献 11
OLDRINI B,VAQUERO ⁃ SIGUERO N,MU Q H,et al.MGMT genomic rearrangements contribute to chemothera⁃ py resistance in gliomas[J].Nat Commun,2020,11(1):3883
参考文献 12
WICK W,PLATTEN M,MEISNER C,et al.Temozolo⁃ mide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly:the NOA ⁃ 08 ran⁃ domised,phase 3 trial[J].Lancet Oncol,2012,13(7):707-715
参考文献 13
BRANDES A A,FRANCESCHI E,TOSONI A,et al.O(6)⁃methylguanine DNA⁃methyltransferase methylation status can change between first surgery for newly ding⁃ nosed glioblastoma and second sugery for recurrence:clini⁃ cal implications[J].Neuro Oncol,2010,12(3):283-288
参考文献 14
GAN T,WANG Y,XIE M Y,et al.MEX3A impairs DNA mismatch repair signaling and mediates acquired temo⁃ zolomide resistance in glioblastoma[J].Cancer Res,2022,82(22):4234-4246
参考文献 15
FELSBERG J,THON N,EIGENBROD S,et al.Promoter methylation and expression of MGMT and the DNA mis⁃ match repair genes MLH1,MSH2,MSH6 and PMS2 in paired primary and recurrent glioblastomas[J].Int J Can⁃ cer,2011,129(3):659-670
参考文献 16
ZHANG T X,CHAI J,CHI L Y.Induction of XLF and 53BP1 expression is associated with temozolomide resis⁃ tance in glioblastoma cells[J].Onco Targets Ther,2019,12:10139-10151
参考文献 17
KANG Y J,BALTER B,CSIZMADIA E,et al.Contribu⁃ tion of classical end⁃joining to PTEN inactivation in p53⁃ mediated glioblastoma formation and drug ⁃ resistant sur⁃ vival[J].Nat Commun,2017,8:14013
参考文献 18
YANG B,FU X Q,HAO J L,et al.PAXX participates in base excision repair via interacting with pol β and contri⁃ butes to TMZ resistance in glioma cells[J].J Mol Neuro⁃ sci,2018,66(2):214-221
参考文献 19
DONG W,LI L L,TENG X P,et al.End processing factor APLF promotes NHEJ efficiency and contributes to TMZ⁃ and ionizing radiation⁃resistance in glioblastoma cells[J].Onco Targets Ther,2020,13:10593-10605
参考文献 20
CHAI K M,WANG C Y,LIAW H J,et al.Downregulation of BRCA1⁃BRCA2⁃containing complex subunit 3 sensitizes glioma cells to temozolomide[J].Oncotarget,2014,5(21):10901-10915
参考文献 21
PATTIES I,KALLENDRUSCH S,BÖHME L,et al.The Chk1 inhibitor SAR ⁃020106 sensitizes human glioblasto⁃ ma cells to irradiation,to temozolomide,and to decitabine treatment[J].J Exp Clin Cancer Res,2019,38(1):420
参考文献 22
LI H,CHEN L,LI J J,et al.MiR⁃519a enhances chemo⁃ sensitivity and promotes autophagy in glioblastoma by tar⁃ geting STAT3/Bcl2 signaling pathway[J].J Hematol On⁃ col,2018,11(1):70
参考文献 23
GE X,PAN M H,WANG L,et al.Hypoxia⁃mediated mito⁃ chondria apoptosis inhibition induces temozolomide treat⁃ ment resistance through miR ⁃ 26a/Bad/Bax axis[J].Cell Death Dis,2018,9(11):1128
参考文献 24
CANCER GENOME ATLAS RESEARCH NETWORK.Comprehensive genomic characterization defines human glioblastoma genes and core pathways[J].Nature,2008,455(7216):1061-1068
参考文献 25
SINGH N,MINER A,HENNIS L,et al.Mechanisms of temozolomide resistance in glioblastoma ⁃ a comprehen⁃ sive review[J].Cancer Drug Resist,2021,4(1):17-43
参考文献 26
XIE Y,ZHONG D W.AEG⁃1 is associated with hypoxia⁃ induced hepatocellular carcinoma chemoresistance via regulating PI3K/AKT/HIF ⁃ 1 alpha/MDR ⁃ 1 pathway[J].EXCLI J,2016,15:745-757
参考文献 27
PRASAD G,SOTTERO T,YANG X D,et al.Inhibition of PI3K/mTOR pathways in glioblastoma and implications for combination therapy with temozolomide[J].Neuro Oncol,2011,13(4):384-392
参考文献 28
TOMAR V S,PATIL V,SOMASUNDARAM K.Temozolo⁃ mide induces activation of Wnt/β⁃catenin signaling in gli⁃ oma cells via PI3K/Akt pathway:implications in glioma therapy[J].Cell Biol Toxicol,2020,36(3):273-278
参考文献 29
YUN E J,KIM S,HSIEH J T,et al.Wnt/β⁃catenin signal⁃ ing pathway induces autophagy ⁃ mediated temozolomide ⁃ resistance in human glioblastoma[J].Cell Death Dis,2020,11(9):771
参考文献 30
LIU T,HU J,HAN B,et al.A positive feedback loop of lncRNA⁃RMRP/ZNRF3 axis and Wnt/β⁃catenin signal⁃ ing regulates the progression and temozolomide resistance in glioma[J].Cell Death Dis,2021,12(11):952
参考文献 31
LIU B Y,ZHOU J,WANG C Y,et al.LncRNA SOX2OT promotes temozolomide resistance by elevating SOX2 expression via ALKBH5 ⁃ mediated epigenetic regulation in glioblastoma[J].Cell Death Dis,2020,11(5):384
参考文献 32
MENG X Q,ZHAO Y,HAN B,et al.Dual functionalized brain ⁃ targeting nanoinhibitors restrain temozolomide ⁃ re⁃ sistant glioma via attenuating EGFR and MET signaling pathways[J].Nat Commun,2020,11(1):594
参考文献 33
GOODWIN C R,RATH P,OYINLADE O,et al.Crizo⁃ tinib and erlotinib inhibits growth of c ⁃ Met +/EGFRvⅢ+ primary human glioblastoma xenografts[J].Clin Neurol Neurosurg,2018,171:26-33
参考文献 34
HUANG W H,ZHONG Z,LUO C,et al.The miR⁃26a/AP ⁃ 2α/Nanog signaling axis mediates stem cell self ⁃ re⁃ newal and temozolomide resistance in glioma[J].Ther⁃ anostics,2019,9(19):5497-5516
参考文献 35
ZHAO C G,YU H H,FAN X Q,et al.GSK3β palmi⁃ toylation mediated by ZDHHC4 promotes tumorigenicity of glioblastoma stem cells in temozolomide⁃resistant glio⁃ blastoma through the EZH2 ⁃ STAT3 axis[J].Oncogene⁃ sis,2022,11(1):28
参考文献 36
CHIANG I T,LIU Y C,LIU H S,et al.Regorafenib reverses temozolomide ⁃ induced CXCL12/CXCR4 signaling and triggers apoptosis mechanism in glioblastoma[J].Neuro⁃ therapeutics,2022,19(2):616-634
参考文献 37
LI H Y,FENG Y H,LIN C L,et al.Mitochondrial mecha⁃ nisms in temozolomide resistance:unraveling the complex interplay and therapeutic strategies in glioblastoma[J].Mitochondrion,2023,75:101836
参考文献 38
GARCIA J H,JAIN S,AGHI M K.Metabolic drivers of in⁃ vasion in glioblastoma[J].Front Cell Dev Biol,2021,9:683276
参考文献 39
TSAI Y T,LO W L,CHEN P Y,et al.Reprogramming of arachidonate metabolism confers temozolomide resistance to glioblastoma through enhancing mitochondrial activity in fatty acid oxidation[J].J Biomed Sci,2022,29(1):21
参考文献 40
CHENG S Y,CHEN N F,WEN Z H,et al.Glutathione S⁃transferase M3 is associated with glycolysis in intrinsic te⁃ mozolomide ⁃ resistant glioblastoma multiforme cells[J].Int J Mol Sci,2021,22(13):7080
参考文献 41
QIAN Y F,DING P,XU J,et al.CCL2 activates AKT sig⁃ naling to promote glycolysis and chemoresistance in glio⁃ ma cells[J].Cell Biol Int,2022,46(5):819-828
参考文献 42
BI J F,KHAN A,TANG J,et al.Targeting glioblastoma signaling and metabolism with a re⁃purposed brain⁃pene⁃ trant drug[J].Cell Rep,2021,37(5):109957
参考文献 43
MAIMÓ ⁃BARCELÓ A,MARTÍN ⁃SAIZ L,FERNÁNDEZ J A,et al.Polyunsaturated fatty acid⁃enriched lipid finger⁃ print of glioblastoma proliferative regions is differentially regulated according to glioblastoma molecular subtype[J].Int J Mol Sci,2022,23(6):2949
参考文献 44
LIN H Y,LIAO K H,KO C Y,et al.17β⁃estradiol induces temozolomide resistance through NRF2 ⁃ mediated redox homeostasis in glioblastoma[J].Free Radic Biol Med,2021,172:430-440
参考文献 45
YASUMOTO Y,MIYAZAKI H,VAIDYAN L K,et al.Inhibition of fatty acid synthase decreases expression of stemness markers in glioma stem cells[J].PLoS One,2016,11(1):e0147717
参考文献 46
SHIM J K,CHOI S,YOON S J,et al.Etomoxir,a carni⁃ tine palmitoyltransferase 1 inhibitor,combined with temo⁃ zolomide reduces stemness and invasiveness in patient ⁃ derived glioblastoma tumorspheres[J].Cancer Cell Int,2022,22(1):309
参考文献 47
GALLI R,BINDA E,ORFANELLI U,et al.Isolation and characterization of tumorigenic,stem ⁃like neural precur⁃ sors from human glioblastoma[J].Cancer Res,2004,64(19):7011-7021
参考文献 48
ECKERDT F,PLATANIAS L C.Emerging role of glioma stem cells in mechanisms of therapy resistance[J].Can⁃ cers,2023,15(13):3458
参考文献 49
FANFONE D,IDBAIH A,MAMMI J,et al.Profiling anti⁃ apoptotic BCL ⁃ xL protein expression in glioblastoma tumorspheres[J].Cancers,2020,12(10):2853
参考文献 50
ZHANG Y,WANG S X,MA J W,et al.EGCG inhibits properties of glioma stem⁃like cells and synergizes with temozolomide through downregulation of P ⁃ glycoprotein inhibition[J].J Neurooncol,2015,121(1):41-52
参考文献 51
URIBE D,TORRES Á,ROCHA J D,et al.Multidrug re⁃ sistance in glioblastoma stem⁃like cells:role of the hypoxic microenvironment and adenosine signaling[J].Mol Aspects Med,2017,55:140-151
参考文献 52
MARTÍN V,SANCHEZ⁃SANCHEZ A M,HERRERA F,et al.Melatonin ⁃ induced methylation of the ABCG2/BCRP promoter as a novel mechanism to overcome multi⁃ drug resistance in brain tumour stem cells[J].Br J Can⁃ cer,2013,108(10):2005-2012
参考文献 53
YANG K,NIU L,BAI Y J,et al.Glioblastoma:targeting the autophagy in tumorigenesis[J].Brain Res Bull,2019,153:334-340
参考文献 54
高健成,陆晨飞,张梓枫,等.胶质瘤干细胞来源的外泌体促进胶质瘤恶性进展[J].南京医科大学学报(自然科学版),2022,42(12):1658-1663
参考文献 55
王翠蓉,王义俊,张爱霞,等.肿瘤微环境对脑胶质瘤血管拟态形成的影响及药理学意义[J].南京医科大学学报(自然科学版),2023,43(1):107-112
参考文献 56
MENG L T,WANG C R,LU Y P,et al.Targeted regula⁃ tion of blood ⁃ brain barrier for enhanced therapeutic effi⁃ ciency of hypoxia ⁃ modifier nanoparticles and immune checkpoint blockade antibodies for glioblastoma[J].ACS Appl Mater Interfaces,2021,13(10):11657-11671
参考文献 57
ZHANG X N,YANG K D,CHEN C,et al.Pericytes aug⁃ ment glioblastoma cell resistance to temozolomide through CCL5⁃CCR5 paracrine signaling[J].Cell Res,2021,31(10):1072-1087
参考文献 58
HUANG M G,ZHANG D,WU J Y,et al.Wnt ⁃mediated endothelial transformation into mesenchymal stem cell ⁃ like cells induces chemoresistance in glioblastoma[J].Sci Transl Med,2020,12(532):eaay7522
参考文献 59
ZHANG G,TAO X,JI B W,et al.Hypoxia⁃driven M2⁃po⁃ larized macrophages facilitate cancer aggressiveness and temozolomide resistance in glioblastoma[J].Oxid Med Cell Longev,2022,2022:1614336
参考文献 60
GOLEBIEWSKA A,HAU A C,OUDIN A,et al.Patient⁃ derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology[J].Acta Neuropathol,2020,140(6):919-949
参考文献 61
WANG K,KIEVIT F M,CHIARELLI P A,et al.siRNA nanoparticle suppresses drug⁃resistant gene and prolongs survival in an orthotopic glioblastoma xenograft mouse model[J].Adv Funct Mater,2021,31(6):2007166
参考文献 62
LIN K,GUEBLE S E,SUNDARAM R K,et al.Mechanism ⁃based design of agents that selectively target drug ⁃ resis⁃ tant glioma[J].Science,2022,377(6605):502-511
参考文献 63
OU M T,CHO H Y,FU J,et al.Inhibition of autophagy and induction of glioblastoma cell death by NEO214,a perillyl alcohol⁃rolipram conjugate[J].Autophagy,2023,19(12):3169-3188
参考文献 64
GUO G,GONG K,PULIYAPPADAMBA V T,et al.Effi⁃ cacy of EGFR plus TNF inhibition in a preclinical model of temozolomide⁃resistant glioblastoma[J].Neuro Oncol,2019,21(12):1529-1539
参考文献 65
DESJARDINS A,GROMEIER M,HERNDON J E,et al.Recurrent glioblastoma treated with recombinant poliovi⁃rus[J].N Engl J Med,2018,379(2):150-161
参考文献 66
LIAU L M,ASHKAN K,BREM S,et al.Association of au⁃ tologous tumor lysate ⁃ loaded dendritic cell vaccination with extension of survival among patients with newly diag⁃ nosed and recurrent glioblastoma:a phase 3 prospective externally controlled cohort trial[J].JAMA Oncol,2023,9(1):112-121
参考文献 67
NARITA Y,ARAKAWA Y,YAMASAKI F,et al.A ran⁃ domized,double⁃blind,phase Ⅲ trial of personalized pep⁃ tide vaccination for recurrent glioblastoma[J].Neuro On⁃ col,2019,21(3):348-359
参考文献 68
PICCIRILLO S G M,REYNOLDS B A,ZANETTI N,et al.Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour ⁃ initiating cells[J].Nature,2006,444(7120):761-765
参考文献 69
BOS E M,BINDA E,VERPLOEGH I S C,et al.Local de⁃ livery of hrBMP4 as an anticancer therapy in patients with recurrent glioblastoma:a first ⁃ in ⁃ human phase 1 dose escalation trial[J].Mol Cancer,2023,22(1):129
参考文献 70
WANG X X,YANG K L,WU Q L,et al.Targeting pyrimi⁃ dine synthesis accentuates molecular therapy response in glioblastoma stem cells[J].Sci Transl Med,2019,11(504):eaau4972
参考文献 71
MUN E J,BABIKER H M,WEINBERG U,et al.Tumor⁃ treating fields:a fourth modality in cancer treatment[J].Clin Cancer Res,2018,24(2):266-275
参考文献 72
STUPP R,WONG E T,KANNER A A,et al.NovoTTF ⁃ 100A versus physician’s choice chemotherapy in recur⁃ rent glioblastoma:a randomised phase Ⅲ trial of a novel treatment modality[J].Eur J Cancer,2012,48(14):2192-2202
参考文献 73
KANNER A A,WONG E T,VILLANO J L,et al.Post Hoc analyses of intention⁃to⁃treat population in phase Ⅲ comparison of NovoTTF⁃100ATM system versus best physi⁃ cian’s choice chemotherapy[J].Semin Oncol,2014,41(Suppl 6):S25-S34
参考文献 74
STUPP R,TAILLIBERT S,KANNER A A,et al.Mainte⁃ nance therapy with tumor ⁃ treating fields plus temozolo⁃ mide vs temozolomide alone for glioblastoma:a random⁃ ized clinical trial[J].JAMA,2015,314(23):2535-2543
参考文献 75
STUPP R,TAILLIBERT S,KANNER A,et al.Effect of tu⁃ mor ⁃ treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma:a randomized clinical trial[J].JAMA,2017,318(23):2306-2316
参考文献 76
TOMS S A,KIM C Y,NICHOLAS G,et al.Increased com⁃ pliance with tumor treating fields therapy is prognostic for improved survival in the treatment of glioblastoma:a sub⁃ group analysis of the EF⁃14 phase Ⅲ trial[J].J Neuroon⁃ col,2019,141(2):467-473
参考文献 77
XU C,YUAN X Y,HOU P Y,et al.Development of glio⁃ blastoma organoids and their applications in personalized therapy[J].Cancer Biol Med,2023,20(5):353-368
参考文献 78
JACOB F,SALINAS R D,ZHANG D Y,et al.A patient⁃ derived glioblastoma organoid model and biobank recapit⁃ ulates inter ⁃ and intra ⁃ tumoral heterogeneity[J].Cell,2020,180(1):188-204
参考文献 79
ANDREATTA F,BECCACECI G,FORTUNA N,et al.The organoid era permits the development of new applica⁃ tions to study glioblastoma[J].Cancers,2020,12(11):3303
参考文献 80
WEN J,LIU F K,CHENG Q,et al.Applications of organ⁃ oid technology to brain tumors[J].CNS Neurosci Ther,2023,29(10):2725-2743
参考文献 81
LOONG H H F,WONG A M,CHAN D T M,et al.Patient⁃ derived tumor organoid predicts drugs response in glioblas⁃ toma:a step forward in personalized cancer therapy?[J].J Clin Neurosci,2020,78:400-402
目录contents

