en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

孙敏,E-mail:drsunm@163.com

中图分类号:R736.4

文献标识码:A

文章编号:1007-4368(2024)05-732-06

DOI:10.7655/NYDXBNSN231143

参考文献 1
FERRIERE A,TABARIN A.Cushing’s disease[J].Pres⁃ se Med,2021,50(4):104091
参考文献 2
GIUFFRIDA G,CRISAFULLI S,FERRAÙ F,et al.Glob⁃ al Cushing’s disease epidemiology:a systematic review and meta⁃analysis of observational studies[J].J Endocri⁃ nol Invest,2022,45(6):1235-1246
参考文献 3
FLESERIU M,AUCHUS R,BANCOS I,et al.Consensus on diagnosis and management of Cushing’s disease:a guideline update[J].Lancet Diabetes Endocrinol,2021,9(12):847-875
参考文献 4
HAKAMI O,AHMED S,KARAVITAKI N.Epidemiology and mortality of Cushing’s syndrome[J].Best Pract Res Clin Endocrinol Metab,2021,35(1):101521
参考文献 5
王慧博,陆嘉诚,陈正新,等.神经内镜经鼻扩大入路切除侵袭性垂体瘤[J].南京医科大学学报(自然科学版),2021,41(10):1509-1512
参考文献 6
STROUD A,DHALIWAL P,ALVARADO R,et al.Out⁃ comes of pituitary surgery for Cushing’s disease:a sys⁃ tematic review and meta ⁃analysis[J].Pituitary.2020;23(5):595-609
参考文献 7
CASTINETTI F.Medical management of Cushing’s dis⁃ ease:When and how?[J].J Neuroendocrinol,2022,34(8):e13120
参考文献 8
BURCEA I,NĂSTASE V,POIANĂ C.Pituitary transcrip⁃ tion factors in the immunohistochemical and molecular di⁃ agnosis of pituitary tumours ⁃ a systematic review[J].En⁃ dokrynol Pol,2021,72(1):53-63
参考文献 9
SAEGER W,KOCH A.Clinical Implications of the New WHO Classification 2017 for Pituitary Tumors[J].Exp Clin Endocrinol Diabetes,2021,129(3):146-156
参考文献 10
NISHIOKA H,INOSHITA N,METE O,et al.The comple⁃ mentary role of transcription factors in the accurate diag⁃ nosis of clinically nonfunctioning pituitary adenomas[J].Endocr Pathol,2015,26(4):349-355
参考文献 11
ZHANG K,SHOU X,CHEN H,et al.Clinical parameters of silent corticotroph adenomas with positive and negative adrenocorticotropic hormone immunostaining:a large ret⁃ rospective single⁃center study of 105 cases[J].Front En⁃ docrinol(Lausanne),2021,11:608691
参考文献 12
JIANG S,CHEN X,WU Y,et al.An update on silent cor⁃ ticotroph adenomas:diagnosis,mechanisms,clinical fea⁃ tures,and management[J].Cancers(Basel),2021,13(23):6134
参考文献 13
TROUILLAS J,JAFFRAIN ⁃REA M L,VASILJEVIC A,et al.Are aggressive pituitary tumors and carcinomas two sides of the same coin?Pathologists reply to clinician’s questions[J].Rev Endocr Metab Disord,2020,21(2):243-251
参考文献 14
SBIERA S,PEREZ ⁃ RIVAS L G,TARANETS L,et al.Driver mutations in USP8 wild ⁃ type Cushing ’s dis⁃ ease[J].Neuro Oncol,2019,21(10):1273-1283
参考文献 15
UZILOV A V,TAIK P,CHEESMAN K C,et al.USP8 and TP53 drivers are associated with CNV in a corticotroph adenoma cohort enriched for aggressive tumors[J].J Clin Endocrinol Metab,2021,106(3):826-842
参考文献 16
PEREZ ⁃ RIVAS LG,SIMON J,ALBANI A,et al.TP53 mutations in functional corticotroph tumors are linked to invasion and worse clinical outcome[J].Acta Neuro⁃ pathol Commun,2022,10(1):139
参考文献 17
LABADZHYAN A,MELMED S.Molecular targets in ac⁃ romegaly[J].Front Endocrinol(Lausanne),2022,13:1068061
参考文献 18
BOLANOWSKI M,KAłUŻNY M,WITEK P,et al.Pasire⁃ otide ⁃ a novel somatostatin receptor ligand after 20 years of use[J].Rev Endocr Metab Disord,2022,23(3):601-620
参考文献 19
CASTELLNOU S,VASILJEVIC A,LAPRAS V,et al.SST5 expression and USP8 mutation in functioning and si⁃ lent corticotroph pituitary tumors[J].Endocr Connect,2020,9(3):243-253
参考文献 20
MORENO⁃MORENO P,IBÁÑEZ⁃COSTA A,VENEGAS⁃ MORENO E,et al.Integrative clinical,radiological,and molecular analysis for predicting remission and recur⁃ rence of cushing disease[J].J Clin Endocrinol Metab,2022,107(7):e2938-e2951
参考文献 21
GODBOUT A,MANAVELA M,DANILOWICZ K,et al.Cabergoline monotherapy in the long ⁃ term treatment of Cushing’s disease[J].Eur J Endocrinol,2010,163(5):709-716
参考文献 22
FUKUOKA H,SHICHI H,YAMAMOTO M,et al.The mechanisms underlying autonomous adrenocorticotropic hormone secretion in Cushing’s disease[J].Int J Mol Sci,2020,21(23):9132
参考文献 23
ANDONEGUI ⁃ELGUERA S,SILVA ⁃ROMáN G,PEñA ⁃ MARTÍNEZ E,et al.The genomic landscape of cortico⁃ troph tumors:from silent adenomas to ACTH ⁃ Secreting carcinomas[J].Int J Mol Sci,2022,23(9):4861
参考文献 24
SAKAMOTO H,FRIEL A M,WOOD A W,et al.Mecha⁃ nisms of Cables 1 gene inactivation in human ovarian can⁃ cer development[J].Cancer Biol Ther,2008,7(2):180-188
参考文献 25
ROUSSEL⁃GERVAIS A,COUTURE C,LANGLAIS D,et al.The cables1 gene in glucocorticoid regulation of pitu⁃ itary corticotrope growth and cushing disease[J].J Clin Endocrinol Metab,2016,101(2):513-522
参考文献 26
KORBONITS M,CHAHAL H S,KALTSAS G,et al.Ex⁃ pression of phosphorylated p27(Kip1)protein and Jun ac⁃ tivation domain ⁃ binding protein 1 in human pituitary tu⁃ mors[J].J Clin Endocrinol Metab,2002,87(6):2635-2643
参考文献 27
HERNÁNDEZ ⁃ RAMÍREZ LC,GAM R,VALDÉS N,et al.Loss⁃of⁃function mutations in the CABLES1 gene are a novel cause of Cushing’s disease[J].Endocr Relat Can⁃ cer,2017,24(8):379-392
参考文献 28
CHASSELOUP F,PANKRATZ N,LANE J,et al.Germ⁃ line CDKN1B loss ⁃ of ⁃ function variants cause pediatric Cushing ’s disease with or without an MEN4 pheno⁃ type[J].J Clin Endocrinol Metab,2020,105(6):1983-2005
参考文献 29
ZHOU Y Z,LI C Z,GAO H,et al.The effects of Smad3 on adrenocorticotropic hormone⁃secreting pituitary adeno⁃ ma development,cell proliferation,apoptosis,and hor⁃ mone secretion[J].World Neurosurg,2018,114:e329-e337
参考文献 30
MIYADO M,FUKAMI M,OGATA T.MAMLD1 and dif⁃ ferences/disorders of sex development:an update[J].Sex Dev,2022,16(2⁃3):126-137
参考文献 31
QI J,NI W.Attenuation of MAMLD1 expression suppress⁃ es the growth and migratory properties of gonadotroph pi⁃ tuitary adenomas[J].Pathol Oncol Res,2020,26(2):937-946
参考文献 32
WANG A,NEILL S G,NEWMAN S,et al.The genomic profiling and MAMLD1 expression in human and canines with Cushing’s disease[J].BMC Endocr Disord,2021,21(1):185
参考文献 33
ZHANG S,CUI Y,M A X,et al.Single ⁃ cell transcrip⁃ tomics identifies divergent developmental lineage trajecto⁃ ries during human pituitary development[J].Nat Com⁃ mun,2020,11(1):5275
参考文献 34
ANDO M,GOTO M,HOJO M,et al.The proneural bHLH genes Mash1,Math3 and NeuroD are required for pitu⁃ itary development[J].J Mol Endocrinol,2018,61(3):127-138
参考文献 35
ZHANG F,TANASA B,MERKURJEV D,et al.Enhancer ⁃ bound LDB1 regulates a corticotrope promoter ⁃ pausing repression program[J].Proc Natl Acad Sci U S A,2015,112(5):1380-1385
参考文献 36
CHEN Z,JIA Q,ZHAO Z,et al.Transcription factor AS⁃ CL1 acts as a novel potential therapeutic target for the treatment of the Cushing’s disease[J].J Clin Endocrinol Metab,2022,107(8):2296-2306
参考文献 37
CASAR ⁃BOROTA O,BOLDT H B,ENGSTRÖM B E,et al.Corticotroph aggressive pituitary tumors and carcino⁃ mas frequently harbor ATRX mutations[J].J Clin Endo⁃ crinol Metab,2021,106(4):1183-1194
参考文献 38
DOĞANŞEN S Ç,BILGIÇ B,YALIN G Y,et al.Clinical significance of granulation pattern in corticotroph pitu⁃ itary adenomas.clinical significance of granulation pat⁃ tern in corticotroph pituitary adenomas[J].Turk Patoloji Derg,2019,35(1):9-14
参考文献 39
RAK B,MAKSYMOWICZ M,PęKUL M,et al.Clinical,biological,radiological pathological and immediate post ⁃ operative remission of sparsely and densely granulated corticotroph pituitary tumors:a retrospective study of a co⁃ hort of 277 patients with Cushing’s disease[J].Front En⁃ docrinol(Lausanne),2021,12:672178
参考文献 40
BRZANA J,YEDINAK C G,GULTEKIN S H,et al.Growth hormone granulation pattern and somatostatin re⁃ ceptor subtype 2A correlate with postoperative somatosta⁃ tin receptor ligand response in acromegaly:a large single center experience[J].Pituitary,2013,16(4):490-498
参考文献 41
LANGLOIS F,WOLTJER R,CETAS J S,et al.Silent so⁃ matotroph pituitary adenomas:an update[J].Pituitary,2018,21(2):194-202
参考文献 42
ASA S L,METE O.Cytokeratin profiles in pituitary neuro⁃ endocrine tumors[J].Hum Pathol,2021,107:87-95
参考文献 43
ASA S L,METE O,PERRY A,et al.Overview of the 2022 WHO classification of pituitary tumors[J].Endocr Pathol,2022,33(1):6-26
参考文献 44
GIRALDI E A,NEILL S G,MENDOZA P,et al.Function⁃ ing crooke cell adenomas:case series and literature review [J].World Neurosurg,2022,158:e754-e765
参考文献 45
ZHU D,WANG Z,TIAN T,et al.Prevalence and clinical characteristics of Crooke’s cell adenomas in 101 patients with T ⁃ PIT ⁃ positive pituitary adenomas:case series and literature review[J].Front Endocrinol(Lausanne),2022,13:947085
目录contents

