en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

刘煜,E-mail:drliuyu@njmu.edu.cn

中图分类号:R589.2

文献标识码:A

文章编号:1007-4368(2024)06-882-06

DOI:10.7655/NYDXBNSN240106

参考文献 1
MORIGNY P,BOUCHER J,ARNER P,et al.Lipid and glucose metabolism in white adipocytes:pathways,dys⁃ function and therapeutics[J].Nat Rev Endocrinol,2021,17(5):276-295
参考文献 2
GUSTAFSON B,HEDJAZIFAR S,GOGG S,et al.Insulin resistance and impaired adipogenesis[J].Trends Endocri⁃ nol Metab,2015,26(4):193-200
参考文献 3
LONGO M,ZATTERALE F,NADERI J,et al.Adipose tis⁃ sue dysfunction as determinant of obesity⁃associated meta⁃ bolic complications[J].Int J Mol Sci,2019,20(9):2358
参考文献 4
SHABALINA I G,PETROVIC N,DE JONG J M,et al.UCP1 in brite/beige adipose tissue mitochondria is func⁃ tionally thermogenic[J].Cell Rep,2013,5(5):1196-1203
参考文献 5
KAZAK L,CHOUCHANI E T,JEDRYCHOWSKI M P,et al.A creatine⁃driven substrate cycle enhances energy ex⁃ penditure and thermogenesis in beige fat[J].Cell,2015,163(3):643-655
参考文献 6
BARBATELLI G,MURANO I,MADSEN L,et al.The emergence of cold ⁃ induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation[J].Am J Physiol En⁃ docrinol Metab,2010,298(6):1244-1253
参考文献 7
ALTSHULER⁃KEYLIN S,SHINODA K,HASEGAWA Y,et al.Beige adipocyte maintenance is regulated by autoph⁃ agy ⁃ induced mitochondrial clearance[J].Cell Metab,2016,24(3):402-419
参考文献 8
FORNER F,KUMAR C,LUBER C A,et al.Proteome dif⁃ ferences between brown and white fat mitochondria reveal specialized metabolic functions[J].Cell Metab,2009,10(4):324-335
参考文献 9
NICHOLLS D G.Stoicheiometries of proton translocation by mitochondria[J].Biochem Soc Trans,1977,5(1):200-203
参考文献 10
GIACOMELLO M,PYAKUREL A,GLYTSOU C,et al.The cell biology of mitochondrial membrane dynamics[J].Nat Rev Mol Cell Biol,2020,21(4):204-224
参考文献 11
QUINTANA⁃CABRERA R,SCORRANO L.Determinants and outcomes of mitochondrial dynamics[J].Mol Cell,2023,83(6):857-876
参考文献 12
WIKSTROM J D,MAHDAVIANI K,LIESA M,et al.Hor⁃ mone ⁃induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expen⁃ diture[J].EMBO J,2014,33(5):418-436
参考文献 13
PISANI D F,BARQUISSAU V,CHAMBARD J C,et al.Mitochondrial fission is associated with UCP1 activity in human brite/beige adipocytes[J].Mol Metab,2018,7:35-44
参考文献 14
MOOLI R G R,MUKHI D,CHEN Z,et al.An indispen⁃ sable role for dynamin ⁃ related protein 1 in beige and brown adipogenesis[J].J Cell Sci,2020,133(18):3
参考文献 15
PEREIRA R O,MARTI A,OLVERA A C,et al.OPA1 deletion in brown adipose tissue improves thermoregula⁃ tion and systemic metabolism via FGF21[J].Elife,2021,10:e66519
参考文献 16
PEREIRA R O,OLVERA A C,MARTI A,et al.OPA1 regulates lipid metabolism and cold ⁃induced browning of white adipose tissue in mice[J].Diabetes,2022,71(12):2572-2583
参考文献 17
QIU J,YUE F,ZHU P,et al.FAM210A is essential for cold ⁃ induced mitochondrial remodeling in brown adipo⁃ cytes[J].Nat Commun,2023,14(1):6344
参考文献 18
BAN T,ISHIHARA T,KOHNO H,et al.Molecular basis of selective mitochondrial fusion by heterotypic action be⁃ tween OPA1 and cardiolipin[J].Nat Cell Biol,2017,19(7):856-863
参考文献 19
KAMEOKA S,ADACHI Y,OKAMOTO K,et al.Phospha⁃ tidic acid and cardiolipin coordinate mitochondrial dy⁃ namics[J].Trends Cell Biol,2018,28(1):67-76
参考文献 20
SUSTARSIC E G,MA T,LYNES M D,et al.Cardiolipin synthesis in brown and beige fat mitochondria is essential for systemic energy homeostasis[J].Cell Metab,2018,28(1):159-174
参考文献 21
SU H,GUO H,QIU X,et al.Lipocalin 2 regulates mito⁃ chondrial phospholipidome remodeling,dynamics,and function in brown adipose tissue in male mice[J].Nat Commun,2023,14(1):6729
参考文献 22
PARK H,HE A,TAN M,et al.Peroxisome⁃derived lipids regulate adipose thermogenesis by mediating cold ⁃ in⁃ duced mitochondrial fission[J].J Clin Invest,2019,129(2):694-711
参考文献 23
HU D,TAN M,LU D,et al.TMEM135 links peroxisomes to the regulation of brown fat mitochondrial fission and en⁃ ergy homeostasis[J].Nat Commun,2023,14(1):6099
参考文献 24
ASHRAFI G,SCHWARZ T L.The pathways of mitophagy for quality control and clearance of mitochondria[J].Cell Death Differ,2013,20(1):31-42
参考文献 25
CAIRÓ M,VILLARROYA J.The role of autophagy in brown and beige adipose tissue plasticity[J].J Physiol Biochem,2020,76(2):213-226
参考文献 26
LU Y,LI Z,ZHANG S,et al.Cellular mitophagy:mecha⁃ nism,roles in diseases and small molecule pharmacologi⁃ cal regulation[J].Theranostics,2023,13(2):736-766
参考文献 27
季学涛,张许,刘谨,等.脂肪组织中自噬影响肥胖发病机制的研究进展[J].南京医科大学学报(自然科学版),2023,43(2):275-282
参考文献 28
LIU L,LI Y,CHEN G,et al.Crosstalk between mitochon⁃ drial biogenesis and mitophagy to maintain mitochondrial homeostasis[J].J Biomed Sci,2023,30(1):86
参考文献 29
SINGH R,XIANG Y,WANG Y,et al.Autophagy regu⁃ lates adipose mass and differentiation in mice[J].J Clin Invest,2009,119(11):3329-3339
参考文献 30
TAYLOR D,GOTTLIEB R A.Parkin ⁃mediated mitophagy is downregulated in browning of white adipose tissue[J].Obesity,2017,25(4):704-712
参考文献 31
CHO Y K,SON Y,SAHA A,et al.STK3/STK4 signalling in adipocytes regulates mitophagy and energy expendi⁃ ture[J].Nat Metab,2021,3(3):428-441
参考文献 32
SZATMÁRI⁃TÓTH M,SHAW A,CSOMÓS I,et al.Ther⁃ mogenic activation downregulates high mitophagy rate in human masked and mature beige adipocytes[J].Int J Mol Sci,2020,21(18):6640
参考文献 33
VÁMOS A,SHAW A,VARGA K,et al.Mitophagy medi⁃ ates the beige to white transition of human primary subcu⁃ taneous adipocytes ex vivo[J].Pharmaceuticals(Basel),2022,15(3):363
参考文献 34
CHOI J W,JO A,KIM M,et al.BNIP3 is essential for mi⁃ tochondrial bioenergetics during adipocyte remodelling in mice[J].Diabetologia,2016,59(3):571-581
参考文献 35
JU L,CHEN S,ALIMUJIANG M,et al.A novel role for Bcl2l13 in promoting beige adipocyte biogenesis[J].Bio⁃chem Biophys Res Commun,2018,506(3):485-491
参考文献 36
LIU L,LI Y,WANG J,et al.Mitophagy receptor FUNDC1 is regulated by PGC⁃1α/NRF1 to fine tune mitochondrial homeostasis[J].EMBO Rep,2021,22(3):e50629
参考文献 37
MOORE T M,CHENG L,WOLF D M,et al.Parkin regu⁃ lates adiposity by coordinating mitophagy with mitochon⁃ drial biogenesis in white adipocytes[J].Nat Commun,2022,13(1):6661
参考文献 38
BORCHERDING N,BRESTOFF J R.The power and po⁃ tential of mitochondria transfer[J].Nature,2023,623(7986):283-291
参考文献 39
BORCHERDING N,JIA W,GIWA R,et al.Dietary lipids inhibit mitochondria transfer to macrophages to divert adi⁃ pocyte ⁃ derived mitochondria into the blood[J].Cell Metab,2022,34(10):1499-1513
参考文献 40
ROSINA M,CECI V,TURCHI R,et al.Ejection of dam⁃ aged mitochondria and their removal by macrophages en⁃ sure efficient thermogenesis in brown adipose tissue[J].Cell Metab,2022,34(4):533-548
参考文献 41
BRESTOFF J R,WILEN C B,MOLEY J R,et al.Intercel⁃ lular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obe ⁃ sity[J].Cell Metab,2021,33(2):270-282
参考文献 42
CREWE C,FUNCKE J,LI S,et al.Extracellular vesicle⁃ based interorgan transport of mitochondria from energeti⁃ cally stressed adipocytes[J].Cell Metab,2021,33(9):1853-1868
参考文献 43
MONZEL A S,ENRÍQUEZ J A,PICARD M.Multifaceted mitochondria:moving mitochondrial science beyond func⁃ tion and dysfunction[J].Nat Metab,2023,5(4):546-562
参考文献 44
BEAN C,AUDANO M,VARANITA T,et al.The mito⁃ chondrial protein Opa1 promotes adipocyte browning that is dependent on urea cycle metabolites[J].Nat Metab,2021,3(12):1633-1647
参考文献 45
FU T,SUN W,XUE J,et al.Proteolytic rewiring of mito⁃ chondria by LONP1 directs cell identity switching of adi⁃ pocytes[J].Nat Cell Biol,2023,25(6):848-864
参考文献 46
LIU K,LIN L,LI Q,et al.Scd1 controls de novo beige fat biogenesis through succinate⁃dependent regulation of mi⁃ tochondrial complex Ⅱ[J].Proc Natl Acad Sci U S A,2020,117(5):2462-2472
参考文献 47
WANG W S,ISHIBASHI J,TREFELY S,et al.A PRDM16 ⁃ driven metabolic signal from adipocytes regu⁃ lates precursor cell fate[J].Cell Metab,2019,30(1):174-189
参考文献 48
SUN W,DONG H,BALAZ M,et al.snRNA⁃seq reveals a subpopulation of adipocytes that regulates thermogene⁃ sis[J].Nature,2020,587(7832):98-102
目录contents

