en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

丁国宪,E-mail:dinggx@njmu.edu.cn

中图分类号:Q78

文献标识码:A

文章编号:1007-4368(2024)07-979-06

DOI:10.7655/NYDXBNSN240242

参考文献 1
ZHAO Z,CHEN X,DOWBAJ A M,et al.Organoids[J].Nat Rev Methods Primers,2022,2:94
参考文献 2
FUKAMACHI H.Proliferation and differentiation of fetal ratintestinalepithelialcellsinprimaryserum⁃freeculture[J].J Cell Sci,1992,103(Pt 2):511-519
参考文献 3
EVANS G S,FLINT N,SOMERS A S,et al.The development of a method for the preparation of rat intestinal epithelial cell primary cultures[J].J Cell Sci,1992,101(Pt 1):219-231
参考文献 4
SATO T,VRIES R G,SNIPPERT H J,et al.Single Lgr5 stem cells build crypt ⁃villus structures in vitro without a mesenchymal niche[J].Nature,2009,459(7244):262-265
参考文献 5
CARVALHO M R,YAN L P,LI B,et al.Gastrointestinal organs and organoids⁃on⁃a⁃chip:advances and translation into the clinics[J].Biofabrication,2023,15(4):doi:10.1088/1758⁃5090/acf8fb
参考文献 6
KHALIL A M.The genome editing revolution:review[J].J Genet Eng Biotechnol,2020,18(1):68
参考文献 7
KOO B K,STANGE D E,SATO T,et al.Controlled gene expression in primary Lgr5 organoid cultures[J].Nat Methods,2011,9(1):81-83
参考文献 8
LIU T,LI X,LI H,et al.Intestinal organoid modeling:bridging the gap from experimental model to clinical translation[J].Front Oncol,2024,14:1334631
参考文献 9
VAN LIDTH D E JEUDE J F,VERMEULEN J L,MONTENEGRO⁃MIRANDA P S,et al.A protocol for lentiviral transduction and downstream analysis of intestinal organ-oids[J].J Vis Exp,2015,98:52531
参考文献 10
MARU Y,ORIHASHI K,HIPPO Y.Lentivirus⁃based stable gene delivery into intestinal organoids[J].Methods Mol Biol,2016,1422:13-21
参考文献 11
MENCHE C,FARIN H F.Strategies for genetic manipulation of adult stem cell-derived organoids[J].Exp Mol Med,2021,53(10):1483-1494
参考文献 12
LIN L,DEMARTINO J,WANG D,et al.Unbiased transcription factor CRISPR screen identifies ZNF800 as master repressor of enteroendocrine differentiation[J].Science,2023,382(6669):451-458
参考文献 13
WANG J Y,DOUDNA J A.CRISPR technology:a decade of genome editing is only the beginning[J].Science,2023,379(6629):eadd8643
参考文献 14
CHEHELGERDI M,CHEHELGERDI M,KHORRAMIAN-GHAHFAROKHI M,et al.Comprehensive review of CRISPR-based gene editing:mechanisms,challenges,and applications in cancer therapy[J].Mol Cancer,2024,23(1):9
参考文献 15
TAKEDA H,KATAOKA S,NAKAYAMA M,et al.CRIS-PR ⁃ Cas9 ⁃ mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes[J].Proc Natl Acad Sci U S A,2019,116(31):15635-15644
参考文献 16
GU W,COLARUSSO J L,DAME M K,et al.Rapid establishment of human colonic organoid knockout lines[J].STAR Protoc,2022,3(2):101308
参考文献 17
RUTHERFORD D,HO G T.Therapeutic potential of human intestinal organoids in tissue repair approaches in inflammatory bowel diseases[J].Inflamm Bowel Dis,2023,29(9):1488-1498
参考文献 18
SCHWANK G,ANDERSSON ⁃ROLF A,KOO B K,et al.Generation of BAC transgenic epithelial organoids[J].PLoS One,2013,8(10):e76871
参考文献 19
SHIZUYA H,BIRREN B,KIM U J,et al.Cloning and stable maintenance of 300 ⁃ kilobase-pair fragments of human DNA in Escherichia coli using an F⁃factor⁃based vector[J].Proc Natl Acad Sci U S A,1992,89(18):8794-8797
参考文献 20
ZIMMER W E,SCHWARTZ R J.Transient transgenics:an efficient method to identify gene regulatory elements[J].Methods Mol Biol,2021,2319:119-136
参考文献 21
HEINTZ N,GONG S.Working with bacterial artificial chromosomes(BACs)and other high⁃capacity vectors[J].Cold Spring Harb Protoc,2020,2020(10):doi:10.1101/pdb.top097998
参考文献 22
TERIYAPIROM I,BATISTA-ROCHA A S,KOO B K.Genetic engineering in organoids[J].J Mol Med(Berl),2021,99(4):555-556
参考文献 23
TSAI HC,PIETROBON V,PENG M,et al.Current strategies employed in the manipulation of gene expression for clinical purposes[J].J Transl Med,2022,20(1):535
参考文献 24
LIN SC,HAGA K,ZENG XL,et al.Generation of CRIS-PR ⁃ Cas9 ⁃ mediated genetic knockout human intestinal tissue-derived enteroid lines by lentivirus transduction and single⁃cell cloning[J].Nat Protoc,2022,17(4):1004-1027
参考文献 25