    摘要

    分泌促肾上腺皮质激素(adrenocorticotropic hormone,ACTH)的垂体腺瘤(垂体ACTH瘤)因过度分泌ACTH刺激双侧肾上腺皮质增生而引起高皮质醇血症,也称作库欣病(Cushing’s disease,CD),是内源性高皮质醇血症最常见的原因。垂体 ACTH瘤可导致电解质紊乱,糖、脂代谢紊乱等一系列严重的临床症候群,累及全身多个脏器及系统。经蝶窦神经内镜手术是垂体ACTH瘤的一线治疗方法,可以得到较高的缓解率,但术后复发和持续状态仍然是垂体ACTH瘤治疗的一个未解决的问题。垂体ACTH瘤病理评估在确定病变性质、预测其预后及药物治疗选择方面均有重要的价值。文章就垂体ACTH瘤病理评估的相关进展进行综述,包括新的免疫组化标志物和镜下特殊表现。

    Abstract

    Pituitary adenomas secreting adrenocorticotropin hormone(ACTH),known as ACTH-secreting pituitary adenomas,cause hypercortisolism by overproducting ACTH and stimulating bilateral adrenal cortical hyperplasia,a condition also known as Cushing’s disease(CD),which is the most common cause of endogenous hypercortisolism. ACTH-secreting pituitary adenomas lead to a series of severe clinical syndromes,including electrolyte disturbances and disorders of glucose and lipid metabolism,affecting multiple organs and systems throughout the body. Transsphenoidal neuroendoscopic surgery is the first -line treatment for ACTH - secreting pituitary adenomas,with a high remission rate,but postoperative recurrence and persistent disease remain unsolved in the treatment of ACTH- secreting pituitary adenomas. The pathological evaluation of ACTH - secreting pituitary adenomas has important value in determining the nature of the lesions,predicting the prognosis,and selecting the drug therapy. This article reviews the advances in the pathologic evaluation of ACTH-secreting pituitary adenomas,including new immunohistochemical markers and microscopic special features.

