en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

杨传忠,E-mail:yangczgd@163.com

中图分类号:R722.6

文献标识码:A

文章编号:1007-4368(2024)07-901-08

DOI:10.7655/NYDXBNSN240102

参考文献 1
CAO Y,JIANG S Y,SUN J H,et al.Assessment of neonatal intensive care unit practices,morbidity,and mortality among very preterm infants in China[J].JAMA Netw Open,2021,4(8):e2118904
参考文献 2
HWANG J S,REHAN V K.Recent advances in broncho⁃pulmonary dysplasia:pathophysiology,prevention,and treatment[J].Lung,2018,196(2):129-138
参考文献 3
SHUKLA V V,AMBALAVANAN N.Recent advances in bronchopulmonary dysplasia[J].Indian J Pediatr,2021,88(7):690-695
参考文献 4
GILFILLAN M,BHANDARI A,BHANDARI V.Diagnosis and management of bronchopulmonary dysplasia[J].BMJ,2021,375:n1974
参考文献 5
HOLZFURTNER L,SHAHZAD T,DONG Y,et al.When inflammation meets lung development-an update on the pathogenesis of bronchopulmonary dysplasia[J].Mol Cell Pediatr,2022,9(1):7
参考文献 6
O’REILLY M,THÉBAUD B.Animal models of broncho⁃ pulmonary dysplasia.The term rat models[J].Am J Physiol Lung Cell Mol Physiol,2014,307(12):L948-L958
参考文献 7
THÉBAUD B,GOSS K,LAUGHON M,et al.Bronchopulmonary dysplasia[J].Nat Rev Dis Primers,2019,5:1-23
参考文献 8
JENSEN E A.Prevention of bronchopulmonary dysplasia:asummary of evidence-based strategies[J].Neoreviews,2019,20(4):e189-e201
参考文献 9
DOYLE L W,CHEONG J L,EHRENKRANZ R A,et al.Early(< 8 days)systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants[J].Cochrane Database Syst Rev,2017,10(10):CD001146
参考文献 10
VISCARDI R M,TERRIN M L,MAGDER L S,et al.Randomised trial of azithromycin to eradicate ureaplasma in preterm infants[J].Arch Dis Child Fetal Neonatal Ed,2020,105(6):615-622
参考文献 11
XING Y W,LIU K Z.Azithromycin inhibited oxidative stress and apoptosis of high glucose⁃induced podocytes by inhibiting STAT1 pathway[J].Drug Dev Res,2021,82(7):990-998
参考文献 12
HEIDARY M,EBRAHIMI SAMANGANI A,KARGARI A,et al.Mechanism of action,resistance,synergism,and clinical implications of azithromycin[J].J Clin Lab Anal,2022,36(6):e24427
参考文献 13
RAZAK A,ALSHEHRI N.Azithromycin for preventing bronchopulmonary dysplasia in preterm infants:a systematic review and meta-analysis[J].Pediatr Pulmonol,2021,56(5):957-966
参考文献 14
CHEN X Y,HAN D S,WANG X,et al.Vascular and pulmonary effects of ibuprofen on neonatal lung development[J].Respir Res,2023,24(1):39
参考文献 15
HUANG Z L,LIN B C,HAN D S,et al.Platelets are indispensable for alveolar development in neonatal mice[J].Front Pediatr,2022,10:943054
参考文献 16
SAHNI M,BHANDARI V.Patho-mechanisms of the origins of bronchopulmonary dysplasia[J].Mol Cell Pedi-atr,2021,8(1):21
参考文献 17
GIUSTO K,WANCZYK H,JENSEN T,et al.Hyperoxia-induced bronchopulmonary dysplasia:better models for better therapies[J].Dis Model Mech,2021,14(2):dmm047753
参考文献 18
SHAHZAD T,CHAO C M,HADZIC S,et al.TRAIL protects the immature lung from hyperoxic injury[J].Cell Death Dis,2022,13(7):614
参考文献 19
WAGENAAR G T,TER HORST S A,VAN GASTELEN M A,et al.Gene expression profile and histopathology of experimental bronchopulmonary dysplasia induced by prolonged oxidative stress[J].Free Radic Biol Med,2004,36(6):782-801
参考文献 20
HIRANI D,ALVIRA C M,DANOPOULOS S,et al.Macrophage⁃derived IL⁃6 trans⁃signalling as a novel target in the pathogenesis of bronchopulmonary dysplasia[J].Eur-Respir J,2022,59(2):2002248
参考文献 21
KALYMBETOVA T V,SELVAKUMAR B,RODRÍGUEZ-CASTILLO J A,et al.Resident alveolar macrophages are master regulators of arrested alveolarization in experimental bronchopulmonary dysplasia[J].J Pathol,2018,245(2):153-159
参考文献 22
HAYDAR D,CORY T J,BIRKET S E,et al.Azithromy-cin polarizes macrophages to an M2 phenotype via inhibition of the STAT1 and NF ⁃κB signaling pathways[J].J Immunol,2019,203(4):1021-1030
参考文献 23
OLIVER M E,HINKS T S C.Azithromycin in viral infections[J].Rev Med Virol,2021,31(2):e2163
参考文献 24
BARKS J D E,LIU Y Q,DOPP I A,et al.Azithromycin reduces inflammation-amplified hypoxic-ischemic brain injury in neonatal rats[J].Pediatr Res,2022,92(2):415-423
参考文献 25
HAFNER M,PAUKNER S,WICHA W W,et al.Anti-inflammatory activity of lefamulin versus azithromycin and dexamethasone in vivo and in vitro in a lipopolysaccharide⁃induced lung neutrophilia mouse model[J].PLoS One,2021,16(9):e0237659
参考文献 26
TARIQUE A A,TULADHAR N,KELK D,et al.Azithro-mycin augments bacterial uptake and anti-inflammatory macrophage polarization in cystic fibrosis[J].Cells,2024,13(2):166
参考文献 27
CRAMER C L,PATTERSON A,ALCHAKAKI A,et al.Immunomodulatory indications of azithromycin in respiratory disease:a concise review for the clinician[J].Post⁃grad Med,2017,129(5):493-499
参考文献 28
PŁUSA T.Azithromycin in the treatment of patients with exacerbation of chronic obstructive pulmonary disease[J].Pol Merkur Lekarski,2020,48(283):65-68
参考文献 29
ECHEVERRÍA-ESNAL D,MARTIN-ONTIYUELO C,NAVARRETE-ROUCO M E,et al.Azithromycin in the treatment of COVID ⁃ 19:a review[J].Expert Rev Anti Infect Ther,2021,19(2):147-163
参考文献 30
NUNES C R,PROCIANOY R S,CORSO A L,et al.Use of azithromycin for the prevention of lung injury in mechanically ventilated preterm neonates:arandomized controlled trial[J].Neonatology,2020,117(4):522-528
参考文献 31
CHANG E,BALLARD K E,JOHNSON P N,et al.Azithromycin for eradication of Ureaplasma and prevention of bronchopulmonary dysplasia in preterm neonates in the neonatal intensive care unit[J].J Pediatr Pharmacol Ther,2023,28(1):10-19
参考文献 32
BALLARD H O,BERNARD P,QUALLS J,et al.Azithro-mycin protects against hyperoxic lung injury in neonatal rats[J].J Investig Med,2007,55(6):299-305
参考文献 33
LONDHE V A,SUNDAR I K,LOPEZ B,et al.Hyperoxia impairs alveolar formation and induces senescence through decreased histone deacetylase activity and up-regulation of p21 in neonatal mouse lung[J].Pediatr Res,2011,69(5 Pt 1):371-377
目录contents