    摘要

    肥胖是由于长期能量摄入大于消耗,使过剩的能量以脂肪形式储存于脂肪组织或者其他部位。脂肪组织适应性产热的激活能够促进能量消耗及改善糖脂代谢,是肥胖治疗的关键。棕色脂肪细胞和米色脂肪细胞均参与产热,成人体内产热脂肪的特性更接近于米色脂肪,即具有储能/耗能双向切换模式,在被寒冷或肾上腺素激动剂等诱导激活后适应性产热增加。产热脂肪细胞主要通过线粒体中的解偶联蛋白1将化学能转化为热能释放。近期研究发现线粒体动力学、质量控制、代谢产物以及线粒体本身作为细胞间信号传递的载体在米色脂肪细胞生成和功能维持方面也发挥重要作用。文章对米色脂肪细胞中线粒体的特征及线粒体对米色脂肪生成和功能的调控进行综述。

    Abstract

    Obesity is caused by a long-term excess of energy intake over expenditure which leads to the storage of excess energy as fat in adipose tissue or other tissues. The activation of adipose tissue dependent adaptive thermogenesis could increase energy expenditure and improve glucose and lipid metabolism,which is promising target for obesity. Both brown adipocytes and beige adipocytes participate in thermogenesis. Thermogenic adipocytes in adults are more close to beige adipocytes which have the capability to switch between an energy storage and energy dissipation phenotype,and could be activated by cold or adrenegic stimuli. Mitochondrial protein uncoupling protein 1 in thermogenic adipocytes could dissipate energy as heat. Recent studies have found that mitochondrial dynamics,quality control,metabolites and itself as the signaling organelles play vital roles in regulating beige biogenesis and function. This review will discuss the characteristics of mitochondrial and how mitochondrial regulate beige adipose tissue.