  • 库欣病(Cushing’s disease,CD)是一种由分泌促肾上腺皮质激素(adrenocorticotropic hormone, ACTH)的垂体腺瘤(垂体 ACTH 瘤)引起的罕见疾病,占内源性高皮质醇血症病例的70%[1]。最近的一项包括13项研究在内的系统回顾和荟萃分析显示,虽然 CD 的患病率约为 2.2/10 万人[2],但危害严重。不仅因其并发症和合并症较多[3],相关病死率显著增加[4],还因部分CD具有较高复发率和一定的侵袭性,不易根治。经蝶窦神经内镜手术是 CD 的一线治疗方法[5],但复发和持续性未缓解病例仍然是增加CD患者病死率的重要风险[6],术后病理标志物对于评估垂体ACTH瘤的生物学特征,预测疾病转归和药物反应从而指导疾病精准分层管理有重要价值[7]。最新WHO垂体肿瘤分类指南建议术后应常规行免疫组化,根据激素、转录因子和其他生物标志物的表达决定的细胞谱系进行垂体肿瘤的分类,然而尚未形成较为统一的规范。临床医生对不同病理指标的应用价值的认识也不够深入和确切,本文将CD病理诊断公认的重要指标进行梳理, 并将新近发现的有潜在价值的新指标在确定病变性质、预测预后及药物反应方面的应用进行综述。

  • 1 免疫组化标志物

  • 1.1 T⁃pit

  • 垂体转录因子在决定垂体腺瘤的细胞分化和激素合成中起着重要作用,因此可作为诊断标志物。根据转录因子的不同,垂体腺瘤可以分为3个细胞谱系:表达 T⁃pit 的 ACTH 细胞谱系,表达 Pit⁃1 的GH、PRL和TSH细胞谱系,和表达SF⁃1的促性腺激素细胞谱系[8-9]。T⁃pit参与激活阿片黑素促皮质激素原(POMC),从而产生 ACTH。因此,所有的 ACTH腺瘤必须是T⁃pit阳性的。大约1/4的免疫组化 ACTH 阴性的腺瘤可呈 T ⁃ pit 阳性,同时 POMC mRNA 表达升高,此类腺瘤可进展而临床呈现为 CD,随访需要关注相关激素变化。该类腺瘤以女性为主,更常表现为大腺瘤和明显的海绵窦侵犯[10],随着 T⁃pit 免疫组化的应用,无功能垂体腺瘤(non⁃ functioning pituitary adenom,NFPA)中静默性促肾上腺皮质激素细胞腺瘤(silent corticotroph adenoma, SCA)的检出率大大提高[11]。研究表明,激素阴性的 NFPA 加上 T⁃pit 免疫组化后,有接近 1/3 可因 T⁃pit 阳性诊断为SCA。SCA具有高增殖性、侵袭性、进展性和频繁复发性,是高风险肿瘤之一。可见,T⁃pit 的常规检测可及时识别 SCA 并进行必要的治疗而改善患者预后[12]

  • 1.2 Ki⁃67和p53

  • 2013 年法国提出的五层预后临床病理建议按照3项增殖标志物(有丝分裂计数、Ki⁃67指数、p53) 对垂体腺瘤的增殖性进行评价。有增殖性是指以下3项中至少符合2项:①有丝分裂计数>2/10 HPF; ②Ki⁃67 指数≥3%;③p53 阳性。同时具有侵袭性 (组织学和/或放射影像学上有海绵窦或蝶窦被侵袭的表现)和增殖性的肿瘤被归类为 2b 级肿瘤。 2b 级肿瘤疑似恶性肿瘤的概率为 7%~9%。多项研究表明,2b级肿瘤的复发、进展的风险明显高于 1a级肿瘤[13]

  • 上述指标在恶性肿瘤中关注度比较高,其和垂体腺瘤侵袭性之间的关系尚不明确。近期研究,与野生型的ACTH瘤队列相比,p53突变型与更具侵袭性的肿瘤行为相关的特征显著相关,例如肿瘤切除不完全、癌旁浸润更频繁、Knosp 分级更高、Ki⁃67 指数更高。既往认为 p53 突变在侵袭性垂体肿瘤 (aggressive pituitary tumor,APT)和垂体癌(pituitary carcinoma,PC)中很罕见,但新近研究显示 APT 和 PC 中 p53 突变率可能被低估,其和 CD 预后的关系值得进一步关注[14-16]

  • 1.3 生长抑素受体(somatostatin receptor,SSTR)

  • 垂体 ACTH 瘤表达的 SSTR 主要是亚型 5 (SSTR5),其次是亚型2(SSTR2)和亚型1(SSTR1)。腺瘤中 SSTR 的表达为其提供了潜在的治疗靶点[17]。常见的治疗药物有奥曲肽、帕瑞肽[18],后者靶向多个SSTR,可更有效地抑制ACTH的释放。几乎所有的 ACTH 瘤都在 mRNA 水平表达 SSTR5 RNA,但当使用单克隆抗体检测时,只有20%~42% 的人对该标志物有免疫反应性。已有研究表明,垂体ACTH瘤中SSTR5阳性更倾向于表现为非沉默型的、低分级的,提示预后较好[19]。SSTR5在微腺瘤中的表达水平比在大腺瘤中高。然而,迄今为止, SSTR 多种亚型作为垂体 ACTH 瘤转归的预测价值尚未在大队列中得到正式的评估,需要更大样本的研究[20]