    摘要

    目的:探讨阿奇霉素(azithromycin,AZM)对治疗新生大鼠支气管肺发育不良(bronchopulmonary dysplasia,BPD)的有效性。方法:将新生大鼠随机分成空气-生理盐水(RA-Saline)组、空气-阿奇霉素(RA-AZM)组、氧气-生理盐水(O2-Saline)组、氧气-阿奇霉素(O2-AZM)组,O2-Saline组和O2-AZM组大鼠组在出生12 h内暴露于浓度为95%~100%的高氧中以建立BPD新生大鼠模型,RA-AZM组、O2-AZM组在生后第1~10天每天腹腔注射AZM(40 mg/kg),RA-Saline组和O2-Saline组给予等剂量的生理盐水,观察大鼠的生存率;qPCR检测炎症因子和趋化因子的表达;测量肺泡平均线性截距(mean linear intercept,MLI)及次级肺泡隔的生成、肺血管密度来评估AZM对BPD新生大鼠肺发育的影响,并通过免疫组化检测肺组织中性粒细胞及巨噬细胞来评估AZM对炎症细胞的影响。结果:与O2-Saline组比较,O2-AZM组大鼠10 d存活率差异无统计学意义(P > 0.05);qPCR结果显示,与O2-Saline组比较,O2-AZM组大鼠白介素-6(interleukin-6,IL-6)、单核细胞趋化蛋白-1(monocyte chemotactic protein-1, MCP-1)、纤溶酶原激活物抑制剂-1(plasminogen activator inhibitor-1,PAI-1)表达显著下降(P < 0.05),中性粒细胞趋化因子-1 (cytokine induced neutrophil chemoattractant-1,CINC-1)表达差异无统计学意义(P > 0.05);ELISA 结果表明,与 O2-Saline 组比较,O2-AZM组大鼠IL-6水平显著下降(P < 0.05);免疫组化结果显示,O2-AZM组大鼠肺组织巨噬细胞及中性粒细胞聚集显著减少,肺血管密度及次级肺泡隔计数增加,差异均有统计学意义;HE病理分析结果显示,与O2-Saline组比较,O2-AZM组大鼠 MLI显著缩短,差异有统计学意义(P < 0.05)。结论:AZM可降低高氧暴露新生大鼠肺组织炎症因子和趋化因子的释放,抑制炎症细胞的趋化或募集,改善高氧暴露新生大鼠BPD样肺损伤。

    Abstract

    Objective:To investigate the effectiveness of azithromycin(AZM)on bronchopulmonary dysplasia(BPD)in neonatal rats. Methods:Neonatal rats were randomly assigned to four groups:room air -saline(RA -Saline)group,room air -azithromycin (RA -AZM)group,oxygen -saline(O2 -Saline)group,and oxygen -azithromycin(O2 -AZM)group. The O2 -Saline group and O2 -AZM group were exposed to 95% to 100% oxygen within 12 hours of birth to establish a BPD rat model. The RA-AZM and O2-AZM groups received daily intraperitoneal injections of AZM at a dosage of 40 mg/kg from postnatal day 1 to day 10,while the RA-Saline and O2-Saline groups were administered an equal volume of saline. The survival rate of the rats was carefully observed. qPCR analysis was conducted to detect the expression of inflammatory factors and chemokines. Additionally,the alveolar mean linear intercept(MLI),the formation of secondary alveolar septa,and pulmonary vascular density were measured to assess the impact of AZM on lung development in BPD neonatal rats. Immunohistochemical detection of neutrophils and macrophages in lung tissue was also performed to evaluate the anti-inflammatory effect of AZM on inflammatory cells. Results:Compared to the O2-Saline group,the 10-day survival rate of rats in the O2 - AZM group did not exhibit a statistically significant difference(P > 0.05). qPCR analysis revealed that the expressions of interleukin -6(IL -6),monocyte chemotactic protein -1(MCP -1),and plasminogen activator inhibitor -1(PAI -1)were significantly reduced in the O2 -AZM group compared to the O2 - Saline group(P < 0.05),while the expression of cytokine induced neutrophil chemoattractant -1(CINC -1)showed no significant difference(P > 0.05). ELISA analysis further confirmed a significant reduction in IL-6 levels in the O2 -AZM group compared to the O2 -Saline group(P < 0.05). Immunohistochemical analysis revealed a marked reduction in the accumulation of macrophages and neutrophils in the lung tissues of the O2-AZM group,along with an increase in pulmonary vascular density and the count of secondary alveolar septa,all of which were statistically significant. Furthermore,HE pathological examination revealed a significantly shortened MLI in the O2 -AZM group compared to the O2 -Saline group,indicating a statistically significant difference(P < 0.05). Conclusion:AZM reduces the release of inflammatory factors and chemokines in lung tissues of neonatal rats exposed to hyperoxia,inhibits the chemotaxis or recruitment of inflammatory cells,and alleviates BPD-like lung injury in neonatal rats after hyperoxia exposure.