HORII T,MORITA S,KIMURA M,et al.Efficient generation of epigenetic disease model mice by epigenome editing using the piggyBac transposon system[J].Epigenetics Chromatin,2022,15(1):40
参考文献 26
GU J,ROLLO B,BERECKI G,et al.Generation of a stably transfected mouse embryonic stem cell line for inducible differentiation to excitatory neurons[J].Exp Cell Res,2024,435(1):113902
参考文献 27
岳冉,刘子洋,郑岩,等.纳米载体介导的PiggyBac转座子制备 CAR⁃NK 细胞[J].中国肿瘤生物治疗杂志,2020,27(2):109-114
参考文献 28
姜淇耀,史甲儒,罗志强,等.基于PiggyBac转座系统的 CD19⁃CAR载体的构建及功能鉴定[J].中国肿瘤生物治疗杂志,2023,30(2):156-160
参考文献 29
EGGENSCHWILER R,GSCHWENDTBERGER T,FELS-KI C,et al.A selectable all⁃in⁃one CRISPR prime editing piggyBac transposon allows for highly efficient gene editing in human cell lines[J].Sci Rep,2021,11(1):22154
参考文献 30
SUN Y,LIU G,HUANG Y.Applications of piggyBac transposons for genome manipulation in stem cells[J].Stem Cells Int,2021,2021:3829286
参考文献 31
MANGEOT P E,RISSON V,FUSIL F,et al.Genome editing in primary cells and in vivo using viral⁃derived Nano-blades loaded with Cas9 ⁃ sgRNA ribonucleoproteins[J].Nat Commun,2019,10(1):45
参考文献 32
GUTIERREZ ⁃GUERRERO A,ABREY RECALDE M J,MANGEOT P E,et al.Baboon envelope pseudotyped “nanoblades”carrying Cas9/gRNA complexes allow efficient genome editing in human T,B,and CD34+ cells and knock⁃in of AAV6 ⁃ encoded donor DNA in CD34 + cells[J].Front Genome Ed,2021,3:604371
参考文献 33
BERNADIN O,AMIRACHE F,GIRARD-GAGNEPAIN A,et al.Baboon envelope LVs efficiently transduced human adult,fetal,and progenitor T cells and corrected SCID⁃X1 T⁃cell deficiency[J].Blood Adv,2019,3(3):461-475
参考文献 34
TIROILLE V,KRUG A,BOKOBZA E,et al.Nanoblades allow high-level genome editing in murine and human organoids[J].Mol Ther Nucleic Acids,2023,33:57-74
参考文献 35
GEBOERS B,SCHEFFER H J,GRAYBILL P M,et al.High-voltage electrical pulses in oncology:irreversible electroporation,electrochemotherapy,gene electrotransfer,electrofusion,and electroimmunotherapy.radiology[J].Radiology,2020,295(2):254-272
参考文献 36
CAMPELO S N,HUANG P H,BUIE C R,et al.Recent advancements in electroporation technologies:from bench to clinic[J].Annu Rev Biomed Eng,2023,25:77-100
参考文献 37
DE CARO A,BELLARD E,KOLOSNJAJ ⁃TABI J,et al.Gene electrotransfer efficiency in 2D and 3D cancer cell models using different electroporation protocols:a comparative study[J].Pharmaceutics,2023,15(3):1004
参考文献 38
MERENDA A,ANDERSSON⁃ROLF A,MUSTATA R C,et al.A protocol for multiple gene knockout in mouse small intestinal organoids using a CRISPR-concatemer[J].J Vis Exp,2017,125:e55916
参考文献 39
GAEBLER A M,HENNIG A,BUCZOLICH K,et al.Universal and efficient electroporation protocol for genetic engineering of gastrointestinal organoids[J].J Vis Exp,2020,156:10.3791/60704
参考文献 40
WEAVER J C.Electroporation:a general phenomenon for manipulating cells and tissues[J].J Cell Biochem,1993,51(4):426-435
参考文献 41
MATANO M,DATE S,SHIMOKAWA M,et al.Modeling colorectal cancer using CRISPR⁃Cas9⁃mediated engineering of human intestinal organoids[J].Nat Med,2015,21(3):256-262
参考文献 42
FUJII M,MATANO M,NANKI K,et al.Efficient genetic engineering of human intestinal organoids using electro-poration[J].Nat Protoc,2015,10(10):1474-1485
参考文献 43
ARTEGIANI B,HENDRIKS D,BEUMER J,et al.Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing[J].Nat Cell Biol,2020,22(3):321-331
参考文献 44
HENDRIKS D,ARTEGIANI B,HU H,et al.Establishment of human fetal hepatocyte organoids and CRISPR-Cas9⁃based gene knockin and knockout in organoid cultures from human liver[J].Nat Protoc,2021,16(1):182-217
参考文献 45
YANG Q,OOST K C,LIBERALI P.Engineering human knock⁃in organoids[J].Nat Cell Biol,2020,22(3):261-263
参考文献 46
SKOUFOU ⁃PAPOUTSAKI N,ADLER S,D’SANTOS P,et al.Efficient genetic editing of human intestinal organ-oids using ribonucleoprotein⁃based CRISPR[J].Dis Model Mech,2023,16(10):dmm050279
参考文献 47
GIOBBE G G,BONFANTE F,JONES B C,et al.SARS-CoV ⁃ 2 infection and replication in human gastric organ-oids[J].Nat Commun,2021,12(1):6610
参考文献 48
金燚,俞静,夏凡,等.高脂饮食影响小鼠空回肠上皮功能的差异性研究[J].南京医科大学学报(自然科学版),2022,42(5):619-624
参考文献 49
赫义君,盛云露,夏凡,等.高脂饮食通过小肠上皮组织外泌体促进心脏纤维化[J].南京医科大学学报(自然科学版),2023,43(5):663-668
目录contents