  • 1.4 多巴胺D2受体(dopamine D2 receptor,DRD2)

  • DRD2在正常的垂体中表达。免疫组化显示约 3/4的ACTH瘤表达DRD2,体外实验用溴隐亭或卡麦角林可导致所有表达该受体的肿瘤细胞中ACTH 分泌被显著抑制。约40%的CD患者在3~6个月的卡麦角林治疗后的皮质醇水平完全恢复正常。通过加大治疗剂量、延长治疗时间,治疗有效率仍可进一步升高[21]。因而,垂体ACTH瘤免疫组化纳入 DRD2 评估可指导术后未完全缓解的 CD 进一步的药物选择。

  • 1.5 CABLES1和细胞周期蛋白依赖性激酶抑制剂 1B(cyclin⁃dependent kinase inhibitor 1B,CDKN1B)

  • CD 的一个显著特征是垂体 ACTH 细胞对糖皮质激素的负反馈调节迟钝甚至消失。此反馈中一个关键的细胞周期负调节因子 CABLES1 [22-23] 在 ACTH 细胞中可被糖皮质激素激活,从而稳定细胞周期的调节因子(CDKN1A、CDK5R1 和 TP63)防止其被降解,还可与抑癌基因(TP53、TP73)相互作用,触发细胞凋亡,进而维持细胞周期的稳定。 CABLES1 基因失活可促进细胞增殖以及肿瘤形成[24]。研究显示在大约一半的垂体ACTH瘤中存在 CABLES1免疫反应性的缺失[25]

  • CDKN1B免疫染色在所有类型的垂体腺瘤中都显著减少,特别是在垂体ACTH瘤和垂体癌中常表达缺失[26],这也与 Ki⁃67 高表达相关。进一步研究发现,低表达很可能不是由于基因的突变或缺失,而是因蛋白翻译后改变引发,如在 CD 中细胞周期蛋白E上调导致CDKN1B磷酸化增加,这使该蛋白失活降解。

  • CABLES1与CDKN1B的低表达呈强正相关,可能是因为 CABLES1 功能受损导致的 CDKN1B 降解增加。目前要确定 CABLES1 和 CDKN1B 免疫染色作为 CD 标志物的价值还需要更多的临床数据[27],在部分年轻发病的CD患者中报道了CABLES1的种系变异可能与垂体ACTH瘤相关,它也可作为多发性内分泌肿瘤综合征(MEN)4型的重要标志物[28]

  • 1.6 Smad3

  • Smad3是R⁃Smad超家族的成员,是TGF⁃β信号通路的主要细胞内介质,主要传递肿瘤抑制信号,调节细胞增殖和凋亡,其缺失可导致体内外多种肿瘤的发生。Smad3 以及其活化形式 pSmad3 在垂体 ACTH瘤中的表达均低于正常垂体。Smad3可能通过减少ACTH⁃PA细胞中的pSmad3信号通路来抑制细胞增殖,其表达降低后则此抑制作用减弱。垂体 ACTH 瘤细胞中 Smad3 过表达导致 POMC 表达降低。然而,Smad3 对 ACTH 分泌的影响并不完全一致,说明 Smad3 对 ACTH 分泌的抑制可能是通过 POMC介导的,但也可能受到另一种信号通路的调控[29],此标志物是否适合作为垂体ACTH瘤的病理评估标志物,尚需考量。

  • 1.7 MAMLD1

  • MAMLD1基因位于X染色体,主要在性腺中表达[30]。既往关于MAMLD1的研究主要围绕促性腺激素垂体腺瘤[31],在垂体 ACTH 瘤中的研究很少。在一项小型探索性队列中发现 MAMLD1 在垂体 ACTH瘤细胞中表达,但在正常垂体细胞中不表达,所以 MAMLD1 免疫组化染色可能帮助诊断 CD,有助于更好地描述不同激素分泌型的垂体肿瘤。但是其和垂体ACTH瘤侵袭性和复发性的关系尚需要更多临床数据去探讨。此外,靶向抑制MAMLD1可能是抑制垂体ACTH瘤生长的潜在有效靶向策略,值得关注[32]

  • 1.8 ASCL1

  • ASCL1基因属于激活型bHLH转录因子家族的一员,早期在人垂体干细胞中特异性表达,可与 MASH1 基因、MASH3 基因和神经源性分化因子(neurogenic differentiation factor,NeuroD)一起影响垂体祖细胞的分化,并参与 ACTH 细胞的谱系发育[33-34]。ASCL1过表达可增加AtT⁃20细胞的增殖,并促进POMC和ACTH的产生。相反,ASCL1敲低导致 POMC表达和ACTH分泌降低。一项对68例CD患者垂体瘤ASCL1免疫组化染色评分显示,ASCL1过表达与血浆ACTH高水平和肿瘤体积正相关。ASCL1 可能与 POMC 启动子上的结合位点结合,促进 POMC转录,很可能是POMC的功能性转录因子[35],促进CD患者ACTH的过度分泌和肿瘤发生。仍需要进一步研究以探索其下游途径和潜在机制[36]。基于以上事实,ASCL1在垂体ACTH 瘤侵袭性及复发预测上极有可能有重要的价值。

  • 1.9 ATRX

  • 转录调控因子ATRX蛋白是一种解螺旋酶,维持DNA复制时染色体的稳定性。ATRX蛋白表达缺失在垂体癌中的发生率高于侵袭性垂体瘤,在垂体 ACTH 瘤中也高于其他谱系亚型,表明 ATRX 蛋白表达缺失和垂体病变侵袭性间的密切关联。对于大腺瘤引起CD或临床沉默型垂体ACTH瘤,ATRX 免疫组化有助于识别其高度侵袭性及潜在转移性,具有一定的临床应用价值[37]