  • 支气管肺发育不良(bronchopulmonary dysplasia, BPD)是早产儿最常见的并发症之一,据报道,我国超未成熟儿 BPD 的发生率为 74.2%[1],这使得婴幼儿死亡风险增加,并使患儿更易罹患慢性肺部疾病及心血管疾病、神经系统发育延迟及生长发育障碍[2]。但到目前为止,BPD 仍然没有有效的治疗方法。 BPD的发病机制尚不明确,可能因为感染、炎症、氧中毒、机械通气以及其他因素阻碍了出生后肺的成熟[3]。抗炎因子及促炎因子的失衡是影响肺泡生成和肺血管发育的重要因素[4-5]。既往研究也发现,巨噬细胞及中性粒细胞从血管向肺组织聚集是 BPD 的一个特征性表现[6]。炎症对BPD的发生发展起到重要作用[57]

  • 研究表明,糖皮质激素可一定程度提高机械通气拔管成功率,但其对BPD的有效性仍不确切[8],而且糖皮质激素也会增加近远期严重的不良反应,如高血糖、高血压、自发性肠穿孔和中枢神经系统发育落后等[9],因此,临床上并未将糖皮质激素作为 BPD 的常规预防用药。阿奇霉素(azithromycin, AZM)是一种大环类酯类抗生素,它兼具抗感染及抗炎作用[10-11]。它可通过抑制核因子⁃κB发挥独特的免疫调节作用来限制促炎细胞因子如白介素 (interleukin,IL)⁃6 和 IL⁃8 的产生来减少肺部炎症,它还可以抑制中性粒细胞迁移,通过改变巨噬细胞的极化状态增加巨噬细胞的吞噬作用而发挥抗炎作用[12]。有研究显示,预防性应用 AZM 可以通过清除解脲脲原体(ureaplasma urealyticum,UU),并抑制肺部炎症反应,从而降低BPD的发病率和死亡率[13],然而,AZM对治疗BPD有效性仍存在争议[8]。本研究通过建立 BPD 新生大鼠模型,探讨 AZM 对BPD的有效性及潜在的作用机制。

  • 1 材料和方法

  • 1.1 材料

  • 1.1.1 动物

  • 15只健康清洁的SD孕鼠由南方医科大学实验动物中心提供,动物许可证号[SCXK(粤)2021⁃0041]。将动物饲养于 SPF 级实验动物房,饲养温度为 20~24℃,湿度为50%~60%,新生SD大鼠作为实验对象。本实验通过中国科学院深圳先进技术研究院实验动物管理和使用委员会批准,伦理审核批件编号:SFYLS[2021]019。

  • 1.1.2 试剂

  • AZM(辉瑞公司,美国)、鼠单克隆抗α⁃平滑肌肌动蛋白(a⁃smooth muscle actin,a⁃SMA)抗体( A2547, Sigma⁃Aldrich公司,美国)、兔多克隆抗血管性血友病因子(von Willebrand factor,vWF)抗体(A0082, Dako Cytomation公司,丹麦)、抗CD68抗体(ab31630, Abcam 公司,美国)、抗髓过氧化物酶(myeloperoxi⁃ dase,MPO)抗体(ab208670,Abcam 公司,美国)、 TRIzol试剂(#15596026,Invitrogen公司,美国)、HRP 标记山羊抗兔二抗(ab6728,Abcam 公司,美国)、 HRP 标记兔抗小鼠二抗(ab6721,Abcam 公司,美国)、1% BSA(A1933,Sigma ⁃Aldrich 公司,美国)、 NovaRed(K⁃4800,Vector公司,美国)、cDNA合成试剂盒(K1622,Thermo Scientific 公司,美国)、内源性过氧化物酶强力封闭液(上海碧云天生物技术有限公司)、HE 染色试剂盒(北京索莱宝科技有限公司)、大鼠白介素⁃6(interleukin⁃6,IL⁃6)ELISA Kit (#PI328,上海碧云天生物技术有限公司)、大鼠单核细胞趋化蛋白 1(monocyte chemotactic protein ⁃ 1, MCP⁃1)ELISA Kit(#KE20009,Proteintech公司,美国)。

  • 1.1.3 仪器

  • HM315 石蜡切片机(Thermo Microm 公司,美国)、生物组织包埋机+冷台(Leica公司,德国)、脱色摇床(江苏南达生物技术开发公司)、光学显微镜 (Olympus 公司,日本)、涡旋振荡器、组织匀浆机 (IKA 公司,德国)、高速冷冻离心机(Eppendorf 公司,美国)、凝胶成像分析系统(BIO⁃RAD 公司,美国)、定量PCR仪⁃7300 Plus系统(Applied Biosystems 公司,美国)。