  • 脂肪组织是一个具有高度可塑性的器官,能够通过改变其代谢、结构、表型等来适应生理及外界刺激下机体的需求,在维持全身能量和糖脂代谢稳态中起重要作用[1]。脂肪组织功能障碍会导致肥胖、胰岛素抵抗、血脂异常、高血压等代谢问题[2-3]。根据形态及功能特征,脂肪细胞被分为白色脂肪细胞、棕色脂肪细胞和米色脂肪细胞。白色脂肪细胞具有特征性的单房大脂滴,将能量以甘油三酯的形式储存起来。棕色脂肪细胞具有数量可观的线粒体,将能量以热量的形式释放,胞内脂滴小而多。米色脂肪细胞与白色脂肪细胞同源,在激活后能够表现出棕色脂肪细胞的特征,线粒体在米色脂肪细胞的生成和功能维持过程中发挥重要作用。文章将主要关注线粒体对米色脂肪细胞生成及产热功能的调控及相关机制。

  • 1 米色脂肪细胞中线粒体的特征

  • 线粒体的功能特化通常伴随着形态特化。白色脂肪细胞线粒体数量较少,形状呈细长的椭圆形,嵴稀疏。棕色脂肪细胞线粒体数量多,呈肿胀的球形,嵴呈致密板状或同心圆形。冷适应或β3肾上腺素受体激动剂处理能够诱导米色脂肪细胞在白色脂肪组织中募集,称为白色脂肪组织棕色化或米色化。激活的米色脂肪细胞线粒体数量显著增加[4-5],形态介于棕色脂肪和白色脂肪细胞线粒体之间[6]。撤除刺激后,米色脂肪细胞向白色脂肪细胞转分化,线粒体数量显著减少,同时可见细胞质中出现含有线粒体结构的自噬空泡[7]

  • 与线粒体形态差异对应,线粒体蛋白组学提示不同脂肪细胞的主要功能也存在差异。白色脂肪细胞主要表达合成代谢以及降解异源物质的蛋白;而棕色脂肪细胞主要表达热能转化的相关蛋白[8]。解偶联蛋白1(uncoupling protein 1,UCP1)是产热脂肪细胞的主要功能蛋白,表达于线粒体内膜上,能够解偶联氧化磷酸化过程和ATP合成过程,将电化学能转化为热能[9]。基础状态下,米色脂肪组织线粒体中 UCP1 的表达量很低,但在冷刺激等诱导后, UCP1表达量显著增加。冷适应小鼠米色脂肪组织中分离的线粒体中UCP1的表达水平几乎达到了棕色脂肪细胞的水平[4]。Kazak 等[5] 通过对比寒冷刺激下的米色脂肪和棕色脂肪细胞线粒体蛋白组学发现,相比棕色脂肪,米色脂肪中线粒体精氨酸/肌酸代谢更活跃。在米色脂肪细胞中,肌酸驱动的无效循环可以作为依赖UCP1产热途径的补充。

  • 2 线粒体参与米色脂肪细胞的生成及功能调控

  • 2.1 线粒体动力学参与米色脂肪细胞线粒体重塑

  • 线粒体作为能量中转站不仅调控能量生成,还参与细胞内信号转导。线粒体的功能多样性与线粒体动力学参与的形态重塑紧密相关。狭义的线粒体动力学主要包括线粒体分裂、融合以及线粒体嵴的生成与重塑。广义的线粒体动力学还包括线粒体与其他亚细胞结构的相互作用以及沿细胞骨架的运输。线粒体动力学主要受协助线粒体分裂的动力相关蛋白1(dynamic related protein 1,DRP1) 和促进线粒体融合的线粒体融合素(mitofusin, MFN)及视神经萎缩蛋白1(optic atrophy 1,OPA1)等动力蛋白样GTP酶激活蛋白的调控[10-11]

  • Wikstrom 等[12] 发现去甲肾上腺素能够通过激活DRP1活性促进线粒体分裂,并通过水解OPA1抑制线粒体融合来诱导产热脂肪细胞线粒体片段化,同时发现线粒体片段化与产热脂肪细胞解偶联呼吸能力密切相关。米色脂肪细胞的从头分化伴随着线粒体数量的增加,UCP1 阴性的长管状线粒体向 UCP1 阳性的圆形片段化线粒体转变,以及线粒体分裂相关蛋白DRP1的616位丝氨酸磷酸化水平的增加[13]。在分化早期利用小干扰 RNA(small in⁃ terfering RNA,siRNA)敲降或药物抑制 DRP1,能够抑制米色脂肪细胞分化;在分化后敲降 DRP1 不影响脂肪细胞线粒体的形态,但显著抑制线粒体 UCP1依赖的氧化呼吸,提示线粒体分裂在米色脂肪细胞分化和产热过程中发挥重要作用[13-14]。OPA1是介导线粒体内膜融合的关键蛋白,不仅参与脂肪细胞线粒体融合,还参与线粒体嵴重塑以及脂质代谢[15-16]。棕色脂肪细胞特异性敲除OPA1导致线粒体碎片化和嵴结构紊乱,棕色脂肪细胞白色化,而白色脂肪组织棕色化代偿性增加[15]。而在脂肪细胞中敲除OPA1,则抑制白色脂肪组织棕色化[16]。除表达水平调控,OPA1 还能够被线粒体蛋白酶 YME1L(YME1 like1 ATPase)和线粒体内膜蛋白 OMA1等蛋白酶水解为长型L⁃OPA1(锚定在线粒体内膜)和短型S⁃OPA1(可溶)两种活性形式,两种形式的比值与线粒体内膜稳定性相关。在产热脂肪细胞中,冷刺激会诱导线粒体嵴发生结构重塑,同时伴随 L⁃OPA1与S⁃OPA1比值的周期性变化,这个过程主要受到YME1L和OMA1的共同调控。同时线粒体内膜蛋白 FAM210A(family with sequence similarity 210 member A)能够通过与 YEM1L 相互作用调节其对 OMA1 和 OPA1 的水解,维持 L⁃OPA1 与 S⁃OPA1 的比值及线粒体嵴重塑的稳定性[17]