    摘要

    肠道类器官是一种新兴的实验模型,具有模拟体内器官结构和功能的特性,广泛用于肠道疾病与功能变化的研究。近年来,研究者们将基因编辑与肠道类器官结合,为探究疾病的发生机制和研发针对性的治疗手段提供了可能。本篇综述旨在回顾基因编辑技术在肠道类器官中的应用,并探讨其在疾病建模、药物研发等领域的发展前景。

    Abstract

    Intestinal organoid is a new experimental model and is widely used in research on intestinal diseases and functional changes for its property in mimicking structures and functions of in vivo organs. In recent years,researchers have combined gene-editing technology with intestinal organoids,offering possibilities for elucidating the mechanisms of diseases and developing targeted therapies for these diseases. This review looks back on the applications of gene-editing in intestinal organoids and their future perspectives in disease modeling and drug development.

  • 近两个世纪以来,生物医学研究都依赖于传统的细胞系统和动物模型。然而,如何将基于体外模型系统得出的研究成果推进到人体这样一个复杂且精密的系统,这个问题仍十分具有挑战性。为此,研究者们提出了类器官的概念。类器官是一种具有自组织能力的特异性3D细胞簇,能够重现起源器官的组织结构和功能[1]。迄今为止,现有的研究已成功制备了肠道、脑、乳腺、肾、肝、肺、视杯、胰腺和前列腺等多种组织的类器官模型,其中对于肠道类器官的研究起步较早。早在1992年,研究者们就发表了大鼠肠道类器官的短期培养方法[2-3]。2009年,Sato 等[4] 利用基质胶培养出小鼠小肠类器官,并第一次将肠道类器官描述为起源于Lgr5+ 肠道干细胞的3D 细胞结构,开启了肠道类器官长期培养、增殖的新纪元。

  • 作为一种新兴的实验模型,肠道类器官和肠道组织相比,更适合长期培养以及进行后续的实验处理。不同于传统的2D细胞系,肠道类器官能够模拟肠道上皮的细胞发生,并且具有更全面的细胞类型,与此同时,肠道类器官以其独特的结构,模拟了这些细胞在生物体内的生长环境,准确反映了细胞对外界刺激时发生的功能变化。并且,作为干细胞起源的细胞结构,肠道类器官保留了干细胞的特性,能够反映肠道上皮干细胞的活性与增殖、分化能力[5]。目前,3D类器官已广泛用于发育和疾病建模,成为研究肠道上皮细胞功能及生命周期的主流载体,如何使肠道类器官这种优越的体外模型更好地发挥其优势,更加精确、全面地模拟包括各种疾病在内的各类体内条件,成为了当前的研究重点。

  • 为了实现这个目标,研究团队进行了广泛尝试。考虑到类器官的特殊结构属性以及实验操作的难易度、实验周期长度和资金成本等因素,他们发现基因编辑是其中比较优越的一种方法。基因编辑是利用DNA修复机制对基因组DNA进行特定位点修饰的技术[6],在过去的近 20 年中,基因编辑技术得到了迅速发展,为模拟各类疾病条件提供了新的可能,而基因编辑技术与肠道类器官培养技术的结合无疑为肠道上皮的研究开辟了一条新的思路。研究人员通过这样的组合,对肠道类器官进行功能上的调控,从而研究肠道在疾病条件下的功能改变,尤其是肠道上皮在病理状态下发生的细胞结构与功能的变化,并且为如何调控或逆转这些改变提供了基因层面的研究基础。

  • 本综述详细阐述了现有的几种肠道类器官基因编辑技术及其在模型构建中的应用,同时对肠道类器官基因编辑技术的未来发展潜能及当前面临的一些局限进行了讨论。

  • 1 慢病毒感染

  • 慢病毒载体是以人类免疫缺陷病毒(human im⁃ munodeficiency virus,HIV)为基础发展起来的基因治疗载体。2011 年,Koo 等[7] 介绍了一种利用逆转录病毒感染小鼠小肠类器官从而控制类器官基因表达的方法,文中提到慢病毒也可适用该方法对类器官系统进行基因调控。慢病毒载体对多种细胞具有感染能力,并且能够稳定而持久地感染细胞,在推广至类器官应用之前已被广泛、深入地应用于细胞层面的基因编辑,但要将慢病毒感染在类器官层面上得到应用,还需考虑到类器官与传统的2D细胞两者间的区别。

  • 众所周知,类器官是一种在基质胶内培养的3D 结构,基质胶为类器官的培养提供了营养支持和结构支撑,对类器官的存活是不可或缺的。但由于慢病毒颗粒无法穿过基质胶,因此,如何让慢病毒在成功感染类器官的同时又不影响其存活成为了技术攻克的难关。研究团队们目前较常使用的方法是将基质胶溶解,在感染时使用的培养基中加入有助于肠道干细胞生长的因子以替代基质胶对类器官生长的作用。

  • 肠道类器官是起源于Lgr5+ 干细胞的隐窝样单位,每个肠类器官都可以包含所有分化肠细胞类型,包括Paneth 细胞、吸收性肠细胞或结肠细胞、杯状细胞和肠内分泌细胞等[8],慢病毒无法有效地感染这样的3D结构。为了解决这个问题,研究者们倾向于在进行后续的感染操作之前,先使用胰酶将类器官解离为单个细胞,同时,胰酶不仅可以将类器官消化成单个细胞,还可以让类器官的膜结构变得更疏松,使病毒颗粒更容易穿透,提高感染的成功率[9]。但这样的感染过程涉及到对类器官的多次离心,可能导致类器官细胞活性的降低。为了避免这个问题,Maru等[10] 在2016年发表的论文中提到,将类器官解离并与慢病毒颗粒混合,并将这一步骤得到的类器官⁃慢病毒悬液接种在基质胶上孵育过夜以完成基因转导,这个方法既可以避免基质屏障对于慢病毒感染的抑制作用,也可以充分利用基质胶对类器官的营养功能。作者还提到,接种后的类器官会自行转移至基质胶中,后续只需要进行换液,无需再次铺板、包埋,避免了细胞的二次损耗。

  • 慢病毒虽然因其良好的转导效果得到了广泛的应用,但其不足之处也十分明显,例如较长的实验时间以及复杂的构建过程,慢病毒载体本身的致病性和基因安全性也成为实验中需要注意的重点,病毒导致宿主基因突变的风险也不容忽视[11],这些问题成为了慢病毒感染控制类器官基因表达研究的难点。研究者们提出,为了规避这些可能出现的问题并且更大限度地利用慢病毒载体的优势,可以将慢病毒载体与其他基因编辑技术如CRISPR/Cas9相结合[12]