  • 1.2 方法

  • 1.2.1 造模及分组

  • 将SD新生大鼠在生后12 h内随机分为空气⁃生理盐水(RA⁃Saline)组 22 只、空气⁃AZM(RA⁃AZM) 组 22 只,氧气组分为氧气⁃生理盐水(O2⁃Saline)组 23 只、氧气⁃AZM(O2⁃AZM)组 22 只,每组动物雌雄比例相同。空气组置于空气环境[吸入氧浓度(fraction of inspirtion O2,FiO2)=21%],氧气组在出生 12 h 内置于自制氧箱内,持续暴露于高氧中,维持 FiO2于 95%~100%。在生后第1天,RA⁃AZM、O2⁃AZM组每日给予大鼠AZM 40 mg/kg腹腔注射连续10 d,生理盐水对照组给予等剂量的生理盐水,实验方案如图1 所示。每组动物在第 11 天进行安乐死并取材。所有动物饲养于SPF级实验动物房,饲养温度为 20~24℃,湿度为 50%~60%,自动设置 12 h 明暗交替,仔鼠予母乳喂养,每天空气组母鼠与氧气组母鼠进行交换以防止母鼠氧气中毒导致母乳量减少,每天更换垫料及仔鼠称重,及时补充饲料及饮用水。

  • 1.2.2 标本收集

  • 在大鼠生后第 11 天,腹腔注射戊巴比妥钠 (160 mg/kg)进行安乐死,剪开腹腔皮肤,暴露出腹腔动静脉,剪断腹腔动静脉进行排血。排血完成后,其中24只鼠打开胸腔,直接取肺组织,迅速置于液氮中冷冻,然后放置于-80℃冰箱保存,用于qPCR 检测。26只动物在排血完成后,剪开颈部皮肤,分离气管周围肌肉组织,暴露气管,利用24 G动脉留置针行气管插管,退出针芯,手术线扎紧固定,用 4%多聚甲醛进行肺组织原位固定后,拔除气管插管,沿胸骨正中打开胸腔,可见肺组织膨胀,分离出肺组织和心脏,置于装有 4%多聚甲醛的 EP 管中 4℃冰箱放置 24 h,石蜡包埋切片,用于 HE 染色及免疫组化。

  • 图1 实验方案

  • Figure1 Experimental protocol

  • 1.2.3 HE 染色及肺泡平均线性截距(mean linear intercept,MLI)的测量

  • 将在 4%多聚甲醛中固定 24 h 后的肺组织进行石蜡包埋。连续切片(厚度 4 μm),放于 60℃烤箱中 6 h。然后进行 HE 染色,树脂封片,光镜下观察肺组织形态结构。选取染色良好的肺组织,在 200 倍放大倍数下拍摄10张照片,避开大血管和大气道,使用CellSens 软件(Olympus 公司,日本)载入照片,每张照片载入平均分布的21条直线,计数测量线末端两点落在肺泡(pulmonary alveoli,PA)里的个数N1、测量线末端两点落在气道(air duct,AD)里的个数N2、测量线与肺泡间隔(alveolar septum,AS) 相交的次数 N3,按照公式 MLI=d×(N1+N2)/N3计算, d代表直线长度120 μm[14]

  • 1.2.4 qPCR检测炎症因子的表达

  • 使用组织匀浆机将肺组织进行匀浆,分离并提取出RNA,用cDNA合成试剂盒合成cDNA。在Applied Biosystems 7300 Plus 系统上进行实时定量 PCR。 β⁃actin用作管家基因。引物列于表1中。

  • 表1 引物序列

  • Table1 Sequences of primers

  • CINC⁃1:cytokine induced neutrophil chemoattractant⁃1;PAI⁃1:plasminogen activiator inhibitor⁃1.

  • 1.2.5 免疫组织化学分析

  • 将肺组织进行切片,用抗 vWF 抗体(标记肺血管,1∶5 000稀释)、抗CD 68单克隆抗体(标记巨噬细胞,1∶500 稀释)、抗 MPO 抗体(标记中性粒细胞,1∶1 000稀释)、抗a⁃SMA抗体(标记次级肺泡隔, 1∶10 000稀释)作为一抗孵育,1% BSA作为对照,二抗孵育用 HRP 偶联的抗小鼠/兔抗体(1∶1 000 稀释)。使用显色底物 NovaRed 显色。在 200 倍放大倍数下观察vWF染色阳性的切片,每个组织取非重叠10个代表性视野,计数每个视野肺血管的个数,取平均值代表每只动物的肺血管密度;在400倍放大倍数下观察CD68及MPO染色阳性的切片,每个组织取10个代表性视野,计数每视野巨噬细胞及中性粒细胞数量,最后求平均值;在400倍放大倍数下观察a⁃SMA染色阳性的切片,在10个非重叠视野中对每个组织中的次级肺泡隔的数量进行计数,并校正/标准化组织面积[15]。所有计数方式均为双人双盲计数取平均值。

  • 1.2.6 ELISA检测细胞因子

  • 将肺组织进行匀浆,用蛋白裂解液提取蛋白,待充分裂解后,台式离心机预冷至4℃,14 000 r/min 离心20 min,取上清液分装至EP管备用,用BCA法测定溶液总蛋白的浓度。将蛋白提取液稀释至合适的浓度进行 IL⁃6、MCP⁃1 细胞因子浓度检测,最终根据总蛋白浓度算得 IL⁃6、MCP⁃1 的终浓度,以 pg/mg表示。