    摘要

    小分子烷化剂替莫唑胺(temozolomide,TMZ)是胶质母细胞瘤(glioblastoma,GBM)的一线治疗药物。然而,由于 O-6-甲基鸟嘌呤-DNA甲基转移酶(O-6-methylguanine-DNA methyltransferase,MGMT)和DNA修复途径激活等因素介导的TMZ 耐药,很多患者难以从TMZ治疗中获益。文章将从多个角度阐述TMZ耐药的详细分子机制,探讨缓解TMZ耐药以及增强TMZ 疗效的新型治疗策略和潜在药物分子,希望为临床缓解胶质瘤患者的TMZ耐药问题提供参考。

    Abstract

    The small molecule alkylating agent temozolomide(TMZ)is commonly used as a frontline therapy for glioblastoma (GBM). However,there are certain factors,such as the presence of O-6-methylguanine-DNA methyltransferase(MGMT)and activated DNA repair pathways,that can lead to resistance to TMZ,thereby limiting its effectiveness. This paper aims to comprehensively review the detailed molecular mechanisms of TMZ resistance,discuss innovative therapeutic strategies to overcome resistance,and explore potential drugs that may enhance the efficacy of TMZ. Ultimately,our goal is to provide valuable insights into clinical approaches for mitigating TMZ resistance in GBM patients.

  • 胶质瘤是中枢神经系统原发性脑肿瘤,其致死率高,预后差。全球胶质瘤的年发病率约为6/10万[1]。世界卫生组织将胶质瘤分为 4 个组织学等级,其中,胶质母细胞瘤(glioblastoma,GBM)是成人中最具侵袭性的颅内肿瘤,治疗难度大,且容易复发。 2005 年,美国食品药品监督管理局(Food and Drug Administration,FDA)批准替莫唑胺(temozolomide, TMZ)用于治疗初次确诊的成人 GBM 患者。与单独接受放疗的患者相比,TMZ和放疗联合将新诊断成年 GBM 患者的中位生存期从 12.1 个月延长到 14.6 个月[2]。目前,TMZ 仍是唯一能明显改善 GBM 患者生存的化疗药物。

  • 对于新诊断的 GBM 患者,标准治疗方案主要包括手术切除、放疗和 TMZ 化疗。然而,大多数 GBM 患者在接受标准治疗后不久就会复发,目前尚无有效治疗方案。大量针对复发患者的临床试验均告失败,如洛莫司汀[3-5]、贝伐珠单抗[6-7] 以及纳武利尤单抗[8-9] 均未能有效延长患者生存期。因此,探究 TMZ 耐药机制,开发延缓以及逆转 TMZ 耐药的新药物或新疗法,对于 GBM 患者具有极为重要的意义。

  • 1 TMZ治疗GBM的作用机制

  • TMZ 是一种咪唑四嗪类小分子前药,经口服进入体内后易于穿过血⁃脑屏障进入脑组织。在 pH<5时,TMZ 结构稳定;而在生理 pH下,TMZ 转化为5⁃(3⁃甲基三氮烯⁃1⁃)咪唑⁃4⁃酰胺[5⁃(3⁃methyltri⁃ azen⁃1⁃yl)imidazole⁃4⁃carboxamide,MTIC],MTIC 进一步分解成甲基重氮阳离子和甲基肼[10]。其中,甲基重氮阳离子将其甲基转移到 DNA 腺嘌呤第3位、第7位氮原子以及鸟嘌呤第6位氧原子上。甲基化的腺嘌呤和鸟嘌呤在 DNA 复制过程中形成错误配对,引起单链和双链DNA断裂,细胞周期被阻滞在 G2/M 期,最终诱导肿瘤细胞死亡(图1)。