  • 2 镜下特殊表现

  • 2.1 颗粒形态

  • 根据电镜观察到的分泌颗粒的分布密度,分泌 ACTH的垂体腺瘤可分为密集颗粒型(densely gran⁃ ulated,DG)和稀疏颗粒型(sparsely granulated, SG)。大多数肿瘤为 DG,PAS 染色为强阳性,同样 ACTH免疫染色通常为强和弥漫性。相比之下,SG 的促肾上腺皮质瘤的分泌颗粒更少更小,因而 ACTH 免疫染色也弱或不均匀。DG 肿瘤的一个显著特征是存在核周细胞角蛋白纤维束;高尔基复合体和粗糙的内质网是中等发育的。相比之下,SG肿瘤细胞由进化不良的细胞质细胞器组成,细胞核周围缺乏细胞角蛋白纤维。我们强调病理诊断描述垂体ACTH瘤的颗粒形态的重要性,因为SG表型更具侵袭性,通常伴随更高的Knosp’s分级、更大的肿瘤大小和更高的Ki⁃67增殖指数[38-39]。经证实,在生长激素腺瘤中,SG还与对生长抑素类似物治疗的反应较差和预后较差有关[40-41]。因此,该指标应该作为垂体瘤病理诊断的常规指标,便于协助判断肿瘤的侵袭性和预后。

  • 2.2 Crooke改变及Crooke肿瘤

  • 长期暴露在高水平糖皮质激素中会导致垂体中正常的垂体 ACTH 细胞发生 Crooke 透明改变 (Crooke’s hyaline change,CC),表现为环状角蛋白丝累积而ACTH颗粒向核周和膜下区域移动。具有这种特征性外观的非肿瘤性 ACTH 细胞被称为 Crooke 细胞。在镜下可见 Crooke 细胞中嗜碱性颗粒、PAS 阳性和 ACTH 阳性颗粒在细胞外围或紧邻细胞核,而细胞质中则充满一圈淡透明物质,该物质对CAM2.1、AE3/AE18或CK20角蛋白染色有强反应性[42]。持续糖皮质激素过量的患者,无论其病因如何,无论是CD还是外源性糖皮质激素使用、肾上腺皮质肿瘤或异位ACTH综合征,其垂体都可有这种改变。

  • 当 50%肿瘤细胞存在 Crooke 改变时可诊断为 Crooke肿瘤(Crooke’s cell adenoma,CCA)[43]。在CD 患者中,CCA多见于大腺瘤,女性多见,临床侵袭性明显[44-45]。对于CCA患者,建议术后进行密切的临床、生化和影像学监测随访。

  • 综上所述,越来越多的研究提示多种免疫组化的标志物和镜下特殊表现显示与垂体ACTH瘤的侵袭性和复发性相关,部分指标还对预测垂体ACTH 瘤对不同药物的治疗反应有重要价值,因而,在垂体ACTH瘤病理评估中综合纳入以上指标,对于判定疾病的预后和指导药物具有参考价值。目前免疫组化指标T⁃pit、Ki⁃67、p53、SSTR、DRD2及颗粒形态及Crooke改变的镜下表现已开始应用于临床,但仍未引起足够重视。而免疫组化指标 CABLES1、 CDKN1B、Smad3、MAMLD1、ASCL1、ATRX 在垂体 ACTH 瘤中的评估仍处于研究阶段,需要进一步临床研究。结合临床队列随访观察,在此基础上形成基于病理评估的、更全面高效的、纳入多个参数的预测模型。对于指导预后和用药具有重要的临床应用价值和前景。

  • 参考文献

    • [1] FERRIERE A,TABARIN A.Cushing’s disease[J].Pres⁃ se Med,2021,50(4):104091

    • [2] GIUFFRIDA G,CRISAFULLI S,FERRAÙ F,et al.Glob⁃ al Cushing’s disease epidemiology:a systematic review and meta⁃analysis of observational studies[J].J Endocri⁃ nol Invest,2022,45(6):1235-1246

    • [3] FLESERIU M,AUCHUS R,BANCOS I,et al.Consensus on diagnosis and management of Cushing’s disease:a guideline update[J].Lancet Diabetes Endocrinol,2021,9(12):847-875

    • [4] HAKAMI O,AHMED S,KARAVITAKI N.Epidemiology and mortality of Cushing’s syndrome[J].Best Pract Res Clin Endocrinol Metab,2021,35(1):101521

    • [5] 王慧博,陆嘉诚,陈正新,等.神经内镜经鼻扩大入路切除侵袭性垂体瘤[J].南京医科大学学报(自然科学版),2021,41(10):1509-1512

    • [6] STROUD A,DHALIWAL P,ALVARADO R,et al.Out⁃ comes of pituitary surgery for Cushing’s disease:a sys⁃ tematic review and meta ⁃analysis[J].Pituitary.2020;23(5):595-609

    • [7] CASTINETTI F.Medical management of Cushing’s dis⁃ ease:When and how?[J].J Neuroendocrinol,2022,34(8):e13120

    • [8] BURCEA I,NĂSTASE V,POIANĂ C.Pituitary transcrip⁃ tion factors in the immunohistochemical and molecular di⁃ agnosis of pituitary tumours ⁃ a systematic review[J].En⁃ dokrynol Pol,2021,72(1):53-63

    • [9] SAEGER W,KOCH A.Clinical Implications of the New WHO Classification 2017 for Pituitary Tumors[J].Exp Clin Endocrinol Diabetes,2021,129(3):146-156

    • [10] NISHIOKA H,INOSHITA N,METE O,et al.The comple⁃ mentary role of transcription factors in the accurate diag⁃ nosis of clinically nonfunctioning pituitary adenomas[J].Endocr Pathol,2015,26(4):349-355

    • [11] ZHANG K,SHOU X,CHEN H,et al.Clinical parameters of silent corticotroph adenomas with positive and negative adrenocorticotropic hormone immunostaining:a large ret⁃ rospective single⁃center study of 105 cases[J].Front En⁃ docrinol(Lausanne),2021,11:608691

    • [12] JIANG S,CHEN X,WU Y,et al.An update on silent cor⁃ ticotroph adenomas:diagnosis,mechanisms,clinical fea⁃ tures,and management[J].Cancers(Basel),2021,13(23):6134

    • [13] TROUILLAS J,JAFFRAIN ⁃REA M L,VASILJEVIC A,et al.Are aggressive pituitary tumors and carcinomas two sides of the same coin?Pathologists reply to clinician’s questions[J].Rev Endocr Metab Disord,2020,21(2):243-251

    • [14] SBIERA S,PEREZ ⁃ RIVAS L G,TARANETS L,et al.Driver mutations in USP8 wild ⁃ type Cushing ’s dis⁃ ease[J].Neuro Oncol,2019,21(10):1273-1283