  • 1.3 统计学方法

  • 实验数据统计及分析用 GraphPad Prism 8 软件,实验数据结果以均数±标准误(x-±sx-)表示,多组间比较采用单因素方差分析,通过Sidak校正的t检验进行多重比较,用 Kaplan⁃Meier 分析方法绘制生存曲线,通过Log⁃rank检验进行统计分析,采用双侧检验,P <0.05为差异有统计学意义。

  • 2 结果

  • 2.1 AZM对高氧暴露组新生大鼠生存率的影响

  • 如图2 所示,RA⁃Saline 组新生大鼠无死亡, O2⁃Saline 组对比 RA⁃Saline 组生存率明显下降(P <0.001),O2⁃AZM组对比O2⁃Saline组10 d存活率差异无统计学意义(P >0.05)。

  • 2.2 AZM对高氧暴露肺损伤炎症因子/炎症趋化因子的作用

  • 与RA⁃Saline组比较,O2⁃Saline组MCP⁃1、CINC⁃1、 IL⁃6、PAI⁃1 mRNA表达水平明显升高(P <0.05),与O2⁃Saline组比较,O2⁃AZM组MCP⁃1、PAI⁃1、IL⁃6表达水平明显降低(P <0.05),CINC ⁃1 水平有下降趋势,但差异无统计学意义(P=0.07)。肺组织匀浆的 ELISA定量结果显示,IL⁃6及MCP⁃1在高氧暴露组表达明显升高(P均 <0.05),O2⁃AZM 组较O2⁃Saline 组IL⁃6表达明显降低(P <0.05),而MCP⁃1的表达有下降趋势,但差异无统计学意义(P >0.05,图3)。

  • 图2 AZM对高氧暴露新生大鼠生存率的影响

  • Figure2 Effect of AZM on the survival rate of neonatal rats exposed to hyperoxia

  • 2.3 AZM对高氧暴露新生大鼠肺部炎症细胞的影响

  • 分别用CD68和MPO标记巨噬细胞和中性粒细胞,如图4 所示,RA⁃Saline 及 RA⁃AZM 组肺组织无明显炎症细胞聚集,而O2⁃Saline组表现出明显炎症细胞聚集现象,表现为O2⁃Saline组巨噬细胞计数明显增加(P <0.001),中性粒细胞计数明显增加(P <0.001);而AZM干预后炎症细胞聚集现象明显受到抑制,表现为 O2 ⁃AZM 组巨噬细胞数量明显减少 (P <0.01),中性粒细胞计数也显著减少(P <0.001,图4)。

  • 2.4 AZM对高氧暴露新生大鼠肺发育的影响

  • 如图5所示,RA⁃Saline组及RA⁃AZM组新生大鼠肺组织肺泡大小均匀,形态规则,肺泡间隔无明显增厚,而O2⁃Saline组新生大鼠肺组织结构排列紊乱,肺泡腔明显增大,肺泡间隔增厚,肺血管减少, O2⁃Saline对比RA⁃Saline组MLI明显增大(P <0.001),次级肺泡隔(a⁃SMA染色)数量明显减少(P <0.001),提示 BPD 模型成功,而 O2⁃AZM 组对比 O2⁃Saline 组肺泡腔有所减小,MLI明显减小(P <0.05),次级肺泡隔数量明显增多(P <0.05)。

  • 2.5 AZM对高氧暴露新生大鼠肺血管发育的影响

  • O2⁃Saline 组对比 RA⁃Saline 组肺血管密度明显下降(P <0.001),O2 ⁃AZM 组肺血管密度明显增加(P <0.05),RA⁃AZM 组对比 RA⁃Saline 组肺血管密度差异无统计学意义(P >0.05,图6)。

  • 图3 AZM对高氧暴露新生大鼠肺损伤炎症因子/炎症趋化因子的作用

  • Figure3 Effect of AZM on inflammatory factors/inflammatory chemokines in lung injury of neonatal rats induced by hyperoxia

  • 图4 AZM对高氧暴露新生大鼠肺组织炎症细胞的影响

  • Figure4 Effect of AZM on inflammatory cells in lung tissue of neonatal rats exposed to hyperoxia

  • 图5 AZM对高氧暴露新生大鼠肺发育的影响

  • Figure5 Effect of AZM on lung development in neonatal rats exposed to hyperoxia

  • 图6 AZM对高氧暴露新生大鼠肺血管发育的影响

  • Figure6 Effect of AZM on pulmonary vascular development in neonatal rats exposed to hyperoxia

  • 3 讨论

  • 本研究采用高氧暴露成功制造BPD大鼠模型,并且氧气暴露组使用AZM干预后显示出明显的抗炎作用,表现为炎症因子的下调及炎症细胞向肺组织聚集减少,同时也证实了 AZM 可减轻新生大鼠 BPD样肺损伤。

  • 本研究用新生大鼠暴露于高氧中建立 BPD 的模型,该模型稳定,可重复性强。高氧是 BPD 发生机制中的一个重要因素,BPD的特征是不成熟肺的肺泡化和肺血管化减少[16]。新生大鼠是研究 BPD 的良好动物模型,啮齿类动物出生时肺处于发育的囊状期,可模拟早产婴儿的肺发育阶段,暴露于高氧后发生慢性肺部炎症,随后发生持续性肺泡结构简单化、肺纤维化等[17-18]。有研究发现,高氧暴露的新生大鼠,CINC⁃1、MCP⁃1、IL⁃6、组织因子、PAI⁃1、分泌性白细胞蛋白酶抑制剂、基质金属蛋白酶 (matrix metalloproteinases,MMP)⁃12、p21、金属硫蛋白和血红素加氧酶等均有所上调[619]。本研究中,高氧暴露组IL⁃6、CINC⁃1、MCP⁃1、PAI⁃1的表达均有明显上调。中性粒细胞和单核巨噬细胞被认为在慢性肺疾病的炎症过程中起重要作用[520-21]。本研究也观察到高氧暴露后肺组织中性粒细胞及巨噬细胞迁移/募集增多,与既往研究一致[6]