  • 除动力相关蛋白,线粒体的组成成分如心磷脂 (cardiolipins,CL)与其前体磷脂酸(phosphotidic acid,PA)等也通过调节 OPA1 水解和 DRP1 的组装参与线粒体融合和裂变[18]。CL能够促进线粒体分裂和内膜融合,而 PA 则抑制线粒体分裂[19]。在棕色脂肪和米色脂肪细胞被激活后,CL的合成被强烈诱导。而敲除CL合成酶后,线粒体解偶联被抑制,提示线粒体CL的合成对于维持产热脂肪细胞的功能是不可缺少的[20]。同时,脂质运载蛋白 2(lipo⁃ calin 2,LCN2)作为PA结合蛋白能够在代谢刺激期间被募集到线粒体相关内质网(mitochondria⁃associ⁃ ated membranes,MAM)上,并通过改变线粒体CL的构成影响线粒体动力学和功能[21]。过氧化物酶体衍生的脂质也介导了冷刺激诱导的线粒体裂变。过氧化物酶体缺失小鼠阻断冷刺激诱导的线粒体裂变,并通过减少缩醛磷脂的合成来诱导线粒体功能障碍[22]。缩醛磷脂由过氧化物酶体合成并转移到线粒体上,通过促进跨膜蛋白135(transmembrane protein 135,TMEM135)的线粒体定位而促进蛋白激酶 A(protein kinase,PKA)依赖性 DRP1 磷酸化激活并介导线粒体分裂[23],提示线粒体与过氧化物酶体之间的相互作用调控线粒体动力学和产热。

  • 2.2 线粒体生物发生和自噬调控米色脂肪细胞线粒体稳态

  • 线粒体生物发生和自噬在调控线粒体稳态方面起着关键作用[24]。线粒体自噬是一种选择性巨自噬,用于清除细胞内受损线粒体。泛素分子依赖的人第10号染色体缺失的磷酸酶及张力蛋白同源物 (phosphatase and tensin homolog deleted on chromo⁃ some ten,PTEN)诱导的激酶 1(PTEN induced puta⁃ tive kinase1,PINK1)/Parkin信号通路是介导线粒体自噬的经典通路。Parkin被PINK1激活后介导线粒体外膜上的蛋白泛素化,使包括自噬接头蛋白P62 在内的自噬受体蛋白在线粒体外膜聚集,通过与微管相关轻链蛋白 3(microtubule ⁃ associated protein light chain 3,LC3)结合被招募到自噬体中,成熟的自噬体与溶酶体融合形成自噬溶酶体,线粒体随后被降解[25]。除此之外,NIP3 样蛋白 X(NIP3⁃like protein 3,NIX)、BCL⁃2相互作用蛋白3(BCL⁃2 inter⁃ acting protein 3,BNIP3)、FUN14 结构域蛋白 1 (FUN14 domain containing protein 1,FUNDC1)等含有 LC3受体的蛋白可以通过非泛素化途径直接与LC3 结合诱导自噬的发生[26-27]。线粒体生物发生是增加线粒体数量和大小的过程,主要调控因子包括过氧化物酶体增殖物受体γ共激活因子(peroxisome proliferator ⁃ activated receptor ⁃ gamma coactivator, PGC)⁃1α、核呼吸因子 1/2(nuclear respiratory factors 1 and 2,NRF1/2)[28]

  • 早在2009年,研究人员就发现敲除自噬相关基因(autophagy⁃related protein,ATG)⁃7的小鼠白色脂肪细胞中出现了棕色脂肪细胞的分子标志物[29],提示白色脂肪组织米色化可能和线粒体自噬减少相关。Altshuler⁃Keylin等[7] 发现米色脂肪细胞白色化时线粒体生物发生的转录调节因子PGC⁃1α、PGC⁃1β、 NRF1/2和线粒体转录因子(transcription factor of mi⁃ tochondria,TFAM)的表达减少,而自噬相关基因(如ATG⁃4b、ATG⁃12、ATG⁃16)的表达上调。Taylor等[30] 用罗格列酮诱导3T3⁃L1细胞分化为米色脂肪细胞时发现 Parkin 的表达量显著下调,在β受体激动剂处理的小鼠体内也观察到了相似的现象。这些结果表明自噬抑制了白色脂肪米色化。此外,独立于 PINK1/Parkin的线粒体自噬通路也参与调节脂肪细胞米色化过程。Cho 等[31] 发现丝氨酸苏氨酸激酶 (serine/threonine⁃protein kinase,STK)⁃3 和 STK⁃4 可以通过调节细胞巨自噬关键介质BNIP3的稳定性,促进线粒体的周转,进而诱导白色脂肪米色化。 STK⁃3/STK⁃4被抑制后,线粒体自噬减少,米色脂肪表型得以维持。近年来,一些基于人类原代脂肪细胞的研究也发现线粒体自噬在产热刺激下米色化的脂肪细胞中减少,表现为P62的表达量下调、LC3 Ⅰ/Ⅱ比例上调等[32-33]。但原代细胞中Parkin表达被抑制后并未观察到产热相关基因的变化,可能由于人类细胞中存在独立于PINK1/Parkin的调控线粒体自噬的信号通路[32]

  • 目前有研究发现线粒体生物发生和自噬信号通路之间的交互作用可以通过调节线粒体稳态来影响脂肪组织生成及产热[28]。脂肪细胞中线粒体自噬受体如 BNIP3、BCL2L13 表达减少抑制线粒体生成,削弱线粒体氧化呼吸功能进而抑制米色脂肪的形成[34-35]。调节线粒体生物发生的PGC⁃1α/NRF1 轴通过调控FUNDC1表达,激活自噬清除衰老或质量受损的线粒体,促进线粒体周转以维持棕色脂肪产热[36]。敲降Parkin的脂肪细胞中,线粒体自噬活性受到抑制,NAD(P)H 醌脱氢酶[NAD(P)H qui⁃ none dehydrogenase1,Nqo1]活性提高,PGC⁃1α蛋白稳定性增加,进而促进白色脂肪的线粒体生物发生[37]。米色脂肪细胞适应性产热在调节代谢中有更多的发挥空间,仍需进一步研究以阐明线粒体生物发生和自噬交互调控在米色脂肪细胞生成中的作用。

