en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

韩艺,E-mail:hanyi@jsph.org.cn

中图分类号:R459.7

文献标识码:A

文章编号:1007-4368(2024)07-985-07

DOI:10.7655/NYDXBNSN240330

参考文献 1
RUIZ ⁃BACA E,PÉREZ-TORRES A,ROMO-LOZANO Y,et al.The role of macrophages in the host’s defense against Sporothrix schenckii[J].Pathogens,2021,10(7):905
参考文献 2
MOSSER D M,HAMIDZADEH K,GONCALVES R.Macrophages and the maintenance of homeostasis[J].Cell Mol Immunol,2021,18(3):579-587
参考文献 3
LOCATI M,CURTALE G,MANTOVANI A.Diversity,mechanisms,and significance of macrophage plasticity[J].Annu Rev Pathol,2020,15:123-147
参考文献 4
MURRAY P J.Macrophage polarization[J].Annu Rev Physiol,2017,79:541-566
参考文献 5
YUNNA C,MENGRU H,LEI W,et al.Macrophage M1/M2 polarization[J].Eur J Pharmacol,2020,877:173090
参考文献 6
WANG Y,SMITH W,HAO D,et al.M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds[J].Int Immunopharmacol,2019,70:459-466
参考文献 7
CHEN S,SAEED A F U H,LIU Q,et al.Macrophages in immunoregulation and therapeutics[J].Signal Transduct Target Ther,2023,8(1):207
参考文献 8
LOUISELLE A E,NIEMIEC S M,ZGHEIB C,et al.Macrophage polarization and diabetic wound healing[J].Transl Res,2021,236:109-116
参考文献 9
BASHIR S,SHARMA Y,ELAHI A,et al.Macrophage polarization:the link between inflammation and related diseases[J].Inflamm Res,2016,65(1):1-11
参考文献 10
NI R,JIANG L,ZHANG C,et al.Biologic mechanisms of macrophage phenotypes responding to infection and the novel therapies to moderate inflammation[J].Int J Mol Sci,2023,24(9):8358
参考文献 11
ARABPOUR M,SAGHAZADEH A,REZAEI N.Anti-inflammatory and M2 macrophage polarization⁃promoting effect of mesenchymal stem cell-derived exosomes[J].Int Immunopharmacol,2021,97:107823
参考文献 12
VIOLA A,MUNARI F,SÁNCHEZ⁃RODRÍGUEZ R,et al.The metabolic signature of macrophage responses[J].Front Immunol,2019,10:1462
参考文献 13
SCHULTZE J L,SCHMIDT S V.Molecular features of macrophage activation[J].Semin Immunol,2015,27(6):416-423
参考文献 14
YOUSAF H,KHAN M I U,ALI I,et al.Emerging role of macrophages in non⁃infectious diseases:an update[J].Biomed Pharmacother,2023,161:114426
参考文献 15
ZHANG Q,SIOUD M.Tumor⁃associated macrophage subsets:shaping polarization and targeting[J].Int J Mol Sci,2023,24(8):7493
参考文献 16
SCHLUNDT C,FISCHER H,BUCHER C H,et al.The multifaceted roles of macrophages in bone regeneration:a story of polarization,activation and time[J].Acta Bioma-ter,2021,133:46-57
参考文献 17
HOLTHAUS M,SANTHAKUMAR N,WAHLERS T,et al.The secretome of preconditioned mesenchymal stem cells drives polarization and reprogramming of M2a macrophages toward an IL ⁃ 10 ⁃ producing phenotype[J].Int J Mol Sci,2022,23(8):4104
参考文献 18
WANG L X,ZHANG S X,WU H J,et al.M2b macrophage polarization and its roles in diseases[J].J Leukoc Biol,2019,106(2):345-358
参考文献 19
LEE C,JEONG H,LEE H,et al.Magnolol attenuates cisplatin-induced muscle wasting by M2c macrophage activation[J].Front Immunol,2020,11:77
参考文献 20
WEISS G,SCHAIBLE U E.Macrophage defense mechanisms against intracellular bacteria[J].Immunol Rev,2015,264(1):182-203
参考文献 21