    • [15] UZILOV A V,TAIK P,CHEESMAN K C,et al.USP8 and TP53 drivers are associated with CNV in a corticotroph adenoma cohort enriched for aggressive tumors[J].J Clin Endocrinol Metab,2021,106(3):826-842

    • [16] PEREZ ⁃ RIVAS LG,SIMON J,ALBANI A,et al.TP53 mutations in functional corticotroph tumors are linked to invasion and worse clinical outcome[J].Acta Neuro⁃ pathol Commun,2022,10(1):139

    • [17] LABADZHYAN A,MELMED S.Molecular targets in ac⁃ romegaly[J].Front Endocrinol(Lausanne),2022,13:1068061

    • [18] BOLANOWSKI M,KAłUŻNY M,WITEK P,et al.Pasire⁃ otide ⁃ a novel somatostatin receptor ligand after 20 years of use[J].Rev Endocr Metab Disord,2022,23(3):601-620

    • [19] CASTELLNOU S,VASILJEVIC A,LAPRAS V,et al.SST5 expression and USP8 mutation in functioning and si⁃ lent corticotroph pituitary tumors[J].Endocr Connect,2020,9(3):243-253

    • [20] MORENO⁃MORENO P,IBÁÑEZ⁃COSTA A,VENEGAS⁃ MORENO E,et al.Integrative clinical,radiological,and molecular analysis for predicting remission and recur⁃ rence of cushing disease[J].J Clin Endocrinol Metab,2022,107(7):e2938-e2951

    • [21] GODBOUT A,MANAVELA M,DANILOWICZ K,et al.Cabergoline monotherapy in the long ⁃ term treatment of Cushing’s disease[J].Eur J Endocrinol,2010,163(5):709-716

    • [22] FUKUOKA H,SHICHI H,YAMAMOTO M,et al.The mechanisms underlying autonomous adrenocorticotropic hormone secretion in Cushing’s disease[J].Int J Mol Sci,2020,21(23):9132

    • [23] ANDONEGUI ⁃ELGUERA S,SILVA ⁃ROMáN G,PEñA ⁃ MARTÍNEZ E,et al.The genomic landscape of cortico⁃ troph tumors:from silent adenomas to ACTH ⁃ Secreting carcinomas[J].Int J Mol Sci,2022,23(9):4861

    • [24] SAKAMOTO H,FRIEL A M,WOOD A W,et al.Mecha⁃ nisms of Cables 1 gene inactivation in human ovarian can⁃ cer development[J].Cancer Biol Ther,2008,7(2):180-188

    • [25] ROUSSEL⁃GERVAIS A,COUTURE C,LANGLAIS D,et al.The cables1 gene in glucocorticoid regulation of pitu⁃ itary corticotrope growth and cushing disease[J].J Clin Endocrinol Metab,2016,101(2):513-522

    • [26] KORBONITS M,CHAHAL H S,KALTSAS G,et al.Ex⁃ pression of phosphorylated p27(Kip1)protein and Jun ac⁃ tivation domain ⁃ binding protein 1 in human pituitary tu⁃ mors[J].J Clin Endocrinol Metab,2002,87(6):2635-2643

    • [27] HERNÁNDEZ ⁃ RAMÍREZ LC,GAM R,VALDÉS N,et al.Loss⁃of⁃function mutations in the CABLES1 gene are a novel cause of Cushing’s disease[J].Endocr Relat Can⁃ cer,2017,24(8):379-392

    • [28] CHASSELOUP F,PANKRATZ N,LANE J,et al.Germ⁃ line CDKN1B loss ⁃ of ⁃ function variants cause pediatric Cushing ’s disease with or without an MEN4 pheno⁃ type[J].J Clin Endocrinol Metab,2020,105(6):1983-2005

    • [29] ZHOU Y Z,LI C Z,GAO H,et al.The effects of Smad3 on adrenocorticotropic hormone⁃secreting pituitary adeno⁃ ma development,cell proliferation,apoptosis,and hor⁃ mone secretion[J].World Neurosurg,2018,114:e329-e337

    • [30] MIYADO M,FUKAMI M,OGATA T.MAMLD1 and dif⁃ ferences/disorders of sex development:an update[J].Sex Dev,2022,16(2⁃3):126-137

    • [31] QI J,NI W.Attenuation of MAMLD1 expression suppress⁃ es the growth and migratory properties of gonadotroph pi⁃ tuitary adenomas[J].Pathol Oncol Res,2020,26(2):937-946

    • [32] WANG A,NEILL S G,NEWMAN S,et al.The genomic profiling and MAMLD1 expression in human and canines with Cushing’s disease[J].BMC Endocr Disord,2021,21(1):185

    • [33] ZHANG S,CUI Y,M A X,et al.Single ⁃ cell transcrip⁃ tomics identifies divergent developmental lineage trajecto⁃ ries during human pituitary development[J].Nat Com⁃ mun,2020,11(1):5275

    • [34] ANDO M,GOTO M,HOJO M,et al.The proneural bHLH genes Mash1,Math3 and NeuroD are required for pitu⁃ itary development[J].J Mol Endocrinol,2018,61(3):127-138

    • [35] ZHANG F,TANASA B,MERKURJEV D,et al.Enhancer ⁃ bound LDB1 regulates a corticotrope promoter ⁃ pausing repression program[J].Proc Natl Acad Sci U S A,2015,112(5):1380-1385

    • [36] CHEN Z,JIA Q,ZHAO Z,et al.Transcription factor AS⁃ CL1 acts as a novel potential therapeutic target for the treatment of the Cushing’s disease[J].J Clin Endocrinol Metab,2022,107(8):2296-2306

    • [37] CASAR ⁃BOROTA O,BOLDT H B,ENGSTRÖM B E,et al.Corticotroph aggressive pituitary tumors and carcino⁃ mas frequently harbor ATRX mutations[J].J Clin Endo⁃ crinol Metab,2021,106(4):1183-1194

    • [38] DOĞANŞEN S Ç,BILGIÇ B,YALIN G Y,et al.Clinical significance of granulation pattern in corticotroph pitu⁃ itary adenomas.clinical significance of granulation pat⁃ tern in corticotroph pituitary adenomas[J].Turk Patoloji Derg,2019,35(1):9-14

    • [39] RAK B,MAKSYMOWICZ M,PęKUL M,et al.Clinical,biological,radiological pathological and immediate post ⁃ operative remission of sparsely and densely granulated corticotroph pituitary tumors:a retrospective study of a co⁃ hort of 277 patients with Cushing’s disease[J].Front En⁃ docrinol(Lausanne),2021,12:672178