  • 2.3 线粒体作为信号分子调控米色脂肪细胞与其他细胞的对话

  • 线粒体能够以游离或细胞外囊泡形式从细胞中释放出来作为信号分子介导细胞之间或器官之间的对话[38]。研究者利用脂肪细胞特异性线粒体分析表明,棕色、米色和白色3种脂肪组织均能释放线粒体,并被组织中的不同细胞摄取或释放到血液循环中[39]。释放出的线粒体被脂肪组织驻留巨噬细胞适时清除是维持机体能量和代谢稳态的前提条件。棕色脂肪细胞在寒冷应激后释放出大量受损线粒体,能够通过AMP依赖的蛋白激酶(AMP⁃ac⁃ tivated protein kinase,AMPK)信号通路抑制包括过氧化物酶体增殖物激活受体(peroxisome proliferator⁃ activated receptor,PPAR)在内的脂肪细胞特异性转录因子的活性,抑制细胞生成以及线粒体产热功能。棕色脂肪组织驻留巨噬细胞对释放线粒体的摄取能够解除此种反馈抑制,维持持续有效的产热[40]。与正常体型小鼠相比,肥胖小鼠白色脂肪组织中巨噬细胞摄取线粒体的能力显著下调。在髓系细胞中敲除硫酸乙酰肝素生物合成相关基因外泌体糖基转移酶(exostosin glycosyltransferase1, Ext1)显著抑制白色脂肪细胞线粒体向巨噬细胞的转移,降低能量消耗,加剧高脂饮食诱导的肥胖,提示脂肪细胞向巨噬细胞的线粒体转移依赖于硫酸乙酰肝素[41]。饮食中的长链脂肪酸(long chain fatty acid,LCFA)也能够直接抑制白色脂肪细胞向巨噬细胞的线粒体传递,将脂肪细胞来源的线粒体转移到血液中以输送到心脏或其他组织,支持其他器官对营养应激的代谢适应[3942]。相比棕色脂肪细胞和白色脂肪细胞,米色脂肪细胞线粒体的数量和功能异质性更高,具有储能和产热双重潜能,推测线粒体传递在米色脂肪细胞产热功能中可能发挥更复杂的作用。

  • 2.4 线粒体代谢产物调控米色脂肪细胞的命运

  • 近期研究发现,一方面线粒体代谢产物,如三羧酸循环的中间产物柠檬酸,能够为细胞质中的脂质和其他大分子的合成提供原料;另一方面,线粒体的代谢产物也能够参与细胞核中DNA和组蛋白的表观调控,调控米色脂肪细胞生成[43]。线粒体蛋白 OPA1 能够通过上调尿素循环,增加细胞中延胡索酸水平,促进 Jumanji 家族组蛋白去甲基化酶 Kdm3a 的活性及下游 UCP1 转录,促进前体脂肪细胞向米色脂肪细胞分化[44]。线粒体离子肽酶1能够选择性地降解琥珀酸脱氢酶复合物铁硫亚基B,确保细胞内足够的琥珀酸水平,影响组蛋白甲基化,协同β3肾上腺素能受体激活诱导白色脂肪细胞向米色脂肪细胞转分化[45]。与该研究结果不同,Liu等[46] 发现琥珀酸能够直接促进前体脂肪细胞从头分化为米色脂肪细胞。他们发现硬脂酰辅酶A去饱和酶1 缺陷型脂肪间充质干细胞内琥珀酸积累增加,促进线粒体复合物Ⅱ活性增加,促进米色脂肪细胞分化。同时,脂肪细胞线粒体产生的代谢产物也可以通过旁分泌的方式作用于祖细胞或其他脂肪细胞,调节米色脂肪细胞生成及产热基因表达。Wang 等[47] 发现转录因子PR结构域蛋白16能够驱动脂肪细胞中脂肪酸氧化和生酮程序,促进代谢产物β⁃羟丁酸的分泌,并通过旁分泌的方式作用于周围前体脂肪细胞,抑制成纤维分化,促进米色脂肪细胞分化。单细胞核RNA测序结果揭示在产热脂肪组织中存在一种表达细胞色素 CYP2E1 和乙醛脱氢酶 ALDH1E2的细胞,能够分解乙醛为乙酸,通过旁分泌的作用抑制周围细胞的线粒体功能[48]。以上都提示,除了线粒体本身,线粒体代谢产物也能作为信号分子调控米色脂肪细胞的生成及产热。

  • 3 总结和展望

  • 现在有越来越多的研究关注白色脂肪细胞米色化及其在肥胖和肥胖相关代谢性疾病中的作用。线粒体是一个高度动态化且具有独立遗传系统的半自主细胞器。产热脂肪细胞的线粒体内膜上有解偶联蛋白,能够解偶联氧化磷酸化过程和 ATP合成过程,释放热能。文章总结了线粒体自身调控及与其他细胞器对话在米色脂肪细胞生成、产热以及全身能量及糖脂代谢中的作用。目前关于人类米色脂肪细胞的相关研究还很少,未来需要更多研究来验证动物模型的结果,为肥胖及其相关代谢性疾病提供安全有效的治疗策略。

  • 参考文献

    • [1] MORIGNY P,BOUCHER J,ARNER P,et al.Lipid and glucose metabolism in white adipocytes:pathways,dys⁃ function and therapeutics[J].Nat Rev Endocrinol,2021,17(5):276-295

    • [2] GUSTAFSON B,HEDJAZIFAR S,GOGG S,et al.Insulin resistance and impaired adipogenesis[J].Trends Endocri⁃ nol Metab,2015,26(4):193-200

    • [3] LONGO M,ZATTERALE F,NADERI J,et al.Adipose tis⁃ sue dysfunction as determinant of obesity⁃associated meta⁃ bolic complications[J].Int J Mol Sci,2019,20(9):2358

    • [4] SHABALINA I G,PETROVIC N,DE JONG J M,et al.UCP1 in brite/beige adipose tissue mitochondria is func⁃ tionally thermogenic[J].Cell Rep,2013,5(5):1196-1203

    • [5] KAZAK L,CHOUCHANI E T,JEDRYCHOWSKI M P,et al.A creatine⁃driven substrate cycle enhances energy ex⁃ penditure and thermogenesis in beige fat[J].Cell,2015,163(3):643-655

    • [6] BARBATELLI G,MURANO I,MADSEN L,et al.The emergence of cold ⁃ induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation[J].Am J Physiol En⁃ docrinol Metab,2010,298(6):1244-1253

    • [7] ALTSHULER⁃KEYLIN S,SHINODA K,HASEGAWA Y,et al.Beige adipocyte maintenance is regulated by autoph⁃ agy ⁃ induced mitochondrial clearance[J].Cell Metab,2016,24(3):402-419

    • [8] FORNER F,KUMAR C,LUBER C A,et al.Proteome dif⁃ ferences between brown and white fat mitochondria reveal specialized metabolic functions[J].Cell Metab,2009,10(4):324-335