  • CRISPR 是一种 DNA 的短回文重复序列,通常与编码 CRISPR 相关(Cas)蛋白的基因一起存在于微生物基因组中[13]。CRISPR/Cas9是一种细菌适应性免疫反应系统,凭借其高效、精确的特性,自发布以来就广泛用于基因组编辑[14]。目前,慢病毒转导 CRISPR/Cas9 主要应用于肿瘤类器官的基因编辑,诱导肿瘤类器官的产生,2019 年,Takeda 等[15] 使用携带Apc和Kras突变的良性肿瘤类器官,验证了驱动结直肠恶性肿瘤发生的基因突变,并且分别评估了这些突变的致癌能力。2022年,Gu等[16] 利用慢病毒递送 CRISPR/Cas9,在 1~2 周内建立了基因突变的结肠类器官。该团队表示,经过改良,慢病毒转导基因编辑的有效率可达到90%以上,与传统慢病毒转导30%~50%的有效率相比,这无疑是一次巨大的进步。类器官模型的使用使炎症性肠病(inflam⁃ matory bowel disease,IBD)的研究也得到了发展,以CRISPR/Cas9为代表的基因编辑技术为IBD的诊疗提供了新的思路[17]。虽然目前人们还不能通过肠道类器官的基因编辑技术对IBD患者的肠道进行治疗和修复,但这项技术的迅速发展提供了令人乐观的前景和可能。

  • 2 脂质体转染

  • 慢病毒载体转导目的基因的方法虽然高效、稳定,但所需的实验周期较长,过程也较为复杂,为了克服这个缺点,研究者们尝试了使用脂质体作为载体对目的基因进行转染的方法。

  • 2013年,Schwank 等[18] 利用脂质体转染BAC 系统成功在小鼠小肠类器官和人类结肠类器官上实施了瞬时转染荧光标记特定种类的细胞。细菌人工染色体(bacterial artificial chromosome,BAC)是 1992年Shizuya等[19] 在大肠杆菌(E.coli)的单拷贝质粒 F 因子(F⁃plasmid)基础上构建的承载了大片段 DNA 的克隆载体,因其稳定、高效的优势得到了广泛的应用。这项技术相对比较简单,且适用范围相对较广。但可惜的是,由于质粒转染的瞬时性,类器官在接受转染后只能短暂地表达[20],随着时间的推移,接受转染的类器官会逐渐丧失外源基因表达的能力,并且脂质体对类器官的存活可能造成一定的影响,因此,脂质体介导的BAC 转染类器官并没有得到广泛的应用[21-22]

  • 3 PiggyBac转座系统

  • PiggyBac 转座系统来源于鳞翅目昆虫,是一种常用的真核DNA转座子。它具有特殊的双质粒系统,其中一个质粒表达携带目的基因的转座子,另一个表达具有切割DNA序列功能的转座酶,在转染过程中,这两个结构相互配合,以“剪切⁃粘贴”的方式将目的基因转入靶细胞内。这样的功能特性保证了PiggyBac转座系统的高效性与准确性,并且可以携带较大的基因片段[23]。与此同时,PiggyBac也可以与 CRISPR 技术结合完成类器官的基因编辑[24],推动了PiggyBac转染技术的发展和应用。近年来, PiggyBac因其可逆、高效率、高精准度、高可塑性的特性被广泛运用于基因组功能研究、基因编辑等领域[25-29],不仅在肿瘤发生机制的研究和靶向药物的开发上作出了贡献,在干细胞和再生医学领域也发挥了重要的作用[30]

  • 上述的几种载体虽然在操作的便捷性和转染的稳定性上各有优点,但他们都不可避免地会对类器官的稳定性与存活能力造成一定程度的损伤。是否存在一种技术,既能够稳定地转导目的基因,又可以最大限度地降低对类器官的损害?研究者们为了解决这个问题,仍然在不断地进行尝试, Nanoblades技术是其中一个比较成功的案例。

  • 4 Nanoblades(NBs)

  • NBs是一种起源于小鼠白血病病毒(MLV)的病毒样颗粒(VLP),是通过CRISPR技术将VLP转导至细胞内生成的一种基因编辑工具[31-33]。2023 年 Tiroille 等[34] 建立了表达 eGFP 的小鼠结肠类器官,并通过NBs敲除eGFP以测试NBs的基因编辑能力,结果提示,NBs可以达到最高70%的转导有效率,且没有明显的毒副作用,不会增加结肠类器官细胞死亡风险。该团队在人结肠、前列腺、乳腺类器官上利用慢病毒感染和电穿孔的方式分别进行了验证,得出的结论仍然提示,NBs在人类类器官中也可以以最小的毒性做到高效的基因编辑。NBs的基因编辑水平优于目前使用的其他技术,具有更低的毒性和更高的稳定性与准确性,并且需要的时间更短,使类器官的基因编辑技术变得更加成熟,为疾病发展、药物筛选以及类器官治疗等临床应用提供了全新的可能。

  • 5 电穿孔

  • 前文描述了基因编辑的几种较为常见的载体,但由于类器官的结构特性,传统的基因载体无法直接将目的基因转导至类器官内。经过多种尝试后,研究者们发现电穿孔是解决这个问题的有效方法。

  • 电穿孔是利用电脉冲增加细胞膜的通透性,从而将 DNA、RNA、蛋白质或其他大分子转移至细胞的一种相对简单但有效的方法[35]。这种方法简单易行,将类器官解离后悬浮于缓冲液内,并利用电转仪(如 Nucleofector 或 NEPA21 等)进行电穿孔将目的基因载体转至细胞内[36-37]。上述研究方法建议将类器官解离为单个细胞后再进行电穿孔操作,但这种方式很可能会降低类器官的存活能力,2017年 Merenda等[38] 研究显示,在实施电穿孔操作前,应将类器官解离为细胞团块,而非单细胞,以取得更好的转导效果。

  • 目前,研究者们已在人类结直肠癌、胰腺癌、肝癌和胃癌类器官上成功地利用电穿孔法进行了质粒的转染[39]。电穿孔的优势在于对细胞数量的要求较低,无需大量制备需要接受电穿孔的细胞,并且所需实验时间较短,完成电穿孔后短时间内即可进行铺板,在使用荧光标记载体的情况下铺板后 24~48 h后即可在镜下观察验证转染是否成功。但电脉冲对细胞膜的冲击会不可避免地造成膜的损伤,并需要一定的时间来恢复[40],并且电刺激也可导致细胞应激反应,从而促进细胞的凋亡过程,降低细胞存活率。