    • [40] BRZANA J,YEDINAK C G,GULTEKIN S H,et al.Growth hormone granulation pattern and somatostatin re⁃ ceptor subtype 2A correlate with postoperative somatosta⁃ tin receptor ligand response in acromegaly:a large single center experience[J].Pituitary,2013,16(4):490-498

    • [41] LANGLOIS F,WOLTJER R,CETAS J S,et al.Silent so⁃ matotroph pituitary adenomas:an update[J].Pituitary,2018,21(2):194-202

    • [42] ASA S L,METE O.Cytokeratin profiles in pituitary neuro⁃ endocrine tumors[J].Hum Pathol,2021,107:87-95

    • [43] ASA S L,METE O,PERRY A,et al.Overview of the 2022 WHO classification of pituitary tumors[J].Endocr Pathol,2022,33(1):6-26

    • [44] GIRALDI E A,NEILL S G,MENDOZA P,et al.Function⁃ ing crooke cell adenomas:case series and literature review [J].World Neurosurg,2022,158:e754-e765

    • [45] ZHU D,WANG Z,TIAN T,et al.Prevalence and clinical characteristics of Crooke’s cell adenomas in 101 patients with T ⁃ PIT ⁃ positive pituitary adenomas:case series and literature review[J].Front Endocrinol(Lausanne),2022,13:947085

  • 参考文献

    • [1] FERRIERE A,TABARIN A.Cushing’s disease[J].Pres⁃ se Med,2021,50(4):104091

    • [2] GIUFFRIDA G,CRISAFULLI S,FERRAÙ F,et al.Glob⁃ al Cushing’s disease epidemiology:a systematic review and meta⁃analysis of observational studies[J].J Endocri⁃ nol Invest,2022,45(6):1235-1246

    • [3] FLESERIU M,AUCHUS R,BANCOS I,et al.Consensus on diagnosis and management of Cushing’s disease:a guideline update[J].Lancet Diabetes Endocrinol,2021,9(12):847-875

    • [4] HAKAMI O,AHMED S,KARAVITAKI N.Epidemiology and mortality of Cushing’s syndrome[J].Best Pract Res Clin Endocrinol Metab,2021,35(1):101521

    • [5] 王慧博,陆嘉诚,陈正新,等.神经内镜经鼻扩大入路切除侵袭性垂体瘤[J].南京医科大学学报(自然科学版),2021,41(10):1509-1512

    • [6] STROUD A,DHALIWAL P,ALVARADO R,et al.Out⁃ comes of pituitary surgery for Cushing’s disease:a sys⁃ tematic review and meta ⁃analysis[J].Pituitary.2020;23(5):595-609

    • [7] CASTINETTI F.Medical management of Cushing’s dis⁃ ease:When and how?[J].J Neuroendocrinol,2022,34(8):e13120

    • [8] BURCEA I,NĂSTASE V,POIANĂ C.Pituitary transcrip⁃ tion factors in the immunohistochemical and molecular di⁃ agnosis of pituitary tumours ⁃ a systematic review[J].En⁃ dokrynol Pol,2021,72(1):53-63

    • [9] SAEGER W,KOCH A.Clinical Implications of the New WHO Classification 2017 for Pituitary Tumors[J].Exp Clin Endocrinol Diabetes,2021,129(3):146-156

    • [10] NISHIOKA H,INOSHITA N,METE O,et al.The comple⁃ mentary role of transcription factors in the accurate diag⁃ nosis of clinically nonfunctioning pituitary adenomas[J].Endocr Pathol,2015,26(4):349-355

    • [11] ZHANG K,SHOU X,CHEN H,et al.Clinical parameters of silent corticotroph adenomas with positive and negative adrenocorticotropic hormone immunostaining:a large ret⁃ rospective single⁃center study of 105 cases[J].Front En⁃ docrinol(Lausanne),2021,11:608691

    • [12] JIANG S,CHEN X,WU Y,et al.An update on silent cor⁃ ticotroph adenomas:diagnosis,mechanisms,clinical fea⁃ tures,and management[J].Cancers(Basel),2021,13(23):6134

    • [13] TROUILLAS J,JAFFRAIN ⁃REA M L,VASILJEVIC A,et al.Are aggressive pituitary tumors and carcinomas two sides of the same coin?Pathologists reply to clinician’s questions[J].Rev Endocr Metab Disord,2020,21(2):243-251

    • [14] SBIERA S,PEREZ ⁃ RIVAS L G,TARANETS L,et al.Driver mutations in USP8 wild ⁃ type Cushing ’s dis⁃ ease[J].Neuro Oncol,2019,21(10):1273-1283

    • [15] UZILOV A V,TAIK P,CHEESMAN K C,et al.USP8 and TP53 drivers are associated with CNV in a corticotroph adenoma cohort enriched for aggressive tumors[J].J Clin Endocrinol Metab,2021,106(3):826-842

    • [16] PEREZ ⁃ RIVAS LG,SIMON J,ALBANI A,et al.TP53 mutations in functional corticotroph tumors are linked to invasion and worse clinical outcome[J].Acta Neuro⁃ pathol Commun,2022,10(1):139

    • [17] LABADZHYAN A,MELMED S.Molecular targets in ac⁃ romegaly[J].Front Endocrinol(Lausanne),2022,13:1068061

    • [18] BOLANOWSKI M,KAłUŻNY M,WITEK P,et al.Pasire⁃ otide ⁃ a novel somatostatin receptor ligand after 20 years of use[J].Rev Endocr Metab Disord,2022,23(3):601-620

    • [19] CASTELLNOU S,VASILJEVIC A,LAPRAS V,et al.SST5 expression and USP8 mutation in functioning and si⁃ lent corticotroph pituitary tumors[J].Endocr Connect,2020,9(3):243-253

    • [20] MORENO⁃MORENO P,IBÁÑEZ⁃COSTA A,VENEGAS⁃ MORENO E,et al.Integrative clinical,radiological,and molecular analysis for predicting remission and recur⁃ rence of cushing disease[J].J Clin Endocrinol Metab,2022,107(7):e2938-e2951