    • [9] NICHOLLS D G.Stoicheiometries of proton translocation by mitochondria[J].Biochem Soc Trans,1977,5(1):200-203

    • [10] GIACOMELLO M,PYAKUREL A,GLYTSOU C,et al.The cell biology of mitochondrial membrane dynamics[J].Nat Rev Mol Cell Biol,2020,21(4):204-224

    • [11] QUINTANA⁃CABRERA R,SCORRANO L.Determinants and outcomes of mitochondrial dynamics[J].Mol Cell,2023,83(6):857-876

    • [12] WIKSTROM J D,MAHDAVIANI K,LIESA M,et al.Hor⁃ mone ⁃induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expen⁃ diture[J].EMBO J,2014,33(5):418-436

    • [13] PISANI D F,BARQUISSAU V,CHAMBARD J C,et al.Mitochondrial fission is associated with UCP1 activity in human brite/beige adipocytes[J].Mol Metab,2018,7:35-44

    • [14] MOOLI R G R,MUKHI D,CHEN Z,et al.An indispen⁃ sable role for dynamin ⁃ related protein 1 in beige and brown adipogenesis[J].J Cell Sci,2020,133(18):3

    • [15] PEREIRA R O,MARTI A,OLVERA A C,et al.OPA1 deletion in brown adipose tissue improves thermoregula⁃ tion and systemic metabolism via FGF21[J].Elife,2021,10:e66519

    • [16] PEREIRA R O,OLVERA A C,MARTI A,et al.OPA1 regulates lipid metabolism and cold ⁃induced browning of white adipose tissue in mice[J].Diabetes,2022,71(12):2572-2583

    • [17] QIU J,YUE F,ZHU P,et al.FAM210A is essential for cold ⁃ induced mitochondrial remodeling in brown adipo⁃ cytes[J].Nat Commun,2023,14(1):6344

    • [18] BAN T,ISHIHARA T,KOHNO H,et al.Molecular basis of selective mitochondrial fusion by heterotypic action be⁃ tween OPA1 and cardiolipin[J].Nat Cell Biol,2017,19(7):856-863

    • [19] KAMEOKA S,ADACHI Y,OKAMOTO K,et al.Phospha⁃ tidic acid and cardiolipin coordinate mitochondrial dy⁃ namics[J].Trends Cell Biol,2018,28(1):67-76

    • [20] SUSTARSIC E G,MA T,LYNES M D,et al.Cardiolipin synthesis in brown and beige fat mitochondria is essential for systemic energy homeostasis[J].Cell Metab,2018,28(1):159-174

    • [21] SU H,GUO H,QIU X,et al.Lipocalin 2 regulates mito⁃ chondrial phospholipidome remodeling,dynamics,and function in brown adipose tissue in male mice[J].Nat Commun,2023,14(1):6729

    • [22] PARK H,HE A,TAN M,et al.Peroxisome⁃derived lipids regulate adipose thermogenesis by mediating cold ⁃ in⁃ duced mitochondrial fission[J].J Clin Invest,2019,129(2):694-711

    • [23] HU D,TAN M,LU D,et al.TMEM135 links peroxisomes to the regulation of brown fat mitochondrial fission and en⁃ ergy homeostasis[J].Nat Commun,2023,14(1):6099

    • [24] ASHRAFI G,SCHWARZ T L.The pathways of mitophagy for quality control and clearance of mitochondria[J].Cell Death Differ,2013,20(1):31-42

    • [25] CAIRÓ M,VILLARROYA J.The role of autophagy in brown and beige adipose tissue plasticity[J].J Physiol Biochem,2020,76(2):213-226

    • [26] LU Y,LI Z,ZHANG S,et al.Cellular mitophagy:mecha⁃ nism,roles in diseases and small molecule pharmacologi⁃ cal regulation[J].Theranostics,2023,13(2):736-766

    • [27] 季学涛,张许,刘谨,等.脂肪组织中自噬影响肥胖发病机制的研究进展[J].南京医科大学学报(自然科学版),2023,43(2):275-282

    • [28] LIU L,LI Y,CHEN G,et al.Crosstalk between mitochon⁃ drial biogenesis and mitophagy to maintain mitochondrial homeostasis[J].J Biomed Sci,2023,30(1):86

    • [29] SINGH R,XIANG Y,WANG Y,et al.Autophagy regu⁃ lates adipose mass and differentiation in mice[J].J Clin Invest,2009,119(11):3329-3339

    • [30] TAYLOR D,GOTTLIEB R A.Parkin ⁃mediated mitophagy is downregulated in browning of white adipose tissue[J].Obesity,2017,25(4):704-712

    • [31] CHO Y K,SON Y,SAHA A,et al.STK3/STK4 signalling in adipocytes regulates mitophagy and energy expendi⁃ ture[J].Nat Metab,2021,3(3):428-441

    • [32] SZATMÁRI⁃TÓTH M,SHAW A,CSOMÓS I,et al.Ther⁃ mogenic activation downregulates high mitophagy rate in human masked and mature beige adipocytes[J].Int J Mol Sci,2020,21(18):6640

    • [33] VÁMOS A,SHAW A,VARGA K,et al.Mitophagy medi⁃ ates the beige to white transition of human primary subcu⁃ taneous adipocytes ex vivo[J].Pharmaceuticals(Basel),2022,15(3):363

    • [34] CHOI J W,JO A,KIM M,et al.BNIP3 is essential for mi⁃ tochondrial bioenergetics during adipocyte remodelling in mice[J].Diabetologia,2016,59(3):571-581

    • [35] JU L,CHEN S,ALIMUJIANG M,et al.A novel role for Bcl2l13 in promoting beige adipocyte biogenesis[J].Bio⁃chem Biophys Res Commun,2018,506(3):485-491

    • [36] LIU L,LI Y,WANG J,et al.Mitophagy receptor FUNDC1 is regulated by PGC⁃1α/NRF1 to fine tune mitochondrial homeostasis[J].EMBO Rep,2021,22(3):e50629

    • [37] MOORE T M,CHENG L,WOLF D M,et al.Parkin regu⁃ lates adiposity by coordinating mitophagy with mitochon⁃ drial biogenesis in white adipocytes[J].Nat Commun,2022,13(1):6661

    • [38] BORCHERDING N,BRESTOFF J R.The power and po⁃ tential of mitochondria transfer[J].Nature,2023,623(7986):283-291