  • 图1 TMZ的作用机制

  • Figure1 Mechanism of TMZ

  • 2 TMZ耐药的分子机制

  • TMZ 在 GBM 患者的初期治疗中效果显著,但耐药问题限制了其长期疗效。GBM 患者对 TMZ 耐药的机制异常复杂,主要包括肿瘤组织的DNA修复能力增强和微环境变化等因素(图2)。近年来,对 TMZ 耐药机制的深入研究取得了一系列进展,为开发相应治疗策略打下了良好基础,也将为GBM患者提供更为有益的治疗选择。

  • 2.1 O⁃6⁃甲基鸟嘌呤⁃DNA甲基转移酶(O⁃6⁃methyl⁃ guanine⁃DNA methyltransferase,MGMT)关联的耐药机制

  • TMZ 发挥杀伤肿瘤细胞作用的关键分子机制即产生 O6⁃鸟嘌呤甲基化(O6⁃methylguanine,O6⁃ MeG)。MGMT 的主要功能是将 O6⁃MeG 上的甲基转移到自身活性位点的半胱氨酸上,修复 DNA 损伤,从而介导 TMZ 耐药[10]。MGMT 启动子甲基化是抑制其蛋白表达的关键机制,因此,MGMT启动子甲基化患者,即 MGMT 阴性患者,更能从 TMZ 治疗中获益。临床试验结果表明,MGMT启动子甲基化的 GBM患者接受TMZ治疗后具有更长的无进展生存期(progress free survival,PFS)和总生存期(overall survival,OS)[11]。目前,MGMT启动子甲基化状态作为生物标志物用于预测患者预后及TMZ疗效[12]。同时,越来越多的证据表明,复发的GBM患者MGMT表达水平升高。为了探究其表达升高是否由甲基化状态变化所引起,研究人员对614例GBM患者的基因组数据进行分析,共收集到38例患者在初次确诊和复发时的MGMT启动子甲基化数据,发现13例患者在初诊时为甲基化状态,其中8例(61.5%)患者在复发时MGMT启动子转变为未甲基化状态,启动基因表达过程[13]。此外,研究人员在复发胶质瘤患者肿瘤组织中发现MGMT通过基因重排方式形成融合蛋白进而促进MGMT表达,最终对TMZ耐药[11]。这提示MGMT参与TMZ耐药的分子机制可能更为复杂,需要进行更加深入地研究。

  • 图2 GBM对TMZ耐药的机制

  • Figure2 Mechanism of GBM resistance to TMZ

  • 2.2 DNA修复关联的耐药机制

  • 2.2.1 错配修复(mismatch repair,MMR)

  • MMR系统在维持DNA复制精确性和预防突变中起着重要作用。由于TMZ诱导形成的 O6⁃MeG结构发生变化,更倾向与胸腺嘧啶(T)错误配对。 MMR系统能识别这种错误配对,但不能进行有效修复。在随后的 DNA 复制中,O6⁃MeG 仍然倾向与 T 而非与C配对,导致MMR系统反复尝试修复这一错误配对,形成所谓的“徒劳循环”,诱导DNA双链断裂(DNA double strand break,DSB),引发细胞毒性。因此,MMR是O6⁃MeG诱导细胞毒性的先决条件。多项研究报道 MMR 系统缺陷与 TMZ 耐药密切相关。 TMZ治疗后复发的GBM患者可能通过Mex⁃3 RNA结合家族成员A(Mex⁃3 RNA binding family member A, MEX3A)抑制 MMR 关键蛋白,导致 MMR 修复效率降低。当负向调控MEX3A使MSH2表达增加后,患者来源的肿瘤细胞和GBM模型小鼠对TMZ的敏感性增强[14]。此外,MMR通路相关蛋白MLH1、MSH6 和PMS2 也可能参与GBM的复发和化疗耐药[15]

  • 2.2.2 非同源末端连接修复(non ⁃ homologous end joining,NHEJ)和同源重组修复(homologous recom⁃ bination repair,HRR)

  • NHEJ 和 HRR 在修复 TMZ 引起的 DNA 双链断裂中扮演着重要角色。NHEJ 通路关键因子,如 XLF 和 53BP1,在 TMZ 耐药的 GBM 细胞中表达上调;而在 TMZ耐药细胞中下调XLF或53BP1可以显著提高 TMZ 对 GBM 细胞的抑制效果[16]。 p53、 PAXX和APLF等信号通路也可以通过调控NHEJ介导TMZ耐药[17-19]

  • HRR效率的提高则与复发GBM对TMZ的耐药直接相关。HRR 通路的关键基因,如 BRCA1、 BRCA2、RAD51B和RAD51C,是胶质瘤修复DNA的必需因子。研究发现,BRCC3水平升高会导致胶质瘤细胞对TMZ产生抗性[20]。除此之外,其他经典的 HRR 因子,如 RAD50、RAD51、MRE11、CHK1 和 CHK2也参与胶质瘤的化疗耐药。例如,CHK1抑制剂SAR⁃020106能够抑制 GBM细胞的HRR,并使肿瘤细胞对TMZ更敏感[21]

  • 2.3 信号通路异常关联的耐药机制

  • 2.3.1 Bcl⁃2家族

  • Bcl⁃2 家族蛋白是细胞凋亡调节中的关键因子,在细胞生存与死亡的决策过程中发挥核心作用。这一家族包括促凋亡和抗凋亡蛋白,它们之间的平衡对维持正常细胞的生理活动至关重要。在 GBM 等恶性肿瘤中,抗凋亡蛋白如 Bcl⁃2、Bcl⁃xl和 Mcl⁃1 呈高表达状态,打破了促凋亡和抗凋亡途径之间的平衡,导致细胞向抗凋亡表型转变,这可能是 TMZ 耐药的关键机制之一。研究发现,TMZ 治疗后的 GBM 患者 Bcl⁃2 蛋白增加,与 Beclin1 的相互作用被破坏,从而促进自噬,抑制凋亡,最终引起耐药[22]。缺氧微环境也在 TMZ 耐药中扮演了重要角色。激活的缺氧诱导因子⁃1α诱导 miR⁃26a 升高,对线粒体产生保护反应,同时增强抗凋亡蛋白Bcl⁃2的表达,介导 TMZ 耐药[23]。此外,针对 Bcl⁃2 家族蛋白的治疗策略已初见成效。Mcl⁃1 特异性抑制剂 A⁃1210477 与 Bcl ⁃2/ Bcl ⁃xl 抑制剂 ABT ⁃263 协同作用,诱导 TMZ耐药胶质瘤细胞株和患者来源的胶质瘤干细胞(glioma stem cell,GSC)凋亡[23]。这些研究表明,针对 Bcl⁃2 家族蛋白的治疗可能是克服 GBM 化疗耐药的有效策略之一。

  • 2.3.2 PI3K/AKT信号通路

  • 约 88%的 GBM 肿瘤组织存在 PI3K/AKT 信号通路的失衡,在患者对 TMZ 耐药过程中扮演着重要角色[24]。GBM 患者大多存在表皮生长因子受体 (epidermal growth factor receptor,EGFR)拷贝数增加或 PTEN 缺失等基因突变,持续激活 PI3K/AKT 信号通路,促进肿瘤细胞的生长增殖[25]。激活的 PI3K/AKT 通路促进多药耐药蛋白 ⁃1(multidrug resistance protein⁃1,MDR⁃1)的表达水平,从而增强耐药[26]。研究表明,PI3K 抑制剂 LY294002 有效增加PTEN 野生型和突变型胶质瘤细胞对 TMZ 的敏感性[25];并且 LY294002 与 TMZ 联合使用可以显著提高胶质瘤细胞的凋亡率,降低其侵袭能力。此外,泛PI3K抑制剂BKM120和双重PI3K/mTOR抑制剂XL⁃765在增强TMZ在胶质瘤细胞小鼠模型中的抗肿瘤作用方面效果显著[27]

  • 2.3.3 Wnt/β⁃catenin信号通路

  • 研究发现,TMZ引起GBM细胞株U87的Wnt/β⁃ catenin 信号通路激活[28]。激活的 Wnt/β⁃catenin 信号通路通过多种途径介导TMZ耐药。其中,DOC⁃2/ DAB2 相互作用蛋白(DOC ⁃2/DAB2 interactive pro⁃ tein,DAB2IP)通过阻断 Wnt/β⁃catenin 信号通路抑制自噬相关基因 9B(autophagy related 9B,ATG9B) 表达,进而抑制 TMZ 诱导的自噬以及引起 TMZ 耐药[29]。同时,越来越多的证据表明,长链非编码 RNA(long non⁃coding RNA,lncRNA)通过调节 Wnt/ β⁃catenin 信号通路参与TMZ耐药。线粒体RNA加工内切核酸酶(RNA component of mitochondrial RNA processing,RMRP)的RNA成分lncRNA RMRP,通过下调锌环指蛋白3(zinc and ring finger 3,ZNRF3)促进 β⁃catenin 表达;反之,β⁃catenin 通过转录因子 4 (transcription factor 4,TCF4)促进GBM细胞中RMRP 的表达,并且Wnt/β⁃catenin抑制剂XAV⁃939会减弱 RMRP介导的TMZ耐药。因此,RMRP/ZNRF3 轴和 Wnt/β⁃catenin信号通路形成正反馈回路,参与胶质瘤的TMZ耐药[30]。另一研究发现TMZ耐药细胞和复发性 GBM 患者样本中的 lncRNA SOX2OT 升高,进而通过增加 SOX2 表达并激活体外和体内的 Wnt/β⁃catenin 信号通路来增加 TMZ 抗性[31]

  • 2.3.4 其他信号通路

  • 酪氨酸激酶相关信号通路在 TMZ 耐药过程中也发挥着重要作用。其中,细胞间质上皮转换因子 ( cellular ⁃ mesenchymal epithelial transition factor, c⁃Met)是由肝细胞生长因子(hepatocyte growth factor, HGF)配体激活的受体酪氨酸激酶(receptor tyrosine kinase,RTK),通常负责胚胎发育过程中的骨骼肌生长。据报道,EGFRvⅢ信号通路可激活c⁃Met RTK信号转导,从而介导TMZ耐药。为了同时减少EGFR和 c ⁃Met 的激活,Meng 等[32] 通过偶联 c ⁃Met 抑制剂 cMBP 和EGFR 抑制剂Inherbin3形成具有双抑制功能的纳米颗粒,通过抑制TMZ耐药胶质瘤模型小鼠的DNA损伤修复,使TMZ效果增强。另一项临床前研究表明,c⁃Met抑制剂克唑替尼和EGFR抑制剂厄洛替尼联合治疗可明显延长GBM荷瘤小鼠的生存期,为克服耐药提供了新的治疗策略[33]。此外,激动蛋白 2α(activator protein⁃2α,AP⁃2α)、ZDHHC 棕榈酰基转移酶4和趋化因子配体12(C⁃C motif chemo⁃ kine ligand 12,CXCL12)均被报道通过不同的信号通路参与TMZ耐药[34-36]