  • AZM不仅具有抗感染作用,还具有抗炎/免疫调节作用,其作用机制已有研究报道。研究发现AZM 可通过抑制NF⁃κB的活性[22],降低许多炎性细胞因子水平,包括IL⁃6、IL⁃8、肿瘤坏死因子和粒细胞⁃巨噬细胞集落刺激因子,以及MMP[1123-24] 来发挥抗炎作用。它还可以直接或间接影响中性粒细胞而发挥抗炎作用,如减少中性粒细胞聚集,抑制中性粒细胞氧化爆发,减轻炎症因子的释放等[1225]。AZM 还可以通过影响巨噬细胞的极化状态、增加巨噬细胞的吞噬作用来发挥抗炎作用[2326]。在本研究中也观察到高氧暴露组予AZM处理后炎症因子/炎症趋化因子下降及炎症细胞的聚集减少。

  • AZM的抗感染、抗炎及免疫调节特性使它有别于其他的抗生素而在临床上广泛应用,包括慢性阻塞性肺病、囊性纤维化、支气管扩张、闭塞性细支气管炎、弥漫性泛细支气管炎和哮喘等[27-28]。并且,有研究发现 AZM 对新冠肺炎可能也有治疗效果[29]。因此,推测AZM可能对BPD这种慢性疾病也有效。研究表明,5 d疗程的AZM 治疗可降低炎症因子的水平,并减少机械通气早产儿的死亡率及28 d/死亡时氧气依赖[30]。然而,关于AZM对BPD的有效性研究仍存在争议[81331],并且,两项动物实验也存在不一致的结果[32-33]。本研究在前人研究的基础上进一步从炎症因子、炎症细胞、肺组织及肺血管发育的角度对AZM对高氧暴露肺损伤的保护作用进行了深入研究。并且,本研究在前期也做了AZM药物剂量摸索以确定AZM的最佳药物剂量。本研究的局限性在于没有深入研究AZM的抗炎作用机制,后期需要进一步研究。且本研究只是证实了AZM可改善高氧暴露新生大鼠BPD样肺损伤,但是应用于临床还需要进一步探讨剂量、疗程及安全性等问题,并进行临床试验来进一步明确。

  • 总之,本研究表明AZM对高氧暴露新生大鼠具有抗炎作用,且能减轻新生大鼠BPD样肺损伤。但 AZM 在临床上对BPD 的有效性及安全性还有待进一步明确,需要大型的随机对照试验来进一步证实。

  • 参考文献

    • [1] CAO Y,JIANG S Y,SUN J H,et al.Assessment of neonatal intensive care unit practices,morbidity,and mortality among very preterm infants in China[J].JAMA Netw Open,2021,4(8):e2118904

    • [2] HWANG J S,REHAN V K.Recent advances in broncho⁃pulmonary dysplasia:pathophysiology,prevention,and treatment[J].Lung,2018,196(2):129-138

    • [3] SHUKLA V V,AMBALAVANAN N.Recent advances in bronchopulmonary dysplasia[J].Indian J Pediatr,2021,88(7):690-695

    • [4] GILFILLAN M,BHANDARI A,BHANDARI V.Diagnosis and management of bronchopulmonary dysplasia[J].BMJ,2021,375:n1974

    • [5] HOLZFURTNER L,SHAHZAD T,DONG Y,et al.When inflammation meets lung development-an update on the pathogenesis of bronchopulmonary dysplasia[J].Mol Cell Pediatr,2022,9(1):7

    • [6] O’REILLY M,THÉBAUD B.Animal models of broncho⁃ pulmonary dysplasia.The term rat models[J].Am J Physiol Lung Cell Mol Physiol,2014,307(12):L948-L958

    • [7] THÉBAUD B,GOSS K,LAUGHON M,et al.Bronchopulmonary dysplasia[J].Nat Rev Dis Primers,2019,5:1-23

    • [8] JENSEN E A.Prevention of bronchopulmonary dysplasia:asummary of evidence-based strategies[J].Neoreviews,2019,20(4):e189-e201

    • [9] DOYLE L W,CHEONG J L,EHRENKRANZ R A,et al.Early(< 8 days)systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants[J].Cochrane Database Syst Rev,2017,10(10):CD001146

    • [10] VISCARDI R M,TERRIN M L,MAGDER L S,et al.Randomised trial of azithromycin to eradicate ureaplasma in preterm infants[J].Arch Dis Child Fetal Neonatal Ed,2020,105(6):615-622

    • [11] XING Y W,LIU K Z.Azithromycin inhibited oxidative stress and apoptosis of high glucose⁃induced podocytes by inhibiting STAT1 pathway[J].Drug Dev Res,2021,82(7):990-998

    • [12] HEIDARY M,EBRAHIMI SAMANGANI A,KARGARI A,et al.Mechanism of action,resistance,synergism,and clinical implications of azithromycin[J].J Clin Lab Anal,2022,36(6):e24427

    • [13] RAZAK A,ALSHEHRI N.Azithromycin for preventing bronchopulmonary dysplasia in preterm infants:a systematic review and meta-analysis[J].Pediatr Pulmonol,2021,56(5):957-966

    • [14] CHEN X Y,HAN D S,WANG X,et al.Vascular and pulmonary effects of ibuprofen on neonatal lung development[J].Respir Res,2023,24(1):39

    • [15] HUANG Z L,LIN B C,HAN D S,et al.Platelets are indispensable for alveolar development in neonatal mice[J].Front Pediatr,2022,10:943054

    • [16] SAHNI M,BHANDARI V.Patho-mechanisms of the origins of bronchopulmonary dysplasia[J].Mol Cell Pedi-atr,2021,8(1):21