    • [21] GODBOUT A,MANAVELA M,DANILOWICZ K,et al.Cabergoline monotherapy in the long ⁃ term treatment of Cushing’s disease[J].Eur J Endocrinol,2010,163(5):709-716

    • [22] FUKUOKA H,SHICHI H,YAMAMOTO M,et al.The mechanisms underlying autonomous adrenocorticotropic hormone secretion in Cushing’s disease[J].Int J Mol Sci,2020,21(23):9132

    • [23] ANDONEGUI ⁃ELGUERA S,SILVA ⁃ROMáN G,PEñA ⁃ MARTÍNEZ E,et al.The genomic landscape of cortico⁃ troph tumors:from silent adenomas to ACTH ⁃ Secreting carcinomas[J].Int J Mol Sci,2022,23(9):4861

    • [24] SAKAMOTO H,FRIEL A M,WOOD A W,et al.Mecha⁃ nisms of Cables 1 gene inactivation in human ovarian can⁃ cer development[J].Cancer Biol Ther,2008,7(2):180-188

    • [25] ROUSSEL⁃GERVAIS A,COUTURE C,LANGLAIS D,et al.The cables1 gene in glucocorticoid regulation of pitu⁃ itary corticotrope growth and cushing disease[J].J Clin Endocrinol Metab,2016,101(2):513-522

    • [26] KORBONITS M,CHAHAL H S,KALTSAS G,et al.Ex⁃ pression of phosphorylated p27(Kip1)protein and Jun ac⁃ tivation domain ⁃ binding protein 1 in human pituitary tu⁃ mors[J].J Clin Endocrinol Metab,2002,87(6):2635-2643

    • [27] HERNÁNDEZ ⁃ RAMÍREZ LC,GAM R,VALDÉS N,et al.Loss⁃of⁃function mutations in the CABLES1 gene are a novel cause of Cushing’s disease[J].Endocr Relat Can⁃ cer,2017,24(8):379-392

    • [28] CHASSELOUP F,PANKRATZ N,LANE J,et al.Germ⁃ line CDKN1B loss ⁃ of ⁃ function variants cause pediatric Cushing ’s disease with or without an MEN4 pheno⁃ type[J].J Clin Endocrinol Metab,2020,105(6):1983-2005

    • [29] ZHOU Y Z,LI C Z,GAO H,et al.The effects of Smad3 on adrenocorticotropic hormone⁃secreting pituitary adeno⁃ ma development,cell proliferation,apoptosis,and hor⁃ mone secretion[J].World Neurosurg,2018,114:e329-e337

    • [30] MIYADO M,FUKAMI M,OGATA T.MAMLD1 and dif⁃ ferences/disorders of sex development:an update[J].Sex Dev,2022,16(2⁃3):126-137

    • [31] QI J,NI W.Attenuation of MAMLD1 expression suppress⁃ es the growth and migratory properties of gonadotroph pi⁃ tuitary adenomas[J].Pathol Oncol Res,2020,26(2):937-946

    • [32] WANG A,NEILL S G,NEWMAN S,et al.The genomic profiling and MAMLD1 expression in human and canines with Cushing’s disease[J].BMC Endocr Disord,2021,21(1):185

    • [33] ZHANG S,CUI Y,M A X,et al.Single ⁃ cell transcrip⁃ tomics identifies divergent developmental lineage trajecto⁃ ries during human pituitary development[J].Nat Com⁃ mun,2020,11(1):5275

    • [34] ANDO M,GOTO M,HOJO M,et al.The proneural bHLH genes Mash1,Math3 and NeuroD are required for pitu⁃ itary development[J].J Mol Endocrinol,2018,61(3):127-138

    • [35] ZHANG F,TANASA B,MERKURJEV D,et al.Enhancer ⁃ bound LDB1 regulates a corticotrope promoter ⁃ pausing repression program[J].Proc Natl Acad Sci U S A,2015,112(5):1380-1385

    • [36] CHEN Z,JIA Q,ZHAO Z,et al.Transcription factor AS⁃ CL1 acts as a novel potential therapeutic target for the treatment of the Cushing’s disease[J].J Clin Endocrinol Metab,2022,107(8):2296-2306

    • [37] CASAR ⁃BOROTA O,BOLDT H B,ENGSTRÖM B E,et al.Corticotroph aggressive pituitary tumors and carcino⁃ mas frequently harbor ATRX mutations[J].J Clin Endo⁃ crinol Metab,2021,106(4):1183-1194

    • [38] DOĞANŞEN S Ç,BILGIÇ B,YALIN G Y,et al.Clinical significance of granulation pattern in corticotroph pitu⁃ itary adenomas.clinical significance of granulation pat⁃ tern in corticotroph pituitary adenomas[J].Turk Patoloji Derg,2019,35(1):9-14

    • [39] RAK B,MAKSYMOWICZ M,PęKUL M,et al.Clinical,biological,radiological pathological and immediate post ⁃ operative remission of sparsely and densely granulated corticotroph pituitary tumors:a retrospective study of a co⁃ hort of 277 patients with Cushing’s disease[J].Front En⁃ docrinol(Lausanne),2021,12:672178

    • [40] BRZANA J,YEDINAK C G,GULTEKIN S H,et al.Growth hormone granulation pattern and somatostatin re⁃ ceptor subtype 2A correlate with postoperative somatosta⁃ tin receptor ligand response in acromegaly:a large single center experience[J].Pituitary,2013,16(4):490-498

    • [41] LANGLOIS F,WOLTJER R,CETAS J S,et al.Silent so⁃ matotroph pituitary adenomas:an update[J].Pituitary,2018,21(2):194-202

    • [42] ASA S L,METE O.Cytokeratin profiles in pituitary neuro⁃ endocrine tumors[J].Hum Pathol,2021,107:87-95

    • [43] ASA S L,METE O,PERRY A,et al.Overview of the 2022 WHO classification of pituitary tumors[J].Endocr Pathol,2022,33(1):6-26

    • [44] GIRALDI E A,NEILL S G,MENDOZA P,et al.Function⁃ ing crooke cell adenomas:case series and literature review [J].World Neurosurg,2022,158:e754-e765

    • [45] ZHU D,WANG Z,TIAN T,et al.Prevalence and clinical characteristics of Crooke’s cell adenomas in 101 patients with T ⁃ PIT ⁃ positive pituitary adenomas:case series and literature review[J].Front Endocrinol(Lausanne),2022,13:947085