  • 2.4 代谢重编程关联的耐药机制

  • 近期研究发现胶质瘤细胞代谢重编程与 TMZ 耐药关系密切。胶质瘤在发展进程中,其主要代谢途径发生变化称为代谢重编程。线粒体作为调节糖酵解和氧化磷酸化平衡的关键细胞器在细胞代谢重编程中起着核心作用。研究人员发现,TMZ耐药的 GBM 细胞和患者样本中,线粒体 DNA 发生突变并且DNA拷贝数减少,这种变化使得线粒体功能异常,从而引起TMZ耐药[37]。最新研究表明即使在氧气充足的情况下,GBM细胞的代谢也表现出糖酵解增强的特征[38]。这种代谢变化不仅支持了GBM 细胞对能量的高需求,还促进了TMZ耐药。研究发现特异性蛋白1(specificity protein 1,Sp1)通过上调前列腺素 E2(prostaglandin E2,PGE2)增强脂肪酸β 氧化(fatty acid β ⁃oxidation,FAO)和三羧酸循环(tricarboxylic acid cycle,TCA),从而使线粒体产生的 ATP增加,维持胶质瘤细胞存活,导致对TMZ产生耐药[39]。此外,谷胱甘肽 S⁃转移酶(glutathione S⁃ transferase,GST)和趋化因子配体 2(C⁃C motif che⁃ mokine ligand 2,CCL2)的过表达也被报道促进糖酵解,从而引起 TMZ 耐药[40-41]。脂质代谢重编程也参与了TMZ耐药,多种脂质代谢物已被报道与耐药相关,例如鞘磷脂和多不饱和脂肪酸通过损害细胞膜功能促进TMZ耐药[42-43];类固醇和花生四烯酸代谢物也是诱导TMZ耐药的重要成分,但作用机制尚未完全阐明[44-45]。另外,靶向脂质代谢的关键酶也可能为耐药治疗提供新的治疗策略。研究表明,抑制参与脂肪酸从头合成的关键酶脂肪酸合酶(fatty acid synthase,FASN)以及参与脂肪酸氧化的肉碱棕榈酰转移酶1A(carnitine palmitoyltransferase1A,CPT1A) 均可增强GBM细胞对TMZ的敏感性[45-46]

  • 2.5 GSC关联的耐药机制

  • GSC具有强大的DNA修复能力,同时具有分化形成支持肿瘤生长的基质和血管结构的能力,使得胶质瘤对化疗和放疗均不敏感。Galli 等[47] 首次从侵袭性胶质瘤中分离出具有自我更新和分化能力的细胞,即GSC,这一发现凸显了GSC在增加胶质瘤组织异质性和可塑性中的作用,并为GSC诱导肿瘤复发和化疗耐药等方面的研究奠定了理论基础。多项研究指出 GSC 中 MGMT 表达明显升高,从而对 TMZ 天然耐药[48]。同时,GSC抗凋亡途径呈现较高激活状态,抵抗化疗药物诱导的凋亡[49]。此外, GSC的药物外排泵高表达,减少药物在细胞内的积累。ATP ⁃结合盒转运蛋白(ATP ⁃ binding cassette transporter,ABC)是一类利用 ATP 水解产生的能量来转运各种分子(包括药物分子)通过细胞膜的跨膜蛋白。文献报道,GSC 中 ABC 家族成员 ABCG2/ BCRP和ABCB1/MDR1 的表达水平升高,这可能是 GSC 对 TMZ 等化疗药物耐药的重要机制之一,也意味着 GSC 可能是治疗失败和肿瘤复发的关键因素[50-51]。其中,ABCB1可能作为预测胶质瘤对TMZ 响应性的独立因子;而褪黑素诱导的ABCG2启动子甲基化可能是克服胶质瘤多药耐药的新机制[52]。 GSC能够调整其代谢途径,同时利用自噬机制清除受损细胞组分,抵抗药物诱导的生存压力[53]。肿瘤微环境因素,如细胞间相互作用和微环境成分,也可能为 GSC 的存活和耐药提供支持[54]。这些复杂的耐药机制表明,针对GSC的治疗策略需要多角度入手,可能涉及多种疗法的联合使用,以有效克服TMZ耐药。

  • 2.6 肿瘤微环境关联的耐药机制

  • 胶质瘤微环境是一个复杂的生态系统,包含多种非肿瘤细胞,如血管成分、浸润的免疫细胞和其他基质细胞。这些细胞与肿瘤细胞相互作用,共同促进肿瘤的生长和进展[55-56]。周细胞作为血管系统的关键组分,通过趋化因子配体5(chemokine ligand 5,CCL5)⁃趋化因子受体 5(C⁃C motif chemokine re⁃ ceptor 5,CCR5)旁分泌信号增强胶质瘤细胞中的 DNA 损伤修复,进而诱导 TMZ 耐药[57]。患者来源的 GBM 相关内皮细胞通过激活 Wnt/β⁃catenin 信号通路转化为间充质干细胞样细胞,从而促进耐药[58]。缺氧微环境下的肿瘤相关巨噬细胞(tumor associated macrophage,TAM)不仅促进胶质瘤的发展,同时通过分泌血管内皮生长因子(vascular endothelial growth factor,VEGF)激活 PI3K/AKT 通路,维持 GSC 干性和诱导 TMZ 耐药[59]。这些发现强调了GBM的治疗策略不仅针对肿瘤细胞,还要同时考虑其微环境中的非肿瘤细胞,以更全面地应对肿瘤的复杂性和耐药性。

  • 3 缓解TMZ耐药的潜在治疗策略

  • TMZ 耐药一直是胶质瘤治疗领域的重大难题之一,其内在分子机制尚未完全阐明。缓解TMZ耐药的治疗策略主要从两方面展开:一方面,从已知的 TMZ 耐药机制出发,针对相关靶标进行药物设计,抑制引起耐药的信号通路从而增加胶质瘤对 TMZ的敏感性或直接杀伤对TMZ耐药的肿瘤细胞; 另一方面,目前在临床治疗中对于TMZ 耐药尚未有关键性突破,因此研究人员仍在探索可能治疗TMZ 耐药的新型策略,如定制个性化肿瘤疫苗增强人体抗肿瘤免疫,从而改善复发GBM患者的生存。

  • 3.1 针对DNA损伤修复机制的新型治疗方案

  • MGMT 表达水平改变仍然是 TMZ 耐药最重要的机制之一。新型小分子烷化剂VAL⁃083诱导形成 MGMT无法识别的N7甲基化修饰从而缓解MGMT介导的耐药,目前有多项临床试验正在评估VAL⁃083 治疗初发和复发 GBM 患者的安全性和有效性[60]。一项临床前研究则使用氧化铁纳米颗粒系统用于靶向递送siRNA以抑制MGMT基因表达水平,实验结果显示胶质瘤小鼠生存期得到明显延长[61]。然而,对于 MGMT阴性患者,MMR通路缺失是TMZ耐药的主要机制之一,小分子化合物KL⁃50“绕开”MMR通路对 TMZ 耐药胶质瘤发挥杀伤作用,为治疗 TMZ 耐药GBM 的药物开发提供了新的研究思路[62]。基于此,针对TMZ作用机制之外的信号通路可能是治疗TMZ 耐药胶质瘤的有效策略。PDE4 抑制剂Rolipram 与紫苏醇偶联生成的活性产物NEO214 通过阻断自噬缓解TMZ耐药[63];EGFR 抑制剂阿法替尼和TNF抑制剂沙利度胺联用则通过调控凋亡通路以及 TNF 的分泌,而非DNA损伤途径,对TMZ耐药胶质瘤细胞发挥杀伤作用[64]

  • 3.2 免疫疗法的应用

  • 近年来,方兴未艾的免疫疗法也给GBM患者带来了新的希望。免疫疗法对GBM细胞的杀伤作用机制迥异于TMZ,因此免疫疗法可能对TMZ敏感以及耐药的GBM组织产生无差别的杀伤作用,联合应用时有协同抗肿瘤作用。然而,由于GBM存在免疫抑制微环境,GBM患者能否从免疫检查点抑制剂疗法中获益仍然存在争议。针对 EGFRvⅢ等靶点的 CAR⁃T疗法尝试用于增强GBM对免疫疗法的响应,其安全性和有效性有待进一步证实。尽管免疫检查点抑制剂和 CAR⁃T疗法仍在艰难探索中,肿瘤疫苗以及溶瘤病毒已经展示出较好的应用前景。溶瘤病毒疗法在靶向杀伤肿瘤细胞的同时激活免疫反应,达到更好的抗胶质瘤效果。复发GBM患者瘤内注射基于脊髓灰质炎病毒的溶瘤病毒 PVSRIPO 后,3年生存率为21%,高于历史对照组[65]。其作用机制在于选择性感染CD115阳性的GBM细胞,同时诱导肿瘤细胞免疫原性死亡和释放细胞因子,激活免疫反应。并且,PVSRIPO将脊髓灰质炎病毒的内部核糖体进入位点(internal ribozyme entry site, IRES)替换为人类喉癌细胞的IRES,从而消除了潜在的神经毒性。肿瘤疫苗也为 GBM 的治疗提供了新的潜在治疗策略,DCVax⁃L是利用患者血液中特定的树突状细胞进行个性化制备获取的树突状细胞疫苗。临床试验结果表明标准治疗联合DCVax⁃L 能延长新诊断GBM和复发GBM患者的OS,而且具有良好的安全性,表现出巨大的临床价值,也对免疫治疗的发展具有重要意义[66]。然而,针对人白细胞抗原HLA⁃A24阳性的复发GBM患者开发的个性化肿瘤疫苗(PPV)Ⅲ期临床试验表明,PPV 只能延长特定患者的 OS,临床试验宣告失败[67]。因此, GBM的免疫疗法可能需要诸多环节的配合,最佳治疗方案的确定仍然需要进行深入探索。

  • 3.3 靶向GSC

  • GSC 由于自身特性在 TMZ 耐药的进展中起着至关重要的作用。目前,促 GSC分化疗法和靶向促进GSC凋亡是缓解 TMZ 耐药的潜在治疗策略。研究表明,TGF ⁃β 家族生长因子骨形态发生蛋白 4 (bone morphogenetic protein 4,BMP4)可以破坏 GSC 的自我更新能力以及干性维持能力[68];在复发 GBM 患者瘤内局部递送人重组BMP4 蛋白明显抑制肿瘤生长,且表现出良好的安全性。由于尚在临床试验起步阶段,其确切疗效和安全性需要进一步探究[69]。同时,研究表明GSC通过上调嘧啶的从头合成以维持自我更新,抑制嘧啶合成的关键酶氨基甲酰磷酸合成酶2、天冬氨酸转氨甲酰酶、二氢乳清酶和二氢乳清酸脱氢酶(dihydroorotate dehydrogenase, DHODH)可能也是缓解 GSC 介导的 TMZ 耐药的潜在靶点。在临床前模型中联合应用DHODH抑制剂特立氟胺和 EGFR 抑制剂拉帕替尼或 PI3K 抑制剂 BKM120,可以诱导GSC凋亡,且联合治疗组具有更长的OS[70]

  • 3.4 肿瘤电场治疗(tumor⁃treating fields,TT Fields)