    • [39] BORCHERDING N,JIA W,GIWA R,et al.Dietary lipids inhibit mitochondria transfer to macrophages to divert adi⁃ pocyte ⁃ derived mitochondria into the blood[J].Cell Metab,2022,34(10):1499-1513

    • [40] ROSINA M,CECI V,TURCHI R,et al.Ejection of dam⁃ aged mitochondria and their removal by macrophages en⁃ sure efficient thermogenesis in brown adipose tissue[J].Cell Metab,2022,34(4):533-548

    • [41] BRESTOFF J R,WILEN C B,MOLEY J R,et al.Intercel⁃ lular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obe ⁃ sity[J].Cell Metab,2021,33(2):270-282

    • [42] CREWE C,FUNCKE J,LI S,et al.Extracellular vesicle⁃ based interorgan transport of mitochondria from energeti⁃ cally stressed adipocytes[J].Cell Metab,2021,33(9):1853-1868

    • [43] MONZEL A S,ENRÍQUEZ J A,PICARD M.Multifaceted mitochondria:moving mitochondrial science beyond func⁃ tion and dysfunction[J].Nat Metab,2023,5(4):546-562

    • [44] BEAN C,AUDANO M,VARANITA T,et al.The mito⁃ chondrial protein Opa1 promotes adipocyte browning that is dependent on urea cycle metabolites[J].Nat Metab,2021,3(12):1633-1647

    • [45] FU T,SUN W,XUE J,et al.Proteolytic rewiring of mito⁃ chondria by LONP1 directs cell identity switching of adi⁃ pocytes[J].Nat Cell Biol,2023,25(6):848-864

    • [46] LIU K,LIN L,LI Q,et al.Scd1 controls de novo beige fat biogenesis through succinate⁃dependent regulation of mi⁃ tochondrial complex Ⅱ[J].Proc Natl Acad Sci U S A,2020,117(5):2462-2472

    • [47] WANG W S,ISHIBASHI J,TREFELY S,et al.A PRDM16 ⁃ driven metabolic signal from adipocytes regu⁃ lates precursor cell fate[J].Cell Metab,2019,30(1):174-189

    • [48] SUN W,DONG H,BALAZ M,et al.snRNA⁃seq reveals a subpopulation of adipocytes that regulates thermogene⁃ sis[J].Nature,2020,587(7832):98-102

  • 参考文献

    • [1] MORIGNY P,BOUCHER J,ARNER P,et al.Lipid and glucose metabolism in white adipocytes:pathways,dys⁃ function and therapeutics[J].Nat Rev Endocrinol,2021,17(5):276-295

    • [2] GUSTAFSON B,HEDJAZIFAR S,GOGG S,et al.Insulin resistance and impaired adipogenesis[J].Trends Endocri⁃ nol Metab,2015,26(4):193-200

    • [3] LONGO M,ZATTERALE F,NADERI J,et al.Adipose tis⁃ sue dysfunction as determinant of obesity⁃associated meta⁃ bolic complications[J].Int J Mol Sci,2019,20(9):2358

    • [4] SHABALINA I G,PETROVIC N,DE JONG J M,et al.UCP1 in brite/beige adipose tissue mitochondria is func⁃ tionally thermogenic[J].Cell Rep,2013,5(5):1196-1203

    • [5] KAZAK L,CHOUCHANI E T,JEDRYCHOWSKI M P,et al.A creatine⁃driven substrate cycle enhances energy ex⁃ penditure and thermogenesis in beige fat[J].Cell,2015,163(3):643-655

    • [6] BARBATELLI G,MURANO I,MADSEN L,et al.The emergence of cold ⁃ induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation[J].Am J Physiol En⁃ docrinol Metab,2010,298(6):1244-1253

    • [7] ALTSHULER⁃KEYLIN S,SHINODA K,HASEGAWA Y,et al.Beige adipocyte maintenance is regulated by autoph⁃ agy ⁃ induced mitochondrial clearance[J].Cell Metab,2016,24(3):402-419

    • [8] FORNER F,KUMAR C,LUBER C A,et al.Proteome dif⁃ ferences between brown and white fat mitochondria reveal specialized metabolic functions[J].Cell Metab,2009,10(4):324-335

    • [9] NICHOLLS D G.Stoicheiometries of proton translocation by mitochondria[J].Biochem Soc Trans,1977,5(1):200-203

    • [10] GIACOMELLO M,PYAKUREL A,GLYTSOU C,et al.The cell biology of mitochondrial membrane dynamics[J].Nat Rev Mol Cell Biol,2020,21(4):204-224

    • [11] QUINTANA⁃CABRERA R,SCORRANO L.Determinants and outcomes of mitochondrial dynamics[J].Mol Cell,2023,83(6):857-876

    • [12] WIKSTROM J D,MAHDAVIANI K,LIESA M,et al.Hor⁃ mone ⁃induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expen⁃ diture[J].EMBO J,2014,33(5):418-436

    • [13] PISANI D F,BARQUISSAU V,CHAMBARD J C,et al.Mitochondrial fission is associated with UCP1 activity in human brite/beige adipocytes[J].Mol Metab,2018,7:35-44

    • [14] MOOLI R G R,MUKHI D,CHEN Z,et al.An indispen⁃ sable role for dynamin ⁃ related protein 1 in beige and brown adipogenesis[J].J Cell Sci,2020,133(18):3

    • [15] PEREIRA R O,MARTI A,OLVERA A C,et al.OPA1 deletion in brown adipose tissue improves thermoregula⁃ tion and systemic metabolism via FGF21[J].Elife,2021,10:e66519

    • [16] PEREIRA R O,OLVERA A C,MARTI A,et al.OPA1 regulates lipid metabolism and cold ⁃induced browning of white adipose tissue in mice[J].Diabetes,2022,71(12):2572-2583

    • [17] QIU J,YUE F,ZHU P,et al.FAM210A is essential for cold ⁃ induced mitochondrial remodeling in brown adipo⁃ cytes[J].Nat Commun,2023,14(1):6344

    • [18] BAN T,ISHIHARA T,KOHNO H,et al.Molecular basis of selective mitochondrial fusion by heterotypic action be⁃ tween OPA1 and cardiolipin[J].Nat Cell Biol,2017,19(7):856-863

    • [19] KAMEOKA S,ADACHI Y,OKAMOTO K,et al.Phospha⁃ tidic acid and cardiolipin coordinate mitochondrial dy⁃ namics[J].Trends Cell Biol,2018,28(1):67-76