  • 进一步的研究已经证明,电穿孔技术与 Piggy⁃ Bac、CRISPR/Cas9 等系统结合可以带来更加安全、便宜且有效的基因调控方法。CRISPR/Cas9与电穿孔技术的结合在肠道类器官的研究中应用更为广泛,2014年Matano等[41] 运用电穿孔技术与CRISPR/ Cas9技术对人结肠类器官进行基因编辑,将结直肠肿瘤中常见的突变基因导入正常人结肠类器官中构建结肠癌疾病模型,并借助该种模型研究结直肠肿瘤发生的机制。2015年,该团队再次发表了一篇有关利用电穿孔法对人结肠类器官进行基因编辑的方法学论文,文中描述将电穿孔技术与基于转座子的PiggyBac系统相结合,证明了电穿孔处理既可以用于递送质粒等常见的克隆载体,也可将 Piggy⁃ Bac 转座子转导至人结肠类器官,实现相关基因及标记蛋白的稳定表达[42]。2020—2021年,研究人员发表了多篇关于利用CRISPR/Cas9技术介导的非同源末端连接(CRISPR⁃HOT)和电穿孔技术进行人源类器官基因敲入的文章,对人源类器官中的特定基因进行可视化荧光标记[43-45],2023 年 Skoufou ⁃Pa⁃ poutsaki 等[46] 通过电穿孔技术转导 CRISPR/Cas9 构建了肿瘤抑制基因 PTEN 敲除的人肠道类器官,用以研究正常人肠上皮细胞中该基因缺失的影响。电穿孔法既可以递送质粒等传统的基因载体,也可以与CRISPR/Cas9、PiggyBac 等技术结合,对类器官实现更加高效、稳定的基因编辑。

  • 基因编辑技术与类器官培养技术的结合为疾病发生机制的研究和诊疗手段的发展提供了条件。研究者们能够通过对类器官的基因编辑,深入研究与鉴定癌症相关的靶向基因,这为开发新型的靶向抗癌药物提供了理论依据与基础,也为个体化精准治疗肿瘤相关疾病提供了实施的条件。目前,类器官的基因编辑也被用于研究IBD、肠道衰老以及其他各类肠道疾病的发生机制。我们相信,依托类器官基因编辑技术的发展与精进,针对这些疾病的个体化治疗将在不远的将来成为现实。

  • 6 小结与展望

  • 随着医学发展,精准医疗已经成为发展的必然趋势,基因测序、分子诊断以及靶向药物等诊疗手段也迎来发展的高峰。类器官作为反映人体肠道结构与功能最准确的模型,可以精准模拟生理和病理状态下人体器官功能的改变[47],因此被公认为生物医学研究的重要工具,在精准医疗与个体化医疗的研究与发展中有着不可撼动的地位。肠道作为人体最大的免疫器官,同时也是营养感受与吸收的首要部位,对于人体的健康状态有着深远的意义[48-49]。肠道类器官是类器官研究中不可或缺的一部分,可以预见的是,肠道类器官的基因编辑技术是未来肠道类器官研究的重要方向,准确、稳定的基因调控将为疾病建模、药物研发和个体化诊疗开辟新的道路。

  • 参考文献

    • [1] ZHAO Z,CHEN X,DOWBAJ A M,et al.Organoids[J].Nat Rev Methods Primers,2022,2:94

    • [2] FUKAMACHI H.Proliferation and differentiation of fetal ratintestinalepithelialcellsinprimaryserum⁃freeculture[J].J Cell Sci,1992,103(Pt 2):511-519

    • [3] EVANS G S,FLINT N,SOMERS A S,et al.The development of a method for the preparation of rat intestinal epithelial cell primary cultures[J].J Cell Sci,1992,101(Pt 1):219-231

    • [4] SATO T,VRIES R G,SNIPPERT H J,et al.Single Lgr5 stem cells build crypt ⁃villus structures in vitro without a mesenchymal niche[J].Nature,2009,459(7244):262-265

    • [5] CARVALHO M R,YAN L P,LI B,et al.Gastrointestinal organs and organoids⁃on⁃a⁃chip:advances and translation into the clinics[J].Biofabrication,2023,15(4):doi:10.1088/1758⁃5090/acf8fb

    • [6] KHALIL A M.The genome editing revolution:review[J].J Genet Eng Biotechnol,2020,18(1):68

    • [7] KOO B K,STANGE D E,SATO T,et al.Controlled gene expression in primary Lgr5 organoid cultures[J].Nat Methods,2011,9(1):81-83

    • [8] LIU T,LI X,LI H,et al.Intestinal organoid modeling:bridging the gap from experimental model to clinical translation[J].Front Oncol,2024,14:1334631

    • [9] VAN LIDTH D E JEUDE J F,VERMEULEN J L,MONTENEGRO⁃MIRANDA P S,et al.A protocol for lentiviral transduction and downstream analysis of intestinal organ-oids[J].J Vis Exp,2015,98:52531

    • [10] MARU Y,ORIHASHI K,HIPPO Y.Lentivirus⁃based stable gene delivery into intestinal organoids[J].Methods Mol Biol,2016,1422:13-21

    • [11] MENCHE C,FARIN H F.Strategies for genetic manipulation of adult stem cell-derived organoids[J].Exp Mol Med,2021,53(10):1483-1494

    • [12] LIN L,DEMARTINO J,WANG D,et al.Unbiased transcription factor CRISPR screen identifies ZNF800 as master repressor of enteroendocrine differentiation[J].Science,2023,382(6669):451-458

    • [13] WANG J Y,DOUDNA J A.CRISPR technology:a decade of genome editing is only the beginning[J].Science,2023,379(6629):eadd8643

    • [14] CHEHELGERDI M,CHEHELGERDI M,KHORRAMIAN-GHAHFAROKHI M,et al.Comprehensive review of CRISPR-based gene editing:mechanisms,challenges,and applications in cancer therapy[J].Mol Cancer,2024,23(1):9

    • [15] TAKEDA H,KATAOKA S,NAKAYAMA M,et al.CRIS-PR ⁃ Cas9 ⁃ mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes[J].Proc Natl Acad Sci U S A,2019,116(31):15635-15644