  • TT Fields是一种针对肿瘤的创新疗法,特别是在 GBM的治疗中表现出巨大的应用潜力。TT Fields是利用低强度(1~3 V/cm)、中频率(100~300 kHz)交变电场选择性破坏肿瘤细胞的有丝分裂过程,从而在局部区域内抑制肿瘤生长[71]。由于与 TMZ 作用于细胞死亡的环节不同,TT Fields可能具有增强胶质瘤细胞对TMZ敏感性的作用。前期研究显示,与标准治疗方案相比,TT Fields治疗组复发GBM患者的中位生存期与标准方案治疗组相近,但是TT Fields 组患者认知和情感功能损伤较少,提示 TT Fields疗法具有更好的安全性[72-73];此外,与 TMZ 治疗组患者相比,TMZ联合TT Fields疗法使新诊断的GBM患者的PFS和OS均明显延长[74-76]。因此,我国国家药品监督管理局于2020年批准TT Fields 用于经组织病理学或影像学诊断的复发和新诊断的 GBM 患者。TT Fields作为一种新兴的非侵入性治疗手段,在临床试验中表现出良好的安全性和耐受性,成为近10年来唯一获批并且纳入美国国家综合癌症网络(National Comprehensive Cancer Network,NCCN) 指南的创新疗法,具有广阔的发展前景。

  • 3.5 类器官在GBM治疗中的应用前景

  • GBM 细胞株以及患者来源肿瘤异种移植 (patient⁃derived tumor xenograft,PDX)模型展示了胶质瘤的基本病理特征,但仍然存在较大的局限性,无法满足精准医疗的发展需求。研究人员成功开发了患者来源的GBM体外类器官(glioblastoma organ⁃ oid,GBO)模型,保留了肿瘤的异质性和关键特征,提供了与患者肿瘤高度相似的研究工具,在GBM化疗耐药研究中起着关键作用。一方面,GBO模型为个体化治疗提供了高通量的药物筛选和验证平台,用于精准确定个体化辅助治疗药物,提高复发患者的生存率[77-78];另一方面,GBO模型能够保留患者肿瘤中的相关生物标志物,预测患者对治疗的反应[79-80]。例如,研究人员通过GBO进行前瞻性药物筛选,预测患者对厄洛替尼、维罗非尼和依维莫司的响应性,依据预测结果选择使用依维莫司并在患者中取得了较好的疗效[81]

  • 4 未来展望

  • 尽管GBM的治疗方法在过去几年中取得了一定的进展,但患者 5 年生存率仍然很低,并且复发 GBM 患者通常比初发患者表现出更加复杂的分子特征和通路异常,使得治疗变得尤为困难。越来越多的研究证明 TMZ 耐药是由多个分子事件共同作用的结果。这些事件在不同层面发挥作用,导致单一疗法很难为患者带来显著益处。因此,多模式治疗方法,即结合多种不同治疗手段开发的新型治疗策略正在GBM治疗中显示出潜力,包括靶向疗法、免疫治疗等。随着科学技术的进步和对GBM生物学的深入了解,未来的治疗策略将更加多元化,更加精准地针对肿瘤的异质性和复杂性进行个体化治疗,延缓甚至阻断 TMZ耐药,提高治疗效果,延长患者的生存期,为患者带来新的希望。

  • 参考文献

    • [1] WELLER M,VAN DEN BENT M,PREUSSER M,et al.EANO guidelines on the diagnosis and treatment of dif⁃ fuse gliomas of adulthood[J].Nat Rev Clin Oncol,2021,18(3):170-186

    • [2] STUPP R,MASON W P,VAN DEN BENT M J,et al.Ra⁃ diotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J].N Engl J Med,2005,352(10):987-996

    • [3] MEDICAL RESEARCH COUNCIL BRAIN TUMOR WORKING PARTY.Randomized trial of procarbazine,lomustine,and vincristine in the adjuvant treatment of high⁃ grade astrocytoma:a medical research council trial[J].J Clin Oncol,2001,19(2):509-518

    • [4] KIM S H,YOO H,CHANG J H,et al.Procarbazine and CCNU chemotherapy for recurrent glioblastoma with MGMT promoter methylation[J].J Korean Med Sci,2018,33(24):167

    • [5] LOMBARDI G,DE SALVO G L,BRANDES A A,et al.Regorafenib compared with lomustine in patients with re⁃ lapsed glioblastoma(REGOMA):a multicentre,open ⁃la⁃ bel,randomised,controlled,phase 2 trial[J].Lancet On⁃ col,2019,20(1):110-119

    • [6] REARDON D A,BRANDES A A,OMURO A,et al.Effect of nivolumab vs bevacizumab in patients with re⁃ current glioblastoma:the checkmate 143 phase 3 random⁃ ized clinical trial[J].JAMA Oncol,2020,6(7):1003-1010

    • [7] TSIEN C I,PUGH S L,DICKER A P,et al.NRG oncolo⁃ gy/RTOG1205:a randomized phase Ⅱ trial of concurrent bevacizumab and reirradiation versus bevacizumab alone as treatment for recurrent glioblastoma[J].J Clin Oncol,2023,41(6):1285-1295

    • [8] LIM M,WELLER M,IDBAIH A,et al.Phase Ⅲ trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter[J].Neuro ⁃ oncology,2022,24(11):1935-1949

    • [9] OMURO A,BRANDES A A,CARPENTIER A F,et al.Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter:an international randomized phase Ⅲ trial[J].Neuro Oncol,2023,25(1):123-134

    • [10] TOMAR M S,KUMAR A,SRIVASTAVA C,et al.Eluci⁃ dating the mechanisms of temozolomide resistance in glio⁃ mas and the strategies to overcome the resistance[J].Bio⁃ chim Biophys Acta Rev Cancer,2021,1876(2):188616

    • [11] OLDRINI B,VAQUERO ⁃ SIGUERO N,MU Q H,et al.MGMT genomic rearrangements contribute to chemothera⁃ py resistance in gliomas[J].Nat Commun,2020,11(1):3883

    • [12] WICK W,PLATTEN M,MEISNER C,et al.Temozolo⁃ mide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly:the NOA ⁃ 08 ran⁃ domised,phase 3 trial[J].Lancet Oncol,2012,13(7):707-715

    • [13] BRANDES A A,FRANCESCHI E,TOSONI A,et al.O(6)⁃methylguanine DNA⁃methyltransferase methylation status can change between first surgery for newly ding⁃ nosed glioblastoma and second sugery for recurrence:clini⁃ cal implications[J].Neuro Oncol,2010,12(3):283-288

    • [14] GAN T,WANG Y,XIE M Y,et al.MEX3A impairs DNA mismatch repair signaling and mediates acquired temo⁃ zolomide resistance in glioblastoma[J].Cancer Res,2022,82(22):4234-4246

    • [15] FELSBERG J,THON N,EIGENBROD S,et al.Promoter methylation and expression of MGMT and the DNA mis⁃ match repair genes MLH1,MSH2,MSH6 and PMS2 in paired primary and recurrent glioblastomas[J].Int J Can⁃ cer,2011,129(3):659-670

    • [16] ZHANG T X,CHAI J,CHI L Y.Induction of XLF and 53BP1 expression is associated with temozolomide resis⁃ tance in glioblastoma cells[J].Onco Targets Ther,2019,12:10139-10151

    • [17] KANG Y J,BALTER B,CSIZMADIA E,et al.Contribu⁃ tion of classical end⁃joining to PTEN inactivation in p53⁃ mediated glioblastoma formation and drug ⁃ resistant sur⁃ vival[J].Nat Commun,2017,8:14013

    • [18] YANG B,FU X Q,HAO J L,et al.PAXX participates in base excision repair via interacting with pol β and contri⁃ butes to TMZ resistance in glioma cells[J].J Mol Neuro⁃ sci,2018,66(2):214-221

    • [19] DONG W,LI L L,TENG X P,et al.End processing factor APLF promotes NHEJ efficiency and contributes to TMZ⁃ and ionizing radiation⁃resistance in glioblastoma cells[J].Onco Targets Ther,2020,13:10593-10605

    • [20] CHAI K M,WANG C Y,LIAW H J,et al.Downregulation of BRCA1⁃BRCA2⁃containing complex subunit 3 sensitizes glioma cells to temozolomide[J].Oncotarget,2014,5(21):10901-10915

    • [21] PATTIES I,KALLENDRUSCH S,BÖHME L,et al.The Chk1 inhibitor SAR ⁃020106 sensitizes human glioblasto⁃ ma cells to irradiation,to temozolomide,and to decitabine treatment[J].J Exp Clin Cancer Res,2019,38(1):420

    • [22] LI H,CHEN L,LI J J,et al.MiR⁃519a enhances chemo⁃ sensitivity and promotes autophagy in glioblastoma by tar⁃ geting STAT3/Bcl2 signaling pathway[J].J Hematol On⁃ col,2018,11(1):70

    • [23] GE X,PAN M H,WANG L,et al.Hypoxia⁃mediated mito⁃ chondria apoptosis inhibition induces temozolomide treat⁃ ment resistance through miR ⁃ 26a/Bad/Bax axis[J].Cell Death Dis,2018,9(11):1128

    • [24] CANCER GENOME ATLAS RESEARCH NETWORK.Comprehensive genomic characterization defines human glioblastoma genes and core pathways[J].Nature,2008,455(7216):1061-1068

    • [25] SINGH N,MINER A,HENNIS L,et al.Mechanisms of temozolomide resistance in glioblastoma ⁃ a comprehen⁃ sive review[J].Cancer Drug Resist,2021,4(1):17-43

    • [26] XIE Y,ZHONG D W.AEG⁃1 is associated with hypoxia⁃ induced hepatocellular carcinoma chemoresistance via regulating PI3K/AKT/HIF ⁃ 1 alpha/MDR ⁃ 1 pathway[J].EXCLI J,2016,15:745-757

    • [27] PRASAD G,SOTTERO T,YANG X D,et al.Inhibition of PI3K/mTOR pathways in glioblastoma and implications for combination therapy with temozolomide[J].Neuro Oncol,2011,13(4):384-392

    • [28] TOMAR V S,PATIL V,SOMASUNDARAM K.Temozolo⁃ mide induces activation of Wnt/β⁃catenin signaling in gli⁃ oma cells via PI3K/Akt pathway:implications in glioma therapy[J].Cell Biol Toxicol,2020,36(3):273-278

    • [29] YUN E J,KIM S,HSIEH J T,et al.Wnt/β⁃catenin signal⁃ ing pathway induces autophagy ⁃ mediated temozolomide ⁃ resistance in human glioblastoma[J].Cell Death Dis,2020,11(9):771

    • [30] LIU T,HU J,HAN B,et al.A positive feedback loop of lncRNA⁃RMRP/ZNRF3 axis and Wnt/β⁃catenin signal⁃ ing regulates the progression and temozolomide resistance in glioma[J].Cell Death Dis,2021,12(11):952

    • [31] LIU B Y,ZHOU J,WANG C Y,et al.LncRNA SOX2OT promotes temozolomide resistance by elevating SOX2 expression via ALKBH5 ⁃ mediated epigenetic regulation in glioblastoma[J].Cell Death Dis,2020,11(5):384