    • [20] SUSTARSIC E G,MA T,LYNES M D,et al.Cardiolipin synthesis in brown and beige fat mitochondria is essential for systemic energy homeostasis[J].Cell Metab,2018,28(1):159-174

    • [21] SU H,GUO H,QIU X,et al.Lipocalin 2 regulates mito⁃ chondrial phospholipidome remodeling,dynamics,and function in brown adipose tissue in male mice[J].Nat Commun,2023,14(1):6729

    • [22] PARK H,HE A,TAN M,et al.Peroxisome⁃derived lipids regulate adipose thermogenesis by mediating cold ⁃ in⁃ duced mitochondrial fission[J].J Clin Invest,2019,129(2):694-711

    • [23] HU D,TAN M,LU D,et al.TMEM135 links peroxisomes to the regulation of brown fat mitochondrial fission and en⁃ ergy homeostasis[J].Nat Commun,2023,14(1):6099

    • [24] ASHRAFI G,SCHWARZ T L.The pathways of mitophagy for quality control and clearance of mitochondria[J].Cell Death Differ,2013,20(1):31-42

    • [25] CAIRÓ M,VILLARROYA J.The role of autophagy in brown and beige adipose tissue plasticity[J].J Physiol Biochem,2020,76(2):213-226

    • [26] LU Y,LI Z,ZHANG S,et al.Cellular mitophagy:mecha⁃ nism,roles in diseases and small molecule pharmacologi⁃ cal regulation[J].Theranostics,2023,13(2):736-766

    • [27] 季学涛,张许,刘谨,等.脂肪组织中自噬影响肥胖发病机制的研究进展[J].南京医科大学学报(自然科学版),2023,43(2):275-282

    • [28] LIU L,LI Y,CHEN G,et al.Crosstalk between mitochon⁃ drial biogenesis and mitophagy to maintain mitochondrial homeostasis[J].J Biomed Sci,2023,30(1):86

    • [29] SINGH R,XIANG Y,WANG Y,et al.Autophagy regu⁃ lates adipose mass and differentiation in mice[J].J Clin Invest,2009,119(11):3329-3339

    • [30] TAYLOR D,GOTTLIEB R A.Parkin ⁃mediated mitophagy is downregulated in browning of white adipose tissue[J].Obesity,2017,25(4):704-712

    • [31] CHO Y K,SON Y,SAHA A,et al.STK3/STK4 signalling in adipocytes regulates mitophagy and energy expendi⁃ ture[J].Nat Metab,2021,3(3):428-441

    • [32] SZATMÁRI⁃TÓTH M,SHAW A,CSOMÓS I,et al.Ther⁃ mogenic activation downregulates high mitophagy rate in human masked and mature beige adipocytes[J].Int J Mol Sci,2020,21(18):6640

    • [33] VÁMOS A,SHAW A,VARGA K,et al.Mitophagy medi⁃ ates the beige to white transition of human primary subcu⁃ taneous adipocytes ex vivo[J].Pharmaceuticals(Basel),2022,15(3):363

    • [34] CHOI J W,JO A,KIM M,et al.BNIP3 is essential for mi⁃ tochondrial bioenergetics during adipocyte remodelling in mice[J].Diabetologia,2016,59(3):571-581

    • [35] JU L,CHEN S,ALIMUJIANG M,et al.A novel role for Bcl2l13 in promoting beige adipocyte biogenesis[J].Bio⁃chem Biophys Res Commun,2018,506(3):485-491

    • [36] LIU L,LI Y,WANG J,et al.Mitophagy receptor FUNDC1 is regulated by PGC⁃1α/NRF1 to fine tune mitochondrial homeostasis[J].EMBO Rep,2021,22(3):e50629

    • [37] MOORE T M,CHENG L,WOLF D M,et al.Parkin regu⁃ lates adiposity by coordinating mitophagy with mitochon⁃ drial biogenesis in white adipocytes[J].Nat Commun,2022,13(1):6661

    • [38] BORCHERDING N,BRESTOFF J R.The power and po⁃ tential of mitochondria transfer[J].Nature,2023,623(7986):283-291

    • [39] BORCHERDING N,JIA W,GIWA R,et al.Dietary lipids inhibit mitochondria transfer to macrophages to divert adi⁃ pocyte ⁃ derived mitochondria into the blood[J].Cell Metab,2022,34(10):1499-1513

    • [40] ROSINA M,CECI V,TURCHI R,et al.Ejection of dam⁃ aged mitochondria and their removal by macrophages en⁃ sure efficient thermogenesis in brown adipose tissue[J].Cell Metab,2022,34(4):533-548

    • [41] BRESTOFF J R,WILEN C B,MOLEY J R,et al.Intercel⁃ lular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obe ⁃ sity[J].Cell Metab,2021,33(2):270-282

    • [42] CREWE C,FUNCKE J,LI S,et al.Extracellular vesicle⁃ based interorgan transport of mitochondria from energeti⁃ cally stressed adipocytes[J].Cell Metab,2021,33(9):1853-1868

    • [43] MONZEL A S,ENRÍQUEZ J A,PICARD M.Multifaceted mitochondria:moving mitochondrial science beyond func⁃ tion and dysfunction[J].Nat Metab,2023,5(4):546-562

    • [44] BEAN C,AUDANO M,VARANITA T,et al.The mito⁃ chondrial protein Opa1 promotes adipocyte browning that is dependent on urea cycle metabolites[J].Nat Metab,2021,3(12):1633-1647

    • [45] FU T,SUN W,XUE J,et al.Proteolytic rewiring of mito⁃ chondria by LONP1 directs cell identity switching of adi⁃ pocytes[J].Nat Cell Biol,2023,25(6):848-864

    • [46] LIU K,LIN L,LI Q,et al.Scd1 controls de novo beige fat biogenesis through succinate⁃dependent regulation of mi⁃ tochondrial complex Ⅱ[J].Proc Natl Acad Sci U S A,2020,117(5):2462-2472

    • [47] WANG W S,ISHIBASHI J,TREFELY S,et al.A PRDM16 ⁃ driven metabolic signal from adipocytes regu⁃ lates precursor cell fate[J].Cell Metab,2019,30(1):174-189

    • [48] SUN W,DONG H,BALAZ M,et al.snRNA⁃seq reveals a subpopulation of adipocytes that regulates thermogene⁃ sis[J].Nature,2020,587(7832):98-102