    • [17] GIUSTO K,WANCZYK H,JENSEN T,et al.Hyperoxia-induced bronchopulmonary dysplasia:better models for better therapies[J].Dis Model Mech,2021,14(2):dmm047753

    • [18] SHAHZAD T,CHAO C M,HADZIC S,et al.TRAIL protects the immature lung from hyperoxic injury[J].Cell Death Dis,2022,13(7):614

    • [19] WAGENAAR G T,TER HORST S A,VAN GASTELEN M A,et al.Gene expression profile and histopathology of experimental bronchopulmonary dysplasia induced by prolonged oxidative stress[J].Free Radic Biol Med,2004,36(6):782-801

    • [20] HIRANI D,ALVIRA C M,DANOPOULOS S,et al.Macrophage⁃derived IL⁃6 trans⁃signalling as a novel target in the pathogenesis of bronchopulmonary dysplasia[J].Eur-Respir J,2022,59(2):2002248

    • [21] KALYMBETOVA T V,SELVAKUMAR B,RODRÍGUEZ-CASTILLO J A,et al.Resident alveolar macrophages are master regulators of arrested alveolarization in experimental bronchopulmonary dysplasia[J].J Pathol,2018,245(2):153-159

    • [22] HAYDAR D,CORY T J,BIRKET S E,et al.Azithromy-cin polarizes macrophages to an M2 phenotype via inhibition of the STAT1 and NF ⁃κB signaling pathways[J].J Immunol,2019,203(4):1021-1030

    • [23] OLIVER M E,HINKS T S C.Azithromycin in viral infections[J].Rev Med Virol,2021,31(2):e2163

    • [24] BARKS J D E,LIU Y Q,DOPP I A,et al.Azithromycin reduces inflammation-amplified hypoxic-ischemic brain injury in neonatal rats[J].Pediatr Res,2022,92(2):415-423

    • [25] HAFNER M,PAUKNER S,WICHA W W,et al.Anti-inflammatory activity of lefamulin versus azithromycin and dexamethasone in vivo and in vitro in a lipopolysaccharide⁃induced lung neutrophilia mouse model[J].PLoS One,2021,16(9):e0237659

    • [26] TARIQUE A A,TULADHAR N,KELK D,et al.Azithro-mycin augments bacterial uptake and anti-inflammatory macrophage polarization in cystic fibrosis[J].Cells,2024,13(2):166

    • [27] CRAMER C L,PATTERSON A,ALCHAKAKI A,et al.Immunomodulatory indications of azithromycin in respiratory disease:a concise review for the clinician[J].Post⁃grad Med,2017,129(5):493-499

    • [28] PŁUSA T.Azithromycin in the treatment of patients with exacerbation of chronic obstructive pulmonary disease[J].Pol Merkur Lekarski,2020,48(283):65-68

    • [29] ECHEVERRÍA-ESNAL D,MARTIN-ONTIYUELO C,NAVARRETE-ROUCO M E,et al.Azithromycin in the treatment of COVID ⁃ 19:a review[J].Expert Rev Anti Infect Ther,2021,19(2):147-163

    • [30] NUNES C R,PROCIANOY R S,CORSO A L,et al.Use of azithromycin for the prevention of lung injury in mechanically ventilated preterm neonates:arandomized controlled trial[J].Neonatology,2020,117(4):522-528

    • [31] CHANG E,BALLARD K E,JOHNSON P N,et al.Azithromycin for eradication of Ureaplasma and prevention of bronchopulmonary dysplasia in preterm neonates in the neonatal intensive care unit[J].J Pediatr Pharmacol Ther,2023,28(1):10-19

    • [32] BALLARD H O,BERNARD P,QUALLS J,et al.Azithro-mycin protects against hyperoxic lung injury in neonatal rats[J].J Investig Med,2007,55(6):299-305

    • [33] LONDHE V A,SUNDAR I K,LOPEZ B,et al.Hyperoxia impairs alveolar formation and induces senescence through decreased histone deacetylase activity and up-regulation of p21 in neonatal mouse lung[J].Pediatr Res,2011,69(5 Pt 1):371-377

  • 参考文献

    • [1] CAO Y,JIANG S Y,SUN J H,et al.Assessment of neonatal intensive care unit practices,morbidity,and mortality among very preterm infants in China[J].JAMA Netw Open,2021,4(8):e2118904

    • [2] HWANG J S,REHAN V K.Recent advances in broncho⁃pulmonary dysplasia:pathophysiology,prevention,and treatment[J].Lung,2018,196(2):129-138

    • [3] SHUKLA V V,AMBALAVANAN N.Recent advances in bronchopulmonary dysplasia[J].Indian J Pediatr,2021,88(7):690-695

    • [4] GILFILLAN M,BHANDARI A,BHANDARI V.Diagnosis and management of bronchopulmonary dysplasia[J].BMJ,2021,375:n1974

    • [5] HOLZFURTNER L,SHAHZAD T,DONG Y,et al.When inflammation meets lung development-an update on the pathogenesis of bronchopulmonary dysplasia[J].Mol Cell Pediatr,2022,9(1):7

    • [6] O’REILLY M,THÉBAUD B.Animal models of broncho⁃ pulmonary dysplasia.The term rat models[J].Am J Physiol Lung Cell Mol Physiol,2014,307(12):L948-L958

    • [7] THÉBAUD B,GOSS K,LAUGHON M,et al.Bronchopulmonary dysplasia[J].Nat Rev Dis Primers,2019,5:1-23

    • [8] JENSEN E A.Prevention of bronchopulmonary dysplasia:asummary of evidence-based strategies[J].Neoreviews,2019,20(4):e189-e201