    • [32] MENG X Q,ZHAO Y,HAN B,et al.Dual functionalized brain ⁃ targeting nanoinhibitors restrain temozolomide ⁃ re⁃ sistant glioma via attenuating EGFR and MET signaling pathways[J].Nat Commun,2020,11(1):594

    • [33] GOODWIN C R,RATH P,OYINLADE O,et al.Crizo⁃ tinib and erlotinib inhibits growth of c ⁃ Met +/EGFRvⅢ+ primary human glioblastoma xenografts[J].Clin Neurol Neurosurg,2018,171:26-33

    • [34] HUANG W H,ZHONG Z,LUO C,et al.The miR⁃26a/AP ⁃ 2α/Nanog signaling axis mediates stem cell self ⁃ re⁃ newal and temozolomide resistance in glioma[J].Ther⁃ anostics,2019,9(19):5497-5516

    • [35] ZHAO C G,YU H H,FAN X Q,et al.GSK3β palmi⁃ toylation mediated by ZDHHC4 promotes tumorigenicity of glioblastoma stem cells in temozolomide⁃resistant glio⁃ blastoma through the EZH2 ⁃ STAT3 axis[J].Oncogene⁃ sis,2022,11(1):28

    • [36] CHIANG I T,LIU Y C,LIU H S,et al.Regorafenib reverses temozolomide ⁃ induced CXCL12/CXCR4 signaling and triggers apoptosis mechanism in glioblastoma[J].Neuro⁃ therapeutics,2022,19(2):616-634

    • [37] LI H Y,FENG Y H,LIN C L,et al.Mitochondrial mecha⁃ nisms in temozolomide resistance:unraveling the complex interplay and therapeutic strategies in glioblastoma[J].Mitochondrion,2023,75:101836

    • [38] GARCIA J H,JAIN S,AGHI M K.Metabolic drivers of in⁃ vasion in glioblastoma[J].Front Cell Dev Biol,2021,9:683276

    • [39] TSAI Y T,LO W L,CHEN P Y,et al.Reprogramming of arachidonate metabolism confers temozolomide resistance to glioblastoma through enhancing mitochondrial activity in fatty acid oxidation[J].J Biomed Sci,2022,29(1):21

    • [40] CHENG S Y,CHEN N F,WEN Z H,et al.Glutathione S⁃transferase M3 is associated with glycolysis in intrinsic te⁃ mozolomide ⁃ resistant glioblastoma multiforme cells[J].Int J Mol Sci,2021,22(13):7080

    • [41] QIAN Y F,DING P,XU J,et al.CCL2 activates AKT sig⁃ naling to promote glycolysis and chemoresistance in glio⁃ ma cells[J].Cell Biol Int,2022,46(5):819-828

    • [42] BI J F,KHAN A,TANG J,et al.Targeting glioblastoma signaling and metabolism with a re⁃purposed brain⁃pene⁃ trant drug[J].Cell Rep,2021,37(5):109957

    • [43] MAIMÓ ⁃BARCELÓ A,MARTÍN ⁃SAIZ L,FERNÁNDEZ J A,et al.Polyunsaturated fatty acid⁃enriched lipid finger⁃ print of glioblastoma proliferative regions is differentially regulated according to glioblastoma molecular subtype[J].Int J Mol Sci,2022,23(6):2949

    • [44] LIN H Y,LIAO K H,KO C Y,et al.17β⁃estradiol induces temozolomide resistance through NRF2 ⁃ mediated redox homeostasis in glioblastoma[J].Free Radic Biol Med,2021,172:430-440

    • [45] YASUMOTO Y,MIYAZAKI H,VAIDYAN L K,et al.Inhibition of fatty acid synthase decreases expression of stemness markers in glioma stem cells[J].PLoS One,2016,11(1):e0147717

    • [46] SHIM J K,CHOI S,YOON S J,et al.Etomoxir,a carni⁃ tine palmitoyltransferase 1 inhibitor,combined with temo⁃ zolomide reduces stemness and invasiveness in patient ⁃ derived glioblastoma tumorspheres[J].Cancer Cell Int,2022,22(1):309

    • [47] GALLI R,BINDA E,ORFANELLI U,et al.Isolation and characterization of tumorigenic,stem ⁃like neural precur⁃ sors from human glioblastoma[J].Cancer Res,2004,64(19):7011-7021

    • [48] ECKERDT F,PLATANIAS L C.Emerging role of glioma stem cells in mechanisms of therapy resistance[J].Can⁃ cers,2023,15(13):3458

    • [49] FANFONE D,IDBAIH A,MAMMI J,et al.Profiling anti⁃ apoptotic BCL ⁃ xL protein expression in glioblastoma tumorspheres[J].Cancers,2020,12(10):2853

    • [50] ZHANG Y,WANG S X,MA J W,et al.EGCG inhibits properties of glioma stem⁃like cells and synergizes with temozolomide through downregulation of P ⁃ glycoprotein inhibition[J].J Neurooncol,2015,121(1):41-52

    • [51] URIBE D,TORRES Á,ROCHA J D,et al.Multidrug re⁃ sistance in glioblastoma stem⁃like cells:role of the hypoxic microenvironment and adenosine signaling[J].Mol Aspects Med,2017,55:140-151

    • [52] MARTÍN V,SANCHEZ⁃SANCHEZ A M,HERRERA F,et al.Melatonin ⁃ induced methylation of the ABCG2/BCRP promoter as a novel mechanism to overcome multi⁃ drug resistance in brain tumour stem cells[J].Br J Can⁃ cer,2013,108(10):2005-2012

    • [53] YANG K,NIU L,BAI Y J,et al.Glioblastoma:targeting the autophagy in tumorigenesis[J].Brain Res Bull,2019,153:334-340

    • [54] 高健成,陆晨飞,张梓枫,等.胶质瘤干细胞来源的外泌体促进胶质瘤恶性进展[J].南京医科大学学报(自然科学版),2022,42(12):1658-1663

    • [55] 王翠蓉,王义俊,张爱霞,等.肿瘤微环境对脑胶质瘤血管拟态形成的影响及药理学意义[J].南京医科大学学报(自然科学版),2023,43(1):107-112

    • [56] MENG L T,WANG C R,LU Y P,et al.Targeted regula⁃ tion of blood ⁃ brain barrier for enhanced therapeutic effi⁃ ciency of hypoxia ⁃ modifier nanoparticles and immune checkpoint blockade antibodies for glioblastoma[J].ACS Appl Mater Interfaces,2021,13(10):11657-11671

    • [57] ZHANG X N,YANG K D,CHEN C,et al.Pericytes aug⁃ ment glioblastoma cell resistance to temozolomide through CCL5⁃CCR5 paracrine signaling[J].Cell Res,2021,31(10):1072-1087

    • [58] HUANG M G,ZHANG D,WU J Y,et al.Wnt ⁃mediated endothelial transformation into mesenchymal stem cell ⁃ like cells induces chemoresistance in glioblastoma[J].Sci Transl Med,2020,12(532):eaay7522

    • [59] ZHANG G,TAO X,JI B W,et al.Hypoxia⁃driven M2⁃po⁃ larized macrophages facilitate cancer aggressiveness and temozolomide resistance in glioblastoma[J].Oxid Med Cell Longev,2022,2022:1614336

    • [60] GOLEBIEWSKA A,HAU A C,OUDIN A,et al.Patient⁃ derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology[J].Acta Neuropathol,2020,140(6):919-949

    • [61] WANG K,KIEVIT F M,CHIARELLI P A,et al.siRNA nanoparticle suppresses drug⁃resistant gene and prolongs survival in an orthotopic glioblastoma xenograft mouse model[J].Adv Funct Mater,2021,31(6):2007166

    • [62] LIN K,GUEBLE S E,SUNDARAM R K,et al.Mechanism ⁃based design of agents that selectively target drug ⁃ resis⁃ tant glioma[J].Science,2022,377(6605):502-511

    • [63] OU M T,CHO H Y,FU J,et al.Inhibition of autophagy and induction of glioblastoma cell death by NEO214,a perillyl alcohol⁃rolipram conjugate[J].Autophagy,2023,19(12):3169-3188

    • [64] GUO G,GONG K,PULIYAPPADAMBA V T,et al.Effi⁃ cacy of EGFR plus TNF inhibition in a preclinical model of temozolomide⁃resistant glioblastoma[J].Neuro Oncol,2019,21(12):1529-1539

    • [65] DESJARDINS A,GROMEIER M,HERNDON J E,et al.Recurrent glioblastoma treated with recombinant poliovi⁃rus[J].N Engl J Med,2018,379(2):150-161

    • [66] LIAU L M,ASHKAN K,BREM S,et al.Association of au⁃ tologous tumor lysate ⁃ loaded dendritic cell vaccination with extension of survival among patients with newly diag⁃ nosed and recurrent glioblastoma:a phase 3 prospective externally controlled cohort trial[J].JAMA Oncol,2023,9(1):112-121

    • [67] NARITA Y,ARAKAWA Y,YAMASAKI F,et al.A ran⁃ domized,double⁃blind,phase Ⅲ trial of personalized pep⁃ tide vaccination for recurrent glioblastoma[J].Neuro On⁃ col,2019,21(3):348-359

    • [68] PICCIRILLO S G M,REYNOLDS B A,ZANETTI N,et al.Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour ⁃ initiating cells[J].Nature,2006,444(7120):761-765

    • [69] BOS E M,BINDA E,VERPLOEGH I S C,et al.Local de⁃ livery of hrBMP4 as an anticancer therapy in patients with recurrent glioblastoma:a first ⁃ in ⁃ human phase 1 dose escalation trial[J].Mol Cancer,2023,22(1):129

    • [70] WANG X X,YANG K L,WU Q L,et al.Targeting pyrimi⁃ dine synthesis accentuates molecular therapy response in glioblastoma stem cells[J].Sci Transl Med,2019,11(504):eaau4972

    • [71] MUN E J,BABIKER H M,WEINBERG U,et al.Tumor⁃ treating fields:a fourth modality in cancer treatment[J].Clin Cancer Res,2018,24(2):266-275

    • [72] STUPP R,WONG E T,KANNER A A,et al.NovoTTF ⁃ 100A versus physician’s choice chemotherapy in recur⁃ rent glioblastoma:a randomised phase Ⅲ trial of a novel treatment modality[J].Eur J Cancer,2012,48(14):2192-2202

    • [73] KANNER A A,WONG E T,VILLANO J L,et al.Post Hoc analyses of intention⁃to⁃treat population in phase Ⅲ comparison of NovoTTF⁃100ATM system versus best physi⁃ cian’s choice chemotherapy[J].Semin Oncol,2014,41(Suppl 6):S25-S34

    • [74] STUPP R,TAILLIBERT S,KANNER A A,et al.Mainte⁃ nance therapy with tumor ⁃ treating fields plus temozolo⁃ mide vs temozolomide alone for glioblastoma:a random⁃ ized clinical trial[J].JAMA,2015,314(23):2535-2543