    • [16] GU W,COLARUSSO J L,DAME M K,et al.Rapid establishment of human colonic organoid knockout lines[J].STAR Protoc,2022,3(2):101308

    • [17] RUTHERFORD D,HO G T.Therapeutic potential of human intestinal organoids in tissue repair approaches in inflammatory bowel diseases[J].Inflamm Bowel Dis,2023,29(9):1488-1498

    • [18] SCHWANK G,ANDERSSON ⁃ROLF A,KOO B K,et al.Generation of BAC transgenic epithelial organoids[J].PLoS One,2013,8(10):e76871

    • [19] SHIZUYA H,BIRREN B,KIM U J,et al.Cloning and stable maintenance of 300 ⁃ kilobase-pair fragments of human DNA in Escherichia coli using an F⁃factor⁃based vector[J].Proc Natl Acad Sci U S A,1992,89(18):8794-8797

    • [20] ZIMMER W E,SCHWARTZ R J.Transient transgenics:an efficient method to identify gene regulatory elements[J].Methods Mol Biol,2021,2319:119-136

    • [21] HEINTZ N,GONG S.Working with bacterial artificial chromosomes(BACs)and other high⁃capacity vectors[J].Cold Spring Harb Protoc,2020,2020(10):doi:10.1101/pdb.top097998

    • [22] TERIYAPIROM I,BATISTA-ROCHA A S,KOO B K.Genetic engineering in organoids[J].J Mol Med(Berl),2021,99(4):555-556

    • [23] TSAI HC,PIETROBON V,PENG M,et al.Current strategies employed in the manipulation of gene expression for clinical purposes[J].J Transl Med,2022,20(1):535

    • [24] LIN SC,HAGA K,ZENG XL,et al.Generation of CRIS-PR ⁃ Cas9 ⁃ mediated genetic knockout human intestinal tissue-derived enteroid lines by lentivirus transduction and single⁃cell cloning[J].Nat Protoc,2022,17(4):1004-1027

    • [25] HORII T,MORITA S,KIMURA M,et al.Efficient generation of epigenetic disease model mice by epigenome editing using the piggyBac transposon system[J].Epigenetics Chromatin,2022,15(1):40

    • [26] GU J,ROLLO B,BERECKI G,et al.Generation of a stably transfected mouse embryonic stem cell line for inducible differentiation to excitatory neurons[J].Exp Cell Res,2024,435(1):113902

    • [27] 岳冉,刘子洋,郑岩,等.纳米载体介导的PiggyBac转座子制备 CAR⁃NK 细胞[J].中国肿瘤生物治疗杂志,2020,27(2):109-114

    • [28] 姜淇耀,史甲儒,罗志强,等.基于PiggyBac转座系统的 CD19⁃CAR载体的构建及功能鉴定[J].中国肿瘤生物治疗杂志,2023,30(2):156-160

    • [29] EGGENSCHWILER R,GSCHWENDTBERGER T,FELS-KI C,et al.A selectable all⁃in⁃one CRISPR prime editing piggyBac transposon allows for highly efficient gene editing in human cell lines[J].Sci Rep,2021,11(1):22154

    • [30] SUN Y,LIU G,HUANG Y.Applications of piggyBac transposons for genome manipulation in stem cells[J].Stem Cells Int,2021,2021:3829286

    • [31] MANGEOT P E,RISSON V,FUSIL F,et al.Genome editing in primary cells and in vivo using viral⁃derived Nano-blades loaded with Cas9 ⁃ sgRNA ribonucleoproteins[J].Nat Commun,2019,10(1):45

    • [32] GUTIERREZ ⁃GUERRERO A,ABREY RECALDE M J,MANGEOT P E,et al.Baboon envelope pseudotyped “nanoblades”carrying Cas9/gRNA complexes allow efficient genome editing in human T,B,and CD34+ cells and knock⁃in of AAV6 ⁃ encoded donor DNA in CD34 + cells[J].Front Genome Ed,2021,3:604371

    • [33] BERNADIN O,AMIRACHE F,GIRARD-GAGNEPAIN A,et al.Baboon envelope LVs efficiently transduced human adult,fetal,and progenitor T cells and corrected SCID⁃X1 T⁃cell deficiency[J].Blood Adv,2019,3(3):461-475

    • [34] TIROILLE V,KRUG A,BOKOBZA E,et al.Nanoblades allow high-level genome editing in murine and human organoids[J].Mol Ther Nucleic Acids,2023,33:57-74

    • [35] GEBOERS B,SCHEFFER H J,GRAYBILL P M,et al.High-voltage electrical pulses in oncology:irreversible electroporation,electrochemotherapy,gene electrotransfer,electrofusion,and electroimmunotherapy.radiology[J].Radiology,2020,295(2):254-272

    • [36] CAMPELO S N,HUANG P H,BUIE C R,et al.Recent advancements in electroporation technologies:from bench to clinic[J].Annu Rev Biomed Eng,2023,25:77-100

    • [37] DE CARO A,BELLARD E,KOLOSNJAJ ⁃TABI J,et al.Gene electrotransfer efficiency in 2D and 3D cancer cell models using different electroporation protocols:a comparative study[J].Pharmaceutics,2023,15(3):1004

    • [38] MERENDA A,ANDERSSON⁃ROLF A,MUSTATA R C,et al.A protocol for multiple gene knockout in mouse small intestinal organoids using a CRISPR-concatemer[J].J Vis Exp,2017,125:e55916

    • [39] GAEBLER A M,HENNIG A,BUCZOLICH K,et al.Universal and efficient electroporation protocol for genetic engineering of gastrointestinal organoids[J].J Vis Exp,2020,156:10.3791/60704

    • [40] WEAVER J C.Electroporation:a general phenomenon for manipulating cells and tissues[J].J Cell Biochem,1993,51(4):426-435

    • [41] MATANO M,DATE S,SHIMOKAWA M,et al.Modeling colorectal cancer using CRISPR⁃Cas9⁃mediated engineering of human intestinal organoids[J].Nat Med,2015,21(3):256-262

    • [42] FUJII M,MATANO M,NANKI K,et al.Efficient genetic engineering of human intestinal organoids using electro-poration[J].Nat Protoc,2015,10(10):1474-1485