    • [9] DOYLE L W,CHEONG J L,EHRENKRANZ R A,et al.Early(< 8 days)systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants[J].Cochrane Database Syst Rev,2017,10(10):CD001146

    • [10] VISCARDI R M,TERRIN M L,MAGDER L S,et al.Randomised trial of azithromycin to eradicate ureaplasma in preterm infants[J].Arch Dis Child Fetal Neonatal Ed,2020,105(6):615-622

    • [11] XING Y W,LIU K Z.Azithromycin inhibited oxidative stress and apoptosis of high glucose⁃induced podocytes by inhibiting STAT1 pathway[J].Drug Dev Res,2021,82(7):990-998

    • [12] HEIDARY M,EBRAHIMI SAMANGANI A,KARGARI A,et al.Mechanism of action,resistance,synergism,and clinical implications of azithromycin[J].J Clin Lab Anal,2022,36(6):e24427

    • [13] RAZAK A,ALSHEHRI N.Azithromycin for preventing bronchopulmonary dysplasia in preterm infants:a systematic review and meta-analysis[J].Pediatr Pulmonol,2021,56(5):957-966

    • [14] CHEN X Y,HAN D S,WANG X,et al.Vascular and pulmonary effects of ibuprofen on neonatal lung development[J].Respir Res,2023,24(1):39

    • [15] HUANG Z L,LIN B C,HAN D S,et al.Platelets are indispensable for alveolar development in neonatal mice[J].Front Pediatr,2022,10:943054

    • [16] SAHNI M,BHANDARI V.Patho-mechanisms of the origins of bronchopulmonary dysplasia[J].Mol Cell Pedi-atr,2021,8(1):21

    • [17] GIUSTO K,WANCZYK H,JENSEN T,et al.Hyperoxia-induced bronchopulmonary dysplasia:better models for better therapies[J].Dis Model Mech,2021,14(2):dmm047753

    • [18] SHAHZAD T,CHAO C M,HADZIC S,et al.TRAIL protects the immature lung from hyperoxic injury[J].Cell Death Dis,2022,13(7):614

    • [19] WAGENAAR G T,TER HORST S A,VAN GASTELEN M A,et al.Gene expression profile and histopathology of experimental bronchopulmonary dysplasia induced by prolonged oxidative stress[J].Free Radic Biol Med,2004,36(6):782-801

    • [20] HIRANI D,ALVIRA C M,DANOPOULOS S,et al.Macrophage⁃derived IL⁃6 trans⁃signalling as a novel target in the pathogenesis of bronchopulmonary dysplasia[J].Eur-Respir J,2022,59(2):2002248

    • [21] KALYMBETOVA T V,SELVAKUMAR B,RODRÍGUEZ-CASTILLO J A,et al.Resident alveolar macrophages are master regulators of arrested alveolarization in experimental bronchopulmonary dysplasia[J].J Pathol,2018,245(2):153-159

    • [22] HAYDAR D,CORY T J,BIRKET S E,et al.Azithromy-cin polarizes macrophages to an M2 phenotype via inhibition of the STAT1 and NF ⁃κB signaling pathways[J].J Immunol,2019,203(4):1021-1030

    • [23] OLIVER M E,HINKS T S C.Azithromycin in viral infections[J].Rev Med Virol,2021,31(2):e2163

    • [24] BARKS J D E,LIU Y Q,DOPP I A,et al.Azithromycin reduces inflammation-amplified hypoxic-ischemic brain injury in neonatal rats[J].Pediatr Res,2022,92(2):415-423

    • [25] HAFNER M,PAUKNER S,WICHA W W,et al.Anti-inflammatory activity of lefamulin versus azithromycin and dexamethasone in vivo and in vitro in a lipopolysaccharide⁃induced lung neutrophilia mouse model[J].PLoS One,2021,16(9):e0237659

    • [26] TARIQUE A A,TULADHAR N,KELK D,et al.Azithro-mycin augments bacterial uptake and anti-inflammatory macrophage polarization in cystic fibrosis[J].Cells,2024,13(2):166

    • [27] CRAMER C L,PATTERSON A,ALCHAKAKI A,et al.Immunomodulatory indications of azithromycin in respiratory disease:a concise review for the clinician[J].Post⁃grad Med,2017,129(5):493-499

    • [28] PŁUSA T.Azithromycin in the treatment of patients with exacerbation of chronic obstructive pulmonary disease[J].Pol Merkur Lekarski,2020,48(283):65-68

    • [29] ECHEVERRÍA-ESNAL D,MARTIN-ONTIYUELO C,NAVARRETE-ROUCO M E,et al.Azithromycin in the treatment of COVID ⁃ 19:a review[J].Expert Rev Anti Infect Ther,2021,19(2):147-163

    • [30] NUNES C R,PROCIANOY R S,CORSO A L,et al.Use of azithromycin for the prevention of lung injury in mechanically ventilated preterm neonates:arandomized controlled trial[J].Neonatology,2020,117(4):522-528

    • [31] CHANG E,BALLARD K E,JOHNSON P N,et al.Azithromycin for eradication of Ureaplasma and prevention of bronchopulmonary dysplasia in preterm neonates in the neonatal intensive care unit[J].J Pediatr Pharmacol Ther,2023,28(1):10-19

    • [32] BALLARD H O,BERNARD P,QUALLS J,et al.Azithro-mycin protects against hyperoxic lung injury in neonatal rats[J].J Investig Med,2007,55(6):299-305

    • [33] LONDHE V A,SUNDAR I K,LOPEZ B,et al.Hyperoxia impairs alveolar formation and induces senescence through decreased histone deacetylase activity and up-regulation of p21 in neonatal mouse lung[J].Pediatr Res,2011,69(5 Pt 1):371-377