    • [75] STUPP R,TAILLIBERT S,KANNER A,et al.Effect of tu⁃ mor ⁃ treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma:a randomized clinical trial[J].JAMA,2017,318(23):2306-2316

    • [76] TOMS S A,KIM C Y,NICHOLAS G,et al.Increased com⁃ pliance with tumor treating fields therapy is prognostic for improved survival in the treatment of glioblastoma:a sub⁃ group analysis of the EF⁃14 phase Ⅲ trial[J].J Neuroon⁃ col,2019,141(2):467-473

    • [77] XU C,YUAN X Y,HOU P Y,et al.Development of glio⁃ blastoma organoids and their applications in personalized therapy[J].Cancer Biol Med,2023,20(5):353-368

    • [78] JACOB F,SALINAS R D,ZHANG D Y,et al.A patient⁃ derived glioblastoma organoid model and biobank recapit⁃ ulates inter ⁃ and intra ⁃ tumoral heterogeneity[J].Cell,2020,180(1):188-204

    • [79] ANDREATTA F,BECCACECI G,FORTUNA N,et al.The organoid era permits the development of new applica⁃ tions to study glioblastoma[J].Cancers,2020,12(11):3303

    • [80] WEN J,LIU F K,CHENG Q,et al.Applications of organ⁃ oid technology to brain tumors[J].CNS Neurosci Ther,2023,29(10):2725-2743

    • [81] LOONG H H F,WONG A M,CHAN D T M,et al.Patient⁃ derived tumor organoid predicts drugs response in glioblas⁃ toma:a step forward in personalized cancer therapy?[J].J Clin Neurosci,2020,78:400-402

  • 参考文献

    • [1] WELLER M,VAN DEN BENT M,PREUSSER M,et al.EANO guidelines on the diagnosis and treatment of dif⁃ fuse gliomas of adulthood[J].Nat Rev Clin Oncol,2021,18(3):170-186

    • [2] STUPP R,MASON W P,VAN DEN BENT M J,et al.Ra⁃ diotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J].N Engl J Med,2005,352(10):987-996

    • [3] MEDICAL RESEARCH COUNCIL BRAIN TUMOR WORKING PARTY.Randomized trial of procarbazine,lomustine,and vincristine in the adjuvant treatment of high⁃ grade astrocytoma:a medical research council trial[J].J Clin Oncol,2001,19(2):509-518

    • [4] KIM S H,YOO H,CHANG J H,et al.Procarbazine and CCNU chemotherapy for recurrent glioblastoma with MGMT promoter methylation[J].J Korean Med Sci,2018,33(24):167

    • [5] LOMBARDI G,DE SALVO G L,BRANDES A A,et al.Regorafenib compared with lomustine in patients with re⁃ lapsed glioblastoma(REGOMA):a multicentre,open ⁃la⁃ bel,randomised,controlled,phase 2 trial[J].Lancet On⁃ col,2019,20(1):110-119

    • [6] REARDON D A,BRANDES A A,OMURO A,et al.Effect of nivolumab vs bevacizumab in patients with re⁃ current glioblastoma:the checkmate 143 phase 3 random⁃ ized clinical trial[J].JAMA Oncol,2020,6(7):1003-1010

    • [7] TSIEN C I,PUGH S L,DICKER A P,et al.NRG oncolo⁃ gy/RTOG1205:a randomized phase Ⅱ trial of concurrent bevacizumab and reirradiation versus bevacizumab alone as treatment for recurrent glioblastoma[J].J Clin Oncol,2023,41(6):1285-1295

    • [8] LIM M,WELLER M,IDBAIH A,et al.Phase Ⅲ trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter[J].Neuro ⁃ oncology,2022,24(11):1935-1949

    • [9] OMURO A,BRANDES A A,CARPENTIER A F,et al.Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter:an international randomized phase Ⅲ trial[J].Neuro Oncol,2023,25(1):123-134

    • [10] TOMAR M S,KUMAR A,SRIVASTAVA C,et al.Eluci⁃ dating the mechanisms of temozolomide resistance in glio⁃ mas and the strategies to overcome the resistance[J].Bio⁃ chim Biophys Acta Rev Cancer,2021,1876(2):188616

    • [11] OLDRINI B,VAQUERO ⁃ SIGUERO N,MU Q H,et al.MGMT genomic rearrangements contribute to chemothera⁃ py resistance in gliomas[J].Nat Commun,2020,11(1):3883

    • [12] WICK W,PLATTEN M,MEISNER C,et al.Temozolo⁃ mide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly:the NOA ⁃ 08 ran⁃ domised,phase 3 trial[J].Lancet Oncol,2012,13(7):707-715

    • [13] BRANDES A A,FRANCESCHI E,TOSONI A,et al.O(6)⁃methylguanine DNA⁃methyltransferase methylation status can change between first surgery for newly ding⁃ nosed glioblastoma and second sugery for recurrence:clini⁃ cal implications[J].Neuro Oncol,2010,12(3):283-288

    • [14] GAN T,WANG Y,XIE M Y,et al.MEX3A impairs DNA mismatch repair signaling and mediates acquired temo⁃ zolomide resistance in glioblastoma[J].Cancer Res,2022,82(22):4234-4246

    • [15] FELSBERG J,THON N,EIGENBROD S,et al.Promoter methylation and expression of MGMT and the DNA mis⁃ match repair genes MLH1,MSH2,MSH6 and PMS2 in paired primary and recurrent glioblastomas[J].Int J Can⁃ cer,2011,129(3):659-670

    • [16] ZHANG T X,CHAI J,CHI L Y.Induction of XLF and 53BP1 expression is associated with temozolomide resis⁃ tance in glioblastoma cells[J].Onco Targets Ther,2019,12:10139-10151

    • [17] KANG Y J,BALTER B,CSIZMADIA E,et al.Contribu⁃ tion of classical end⁃joining to PTEN inactivation in p53⁃ mediated glioblastoma formation and drug ⁃ resistant sur⁃ vival[J].Nat Commun,2017,8:14013

    • [18] YANG B,FU X Q,HAO J L,et al.PAXX participates in base excision repair via interacting with pol β and contri⁃ butes to TMZ resistance in glioma cells[J].J Mol Neuro⁃ sci,2018,66(2):214-221

    • [19] DONG W,LI L L,TENG X P,et al.End processing factor APLF promotes NHEJ efficiency and contributes to TMZ⁃ and ionizing radiation⁃resistance in glioblastoma cells[J].Onco Targets Ther,2020,13:10593-10605

    • [20] CHAI K M,WANG C Y,LIAW H J,et al.Downregulation of BRCA1⁃BRCA2⁃containing complex subunit 3 sensitizes glioma cells to temozolomide[J].Oncotarget,2014,5(21):10901-10915

    • [21] PATTIES I,KALLENDRUSCH S,BÖHME L,et al.The Chk1 inhibitor SAR ⁃020106 sensitizes human glioblasto⁃ ma cells to irradiation,to temozolomide,and to decitabine treatment[J].J Exp Clin Cancer Res,2019,38(1):420

    • [22] LI H,CHEN L,LI J J,et al.MiR⁃519a enhances chemo⁃ sensitivity and promotes autophagy in glioblastoma by tar⁃ geting STAT3/Bcl2 signaling pathway[J].J Hematol On⁃ col,2018,11(1):70

    • [23] GE X,PAN M H,WANG L,et al.Hypoxia⁃mediated mito⁃ chondria apoptosis inhibition induces temozolomide treat⁃ ment resistance through miR ⁃ 26a/Bad/Bax axis[J].Cell Death Dis,2018,9(11):1128

    • [24] CANCER GENOME ATLAS RESEARCH NETWORK.Comprehensive genomic characterization defines human glioblastoma genes and core pathways[J].Nature,2008,455(7216):1061-1068

    • [25] SINGH N,MINER A,HENNIS L,et al.Mechanisms of temozolomide resistance in glioblastoma ⁃ a comprehen⁃ sive review[J].Cancer Drug Resist,2021,4(1):17-43

    • [26] XIE Y,ZHONG D W.AEG⁃1 is associated with hypoxia⁃ induced hepatocellular carcinoma chemoresistance via regulating PI3K/AKT/HIF ⁃ 1 alpha/MDR ⁃ 1 pathway[J].EXCLI J,2016,15:745-757

    • [27] PRASAD G,SOTTERO T,YANG X D,et al.Inhibition of PI3K/mTOR pathways in glioblastoma and implications for combination therapy with temozolomide[J].Neuro Oncol,2011,13(4):384-392

    • [28] TOMAR V S,PATIL V,SOMASUNDARAM K.Temozolo⁃ mide induces activation of Wnt/β⁃catenin signaling in gli⁃ oma cells via PI3K/Akt pathway:implications in glioma therapy[J].Cell Biol Toxicol,2020,36(3):273-278

    • [29] YUN E J,KIM S,HSIEH J T,et al.Wnt/β⁃catenin signal⁃ ing pathway induces autophagy ⁃ mediated temozolomide ⁃ resistance in human glioblastoma[J].Cell Death Dis,2020,11(9):771

    • [30] LIU T,HU J,HAN B,et al.A positive feedback loop of lncRNA⁃RMRP/ZNRF3 axis and Wnt/β⁃catenin signal⁃ ing regulates the progression and temozolomide resistance in glioma[J].Cell Death Dis,2021,12(11):952

    • [31] LIU B Y,ZHOU J,WANG C Y,et al.LncRNA SOX2OT promotes temozolomide resistance by elevating SOX2 expression via ALKBH5 ⁃ mediated epigenetic regulation in glioblastoma[J].Cell Death Dis,2020,11(5):384

    • [32] MENG X Q,ZHAO Y,HAN B,et al.Dual functionalized brain ⁃ targeting nanoinhibitors restrain temozolomide ⁃ re⁃ sistant glioma via attenuating EGFR and MET signaling pathways[J].Nat Commun,2020,11(1):594

    • [33] GOODWIN C R,RATH P,OYINLADE O,et al.Crizo⁃ tinib and erlotinib inhibits growth of c ⁃ Met +/EGFRvⅢ+ primary human glioblastoma xenografts[J].Clin Neurol Neurosurg,2018,171:26-33

    • [34] HUANG W H,ZHONG Z,LUO C,et al.The miR⁃26a/AP ⁃ 2α/Nanog signaling axis mediates stem cell self ⁃ re⁃ newal and temozolomide resistance in glioma[J].Ther⁃ anostics,2019,9(19):5497-5516

    • [35] ZHAO C G,YU H H,FAN X Q,et al.GSK3β palmi⁃ toylation mediated by ZDHHC4 promotes tumorigenicity of glioblastoma stem cells in temozolomide⁃resistant glio⁃ blastoma through the EZH2 ⁃ STAT3 axis[J].Oncogene⁃ sis,2022,11(1):28

    • [36] CHIANG I T,LIU Y C,LIU H S,et al.Regorafenib reverses temozolomide ⁃ induced CXCL12/CXCR4 signaling and triggers apoptosis mechanism in glioblastoma[J].Neuro⁃ therapeutics,2022,19(2):616-634