    • [43] ARTEGIANI B,HENDRIKS D,BEUMER J,et al.Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing[J].Nat Cell Biol,2020,22(3):321-331

    • [44] HENDRIKS D,ARTEGIANI B,HU H,et al.Establishment of human fetal hepatocyte organoids and CRISPR-Cas9⁃based gene knockin and knockout in organoid cultures from human liver[J].Nat Protoc,2021,16(1):182-217

    • [45] YANG Q,OOST K C,LIBERALI P.Engineering human knock⁃in organoids[J].Nat Cell Biol,2020,22(3):261-263

    • [46] SKOUFOU ⁃PAPOUTSAKI N,ADLER S,D’SANTOS P,et al.Efficient genetic editing of human intestinal organ-oids using ribonucleoprotein⁃based CRISPR[J].Dis Model Mech,2023,16(10):dmm050279

    • [47] GIOBBE G G,BONFANTE F,JONES B C,et al.SARS-CoV ⁃ 2 infection and replication in human gastric organ-oids[J].Nat Commun,2021,12(1):6610

    • [48] 金燚,俞静,夏凡,等.高脂饮食影响小鼠空回肠上皮功能的差异性研究[J].南京医科大学学报(自然科学版),2022,42(5):619-624

    • [49] 赫义君,盛云露,夏凡,等.高脂饮食通过小肠上皮组织外泌体促进心脏纤维化[J].南京医科大学学报(自然科学版),2023,43(5):663-668

  • 参考文献

    • [1] ZHAO Z,CHEN X,DOWBAJ A M,et al.Organoids[J].Nat Rev Methods Primers,2022,2:94

    • [2] FUKAMACHI H.Proliferation and differentiation of fetal ratintestinalepithelialcellsinprimaryserum⁃freeculture[J].J Cell Sci,1992,103(Pt 2):511-519

    • [3] EVANS G S,FLINT N,SOMERS A S,et al.The development of a method for the preparation of rat intestinal epithelial cell primary cultures[J].J Cell Sci,1992,101(Pt 1):219-231

    • [4] SATO T,VRIES R G,SNIPPERT H J,et al.Single Lgr5 stem cells build crypt ⁃villus structures in vitro without a mesenchymal niche[J].Nature,2009,459(7244):262-265

    • [5] CARVALHO M R,YAN L P,LI B,et al.Gastrointestinal organs and organoids⁃on⁃a⁃chip:advances and translation into the clinics[J].Biofabrication,2023,15(4):doi:10.1088/1758⁃5090/acf8fb

    • [6] KHALIL A M.The genome editing revolution:review[J].J Genet Eng Biotechnol,2020,18(1):68

    • [7] KOO B K,STANGE D E,SATO T,et al.Controlled gene expression in primary Lgr5 organoid cultures[J].Nat Methods,2011,9(1):81-83

    • [8] LIU T,LI X,LI H,et al.Intestinal organoid modeling:bridging the gap from experimental model to clinical translation[J].Front Oncol,2024,14:1334631

    • [9] VAN LIDTH D E JEUDE J F,VERMEULEN J L,MONTENEGRO⁃MIRANDA P S,et al.A protocol for lentiviral transduction and downstream analysis of intestinal organ-oids[J].J Vis Exp,2015,98:52531

    • [10] MARU Y,ORIHASHI K,HIPPO Y.Lentivirus⁃based stable gene delivery into intestinal organoids[J].Methods Mol Biol,2016,1422:13-21

    • [11] MENCHE C,FARIN H F.Strategies for genetic manipulation of adult stem cell-derived organoids[J].Exp Mol Med,2021,53(10):1483-1494

    • [12] LIN L,DEMARTINO J,WANG D,et al.Unbiased transcription factor CRISPR screen identifies ZNF800 as master repressor of enteroendocrine differentiation[J].Science,2023,382(6669):451-458

    • [13] WANG J Y,DOUDNA J A.CRISPR technology:a decade of genome editing is only the beginning[J].Science,2023,379(6629):eadd8643

    • [14] CHEHELGERDI M,CHEHELGERDI M,KHORRAMIAN-GHAHFAROKHI M,et al.Comprehensive review of CRISPR-based gene editing:mechanisms,challenges,and applications in cancer therapy[J].Mol Cancer,2024,23(1):9

    • [15] TAKEDA H,KATAOKA S,NAKAYAMA M,et al.CRIS-PR ⁃ Cas9 ⁃ mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes[J].Proc Natl Acad Sci U S A,2019,116(31):15635-15644

    • [16] GU W,COLARUSSO J L,DAME M K,et al.Rapid establishment of human colonic organoid knockout lines[J].STAR Protoc,2022,3(2):101308

    • [17] RUTHERFORD D,HO G T.Therapeutic potential of human intestinal organoids in tissue repair approaches in inflammatory bowel diseases[J].Inflamm Bowel Dis,2023,29(9):1488-1498

    • [18] SCHWANK G,ANDERSSON ⁃ROLF A,KOO B K,et al.Generation of BAC transgenic epithelial organoids[J].PLoS One,2013,8(10):e76871

    • [19] SHIZUYA H,BIRREN B,KIM U J,et al.Cloning and stable maintenance of 300 ⁃ kilobase-pair fragments of human DNA in Escherichia coli using an F⁃factor⁃based vector[J].Proc Natl Acad Sci U S A,1992,89(18):8794-8797

    • [20] ZIMMER W E,SCHWARTZ R J.Transient transgenics:an efficient method to identify gene regulatory elements[J].Methods Mol Biol,2021,2319:119-136

    • [21] HEINTZ N,GONG S.Working with bacterial artificial chromosomes(BACs)and other high⁃capacity vectors[J].Cold Spring Harb Protoc,2020,2020(10):doi:10.1101/pdb.top097998

    • [22] TERIYAPIROM I,BATISTA-ROCHA A S,KOO B K.Genetic engineering in organoids[J].J Mol Med(Berl),2021,99(4):555-556