    • [37] LI H Y,FENG Y H,LIN C L,et al.Mitochondrial mecha⁃ nisms in temozolomide resistance:unraveling the complex interplay and therapeutic strategies in glioblastoma[J].Mitochondrion,2023,75:101836

    • [38] GARCIA J H,JAIN S,AGHI M K.Metabolic drivers of in⁃ vasion in glioblastoma[J].Front Cell Dev Biol,2021,9:683276

    • [39] TSAI Y T,LO W L,CHEN P Y,et al.Reprogramming of arachidonate metabolism confers temozolomide resistance to glioblastoma through enhancing mitochondrial activity in fatty acid oxidation[J].J Biomed Sci,2022,29(1):21

    • [40] CHENG S Y,CHEN N F,WEN Z H,et al.Glutathione S⁃transferase M3 is associated with glycolysis in intrinsic te⁃ mozolomide ⁃ resistant glioblastoma multiforme cells[J].Int J Mol Sci,2021,22(13):7080

    • [41] QIAN Y F,DING P,XU J,et al.CCL2 activates AKT sig⁃ naling to promote glycolysis and chemoresistance in glio⁃ ma cells[J].Cell Biol Int,2022,46(5):819-828

    • [42] BI J F,KHAN A,TANG J,et al.Targeting glioblastoma signaling and metabolism with a re⁃purposed brain⁃pene⁃ trant drug[J].Cell Rep,2021,37(5):109957

    • [43] MAIMÓ ⁃BARCELÓ A,MARTÍN ⁃SAIZ L,FERNÁNDEZ J A,et al.Polyunsaturated fatty acid⁃enriched lipid finger⁃ print of glioblastoma proliferative regions is differentially regulated according to glioblastoma molecular subtype[J].Int J Mol Sci,2022,23(6):2949

    • [44] LIN H Y,LIAO K H,KO C Y,et al.17β⁃estradiol induces temozolomide resistance through NRF2 ⁃ mediated redox homeostasis in glioblastoma[J].Free Radic Biol Med,2021,172:430-440

    • [45] YASUMOTO Y,MIYAZAKI H,VAIDYAN L K,et al.Inhibition of fatty acid synthase decreases expression of stemness markers in glioma stem cells[J].PLoS One,2016,11(1):e0147717

    • [46] SHIM J K,CHOI S,YOON S J,et al.Etomoxir,a carni⁃ tine palmitoyltransferase 1 inhibitor,combined with temo⁃ zolomide reduces stemness and invasiveness in patient ⁃ derived glioblastoma tumorspheres[J].Cancer Cell Int,2022,22(1):309

    • [47] GALLI R,BINDA E,ORFANELLI U,et al.Isolation and characterization of tumorigenic,stem ⁃like neural precur⁃ sors from human glioblastoma[J].Cancer Res,2004,64(19):7011-7021

    • [48] ECKERDT F,PLATANIAS L C.Emerging role of glioma stem cells in mechanisms of therapy resistance[J].Can⁃ cers,2023,15(13):3458

    • [49] FANFONE D,IDBAIH A,MAMMI J,et al.Profiling anti⁃ apoptotic BCL ⁃ xL protein expression in glioblastoma tumorspheres[J].Cancers,2020,12(10):2853

    • [50] ZHANG Y,WANG S X,MA J W,et al.EGCG inhibits properties of glioma stem⁃like cells and synergizes with temozolomide through downregulation of P ⁃ glycoprotein inhibition[J].J Neurooncol,2015,121(1):41-52

    • [51] URIBE D,TORRES Á,ROCHA J D,et al.Multidrug re⁃ sistance in glioblastoma stem⁃like cells:role of the hypoxic microenvironment and adenosine signaling[J].Mol Aspects Med,2017,55:140-151

    • [52] MARTÍN V,SANCHEZ⁃SANCHEZ A M,HERRERA F,et al.Melatonin ⁃ induced methylation of the ABCG2/BCRP promoter as a novel mechanism to overcome multi⁃ drug resistance in brain tumour stem cells[J].Br J Can⁃ cer,2013,108(10):2005-2012

    • [53] YANG K,NIU L,BAI Y J,et al.Glioblastoma:targeting the autophagy in tumorigenesis[J].Brain Res Bull,2019,153:334-340

    • [54] 高健成,陆晨飞,张梓枫,等.胶质瘤干细胞来源的外泌体促进胶质瘤恶性进展[J].南京医科大学学报(自然科学版),2022,42(12):1658-1663

    • [55] 王翠蓉,王义俊,张爱霞,等.肿瘤微环境对脑胶质瘤血管拟态形成的影响及药理学意义[J].南京医科大学学报(自然科学版),2023,43(1):107-112

    • [56] MENG L T,WANG C R,LU Y P,et al.Targeted regula⁃ tion of blood ⁃ brain barrier for enhanced therapeutic effi⁃ ciency of hypoxia ⁃ modifier nanoparticles and immune checkpoint blockade antibodies for glioblastoma[J].ACS Appl Mater Interfaces,2021,13(10):11657-11671

    • [57] ZHANG X N,YANG K D,CHEN C,et al.Pericytes aug⁃ ment glioblastoma cell resistance to temozolomide through CCL5⁃CCR5 paracrine signaling[J].Cell Res,2021,31(10):1072-1087

    • [58] HUANG M G,ZHANG D,WU J Y,et al.Wnt ⁃mediated endothelial transformation into mesenchymal stem cell ⁃ like cells induces chemoresistance in glioblastoma[J].Sci Transl Med,2020,12(532):eaay7522

    • [59] ZHANG G,TAO X,JI B W,et al.Hypoxia⁃driven M2⁃po⁃ larized macrophages facilitate cancer aggressiveness and temozolomide resistance in glioblastoma[J].Oxid Med Cell Longev,2022,2022:1614336

    • [60] GOLEBIEWSKA A,HAU A C,OUDIN A,et al.Patient⁃ derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology[J].Acta Neuropathol,2020,140(6):919-949

    • [61] WANG K,KIEVIT F M,CHIARELLI P A,et al.siRNA nanoparticle suppresses drug⁃resistant gene and prolongs survival in an orthotopic glioblastoma xenograft mouse model[J].Adv Funct Mater,2021,31(6):2007166

    • [62] LIN K,GUEBLE S E,SUNDARAM R K,et al.Mechanism ⁃based design of agents that selectively target drug ⁃ resis⁃ tant glioma[J].Science,2022,377(6605):502-511

    • [63] OU M T,CHO H Y,FU J,et al.Inhibition of autophagy and induction of glioblastoma cell death by NEO214,a perillyl alcohol⁃rolipram conjugate[J].Autophagy,2023,19(12):3169-3188

    • [64] GUO G,GONG K,PULIYAPPADAMBA V T,et al.Effi⁃ cacy of EGFR plus TNF inhibition in a preclinical model of temozolomide⁃resistant glioblastoma[J].Neuro Oncol,2019,21(12):1529-1539

    • [65] DESJARDINS A,GROMEIER M,HERNDON J E,et al.Recurrent glioblastoma treated with recombinant poliovi⁃rus[J].N Engl J Med,2018,379(2):150-161

    • [66] LIAU L M,ASHKAN K,BREM S,et al.Association of au⁃ tologous tumor lysate ⁃ loaded dendritic cell vaccination with extension of survival among patients with newly diag⁃ nosed and recurrent glioblastoma:a phase 3 prospective externally controlled cohort trial[J].JAMA Oncol,2023,9(1):112-121

    • [67] NARITA Y,ARAKAWA Y,YAMASAKI F,et al.A ran⁃ domized,double⁃blind,phase Ⅲ trial of personalized pep⁃ tide vaccination for recurrent glioblastoma[J].Neuro On⁃ col,2019,21(3):348-359

    • [68] PICCIRILLO S G M,REYNOLDS B A,ZANETTI N,et al.Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour ⁃ initiating cells[J].Nature,2006,444(7120):761-765

    • [69] BOS E M,BINDA E,VERPLOEGH I S C,et al.Local de⁃ livery of hrBMP4 as an anticancer therapy in patients with recurrent glioblastoma:a first ⁃ in ⁃ human phase 1 dose escalation trial[J].Mol Cancer,2023,22(1):129

    • [70] WANG X X,YANG K L,WU Q L,et al.Targeting pyrimi⁃ dine synthesis accentuates molecular therapy response in glioblastoma stem cells[J].Sci Transl Med,2019,11(504):eaau4972

    • [71] MUN E J,BABIKER H M,WEINBERG U,et al.Tumor⁃ treating fields:a fourth modality in cancer treatment[J].Clin Cancer Res,2018,24(2):266-275

    • [72] STUPP R,WONG E T,KANNER A A,et al.NovoTTF ⁃ 100A versus physician’s choice chemotherapy in recur⁃ rent glioblastoma:a randomised phase Ⅲ trial of a novel treatment modality[J].Eur J Cancer,2012,48(14):2192-2202

    • [73] KANNER A A,WONG E T,VILLANO J L,et al.Post Hoc analyses of intention⁃to⁃treat population in phase Ⅲ comparison of NovoTTF⁃100ATM system versus best physi⁃ cian’s choice chemotherapy[J].Semin Oncol,2014,41(Suppl 6):S25-S34

    • [74] STUPP R,TAILLIBERT S,KANNER A A,et al.Mainte⁃ nance therapy with tumor ⁃ treating fields plus temozolo⁃ mide vs temozolomide alone for glioblastoma:a random⁃ ized clinical trial[J].JAMA,2015,314(23):2535-2543

    • [75] STUPP R,TAILLIBERT S,KANNER A,et al.Effect of tu⁃ mor ⁃ treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma:a randomized clinical trial[J].JAMA,2017,318(23):2306-2316

    • [76] TOMS S A,KIM C Y,NICHOLAS G,et al.Increased com⁃ pliance with tumor treating fields therapy is prognostic for improved survival in the treatment of glioblastoma:a sub⁃ group analysis of the EF⁃14 phase Ⅲ trial[J].J Neuroon⁃ col,2019,141(2):467-473

    • [77] XU C,YUAN X Y,HOU P Y,et al.Development of glio⁃ blastoma organoids and their applications in personalized therapy[J].Cancer Biol Med,2023,20(5):353-368

    • [78] JACOB F,SALINAS R D,ZHANG D Y,et al.A patient⁃ derived glioblastoma organoid model and biobank recapit⁃ ulates inter ⁃ and intra ⁃ tumoral heterogeneity[J].Cell,2020,180(1):188-204

    • [79] ANDREATTA F,BECCACECI G,FORTUNA N,et al.The organoid era permits the development of new applica⁃ tions to study glioblastoma[J].Cancers,2020,12(11):3303

    • [80] WEN J,LIU F K,CHENG Q,et al.Applications of organ⁃ oid technology to brain tumors[J].CNS Neurosci Ther,2023,29(10):2725-2743

    • [81] LOONG H H F,WONG A M,CHAN D T M,et al.Patient⁃ derived tumor organoid predicts drugs response in glioblas⁃ toma:a step forward in personalized cancer therapy?[J].J Clin Neurosci,2020,78:400-402