    • [23] TSAI HC,PIETROBON V,PENG M,et al.Current strategies employed in the manipulation of gene expression for clinical purposes[J].J Transl Med,2022,20(1):535

    • [24] LIN SC,HAGA K,ZENG XL,et al.Generation of CRIS-PR ⁃ Cas9 ⁃ mediated genetic knockout human intestinal tissue-derived enteroid lines by lentivirus transduction and single⁃cell cloning[J].Nat Protoc,2022,17(4):1004-1027

    • [25] HORII T,MORITA S,KIMURA M,et al.Efficient generation of epigenetic disease model mice by epigenome editing using the piggyBac transposon system[J].Epigenetics Chromatin,2022,15(1):40

    • [26] GU J,ROLLO B,BERECKI G,et al.Generation of a stably transfected mouse embryonic stem cell line for inducible differentiation to excitatory neurons[J].Exp Cell Res,2024,435(1):113902

    • [27] 岳冉,刘子洋,郑岩,等.纳米载体介导的PiggyBac转座子制备 CAR⁃NK 细胞[J].中国肿瘤生物治疗杂志,2020,27(2):109-114

    • [28] 姜淇耀,史甲儒,罗志强,等.基于PiggyBac转座系统的 CD19⁃CAR载体的构建及功能鉴定[J].中国肿瘤生物治疗杂志,2023,30(2):156-160

    • [29] EGGENSCHWILER R,GSCHWENDTBERGER T,FELS-KI C,et al.A selectable all⁃in⁃one CRISPR prime editing piggyBac transposon allows for highly efficient gene editing in human cell lines[J].Sci Rep,2021,11(1):22154

    • [30] SUN Y,LIU G,HUANG Y.Applications of piggyBac transposons for genome manipulation in stem cells[J].Stem Cells Int,2021,2021:3829286

    • [31] MANGEOT P E,RISSON V,FUSIL F,et al.Genome editing in primary cells and in vivo using viral⁃derived Nano-blades loaded with Cas9 ⁃ sgRNA ribonucleoproteins[J].Nat Commun,2019,10(1):45

    • [32] GUTIERREZ ⁃GUERRERO A,ABREY RECALDE M J,MANGEOT P E,et al.Baboon envelope pseudotyped “nanoblades”carrying Cas9/gRNA complexes allow efficient genome editing in human T,B,and CD34+ cells and knock⁃in of AAV6 ⁃ encoded donor DNA in CD34 + cells[J].Front Genome Ed,2021,3:604371

    • [33] BERNADIN O,AMIRACHE F,GIRARD-GAGNEPAIN A,et al.Baboon envelope LVs efficiently transduced human adult,fetal,and progenitor T cells and corrected SCID⁃X1 T⁃cell deficiency[J].Blood Adv,2019,3(3):461-475

    • [34] TIROILLE V,KRUG A,BOKOBZA E,et al.Nanoblades allow high-level genome editing in murine and human organoids[J].Mol Ther Nucleic Acids,2023,33:57-74

    • [35] GEBOERS B,SCHEFFER H J,GRAYBILL P M,et al.High-voltage electrical pulses in oncology:irreversible electroporation,electrochemotherapy,gene electrotransfer,electrofusion,and electroimmunotherapy.radiology[J].Radiology,2020,295(2):254-272

    • [36] CAMPELO S N,HUANG P H,BUIE C R,et al.Recent advancements in electroporation technologies:from bench to clinic[J].Annu Rev Biomed Eng,2023,25:77-100

    • [37] DE CARO A,BELLARD E,KOLOSNJAJ ⁃TABI J,et al.Gene electrotransfer efficiency in 2D and 3D cancer cell models using different electroporation protocols:a comparative study[J].Pharmaceutics,2023,15(3):1004

    • [38] MERENDA A,ANDERSSON⁃ROLF A,MUSTATA R C,et al.A protocol for multiple gene knockout in mouse small intestinal organoids using a CRISPR-concatemer[J].J Vis Exp,2017,125:e55916

    • [39] GAEBLER A M,HENNIG A,BUCZOLICH K,et al.Universal and efficient electroporation protocol for genetic engineering of gastrointestinal organoids[J].J Vis Exp,2020,156:10.3791/60704

    • [40] WEAVER J C.Electroporation:a general phenomenon for manipulating cells and tissues[J].J Cell Biochem,1993,51(4):426-435

    • [41] MATANO M,DATE S,SHIMOKAWA M,et al.Modeling colorectal cancer using CRISPR⁃Cas9⁃mediated engineering of human intestinal organoids[J].Nat Med,2015,21(3):256-262

    • [42] FUJII M,MATANO M,NANKI K,et al.Efficient genetic engineering of human intestinal organoids using electro-poration[J].Nat Protoc,2015,10(10):1474-1485

    • [43] ARTEGIANI B,HENDRIKS D,BEUMER J,et al.Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing[J].Nat Cell Biol,2020,22(3):321-331

    • [44] HENDRIKS D,ARTEGIANI B,HU H,et al.Establishment of human fetal hepatocyte organoids and CRISPR-Cas9⁃based gene knockin and knockout in organoid cultures from human liver[J].Nat Protoc,2021,16(1):182-217

    • [45] YANG Q,OOST K C,LIBERALI P.Engineering human knock⁃in organoids[J].Nat Cell Biol,2020,22(3):261-263

    • [46] SKOUFOU ⁃PAPOUTSAKI N,ADLER S,D’SANTOS P,et al.Efficient genetic editing of human intestinal organ-oids using ribonucleoprotein⁃based CRISPR[J].Dis Model Mech,2023,16(10):dmm050279

    • [47] GIOBBE G G,BONFANTE F,JONES B C,et al.SARS-CoV ⁃ 2 infection and replication in human gastric organ-oids[J].Nat Commun,2021,12(1):6610

    • [48] 金燚,俞静,夏凡,等.高脂饮食影响小鼠空回肠上皮功能的差异性研究[J].南京医科大学学报(自然科学版),2022,42(5):619-624

    • [49] 赫义君,盛云露,夏凡,等.高脂饮食通过小肠上皮组织外泌体促进心脏纤维化[J].南京医科大学学报(自然科学版),2023,43(5):663-668