WANG Q,NI H,LAN L,et al.Fra⁃1 protooncogene regulates IL ⁃ 6 expression in macrophages and promotes the generation of M2d macrophages[J].Cell Res,2010,20(6):701-712
参考文献 22
CHEN X,LIU Y,GAO Y,et al.The roles of macrophage polarization in the host immune response to sepsis[J].Int Immunopharmacol,2021,96:107791
参考文献 23
LAWRENCE T,NATOLI G.Transcriptional regulation of macrophage polarization:enabling diversity with identity[J].Nat Rev Immunol,2011,11(11):750-761
参考文献 24
FU X L,DUAN W,SU C Y,et al.Interleukin 6 induces M2 macrophage differentiation by STAT3 activation that correlates with gastric cancer progression[J].Cancer Immunol Immunother,2017,66(12):1597-1608
参考文献 25
SICA A,MANTOVANI A.Macrophage plasticity and polarization:in vivo veritas[J].J Clin Invest,2012,122(3):787-795
参考文献 26
CAPECE D,VERZELLA D,FLATI I,et al.NF ⁃ κB:blending metabolism,immunity,and inflammation[J].Trends Immunol,2022,43(9):757-775
参考文献 27
ZHANG G,GHOSH S.Toll⁃like receptor⁃mediated NF-kappaB activation:a phylogenetically conserved paradigm in innate immunity[J].J Clin Invest,2001,107(1):13-19
参考文献 28
NI L,LIN Z,HU S,et al.Itaconate attenuates osteoarthritis by inhibiting STING/NF ⁃ κB axis in chondrocytes and promoting M2 polarization in macrophages[J].Biochem Pharmacol,2022,198:114935
参考文献 29
WAGNER N,WAGNER K D.The role of PPARs in disease[J].Cells,2020,9(11):2367
参考文献 30
RICOTE M,LI A C,WILLSON T M,et al.The peroxisome proliferator⁃activated receptor⁃gamma is a negative regulator of macrophage activation[J].Nature,1998,391(6662):79-82
参考文献 31
CROASDELL A,DUFFNEY P F,KIM N,et al.PPARγ and the innate immune system mediate the resolution of inflammation[J].PPAR Res,2015,2015:549691
参考文献 32
MARTINEZ F O,HELMING L,GORDON S.Alternative activation of macrophages:an immunologic functional perspective[J].Annu Rev Immunol,2009,27:451-483
参考文献 33
ODEGAARD J I,RICARDO-GONZALEZ R R,GO-FORTH M H,et al.Macrophage⁃specific PPARγ controls alternative activation and improves insulin resistance[J].Nature,2007,447(7148):1116-1120
参考文献 34
GIAMARELLOS⁃BOURBOULIS E J,ASCHENBRENNER A C,BAUER M,et al.The pathophysiology of sepsis and precision⁃medicine⁃based immunotherapy[J].Nat Immunol,2024,25(1):19-28
参考文献 35
SINGER M,DEUTSCHMAN C S,SEYMOUR C W,et al.The third international consensus definitions for sepsis and septic shock(Sepsis ⁃3)[J].JAMA,2016,315(8):801-810
参考文献 36
RUDD K E,JOHNSON S C,AGESA K M,et al.Global,regional,and national sepsis incidence and mortality,1990 ⁃ 2017:analysis for the Global Burden of Disease Study[J].Lancet,2020,395(10219):200-211
参考文献 37
VAN DER POLL T,SHANKAR ⁃HARI M,WIERSINGA W J.The immunology of sepsis[J].Immunity,2021,54(11):2450-2464
参考文献 38
SAEED A F U H,RUAN X,GUAN H,et al.Regulation of cGAS⁃mediatedimmune responses andimmunotherapy[J].Adv Sci(Weinh),2020,7(6):1902599
参考文献 39
KUMAR V.Toll⁃like receptors in sepsis⁃associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets[J].Int Immunopharmacol,2020,89(Pt B):107087
参考文献 40
ARINA P,SINGER M.Pathophysiology of sepsis[J].Curr Opin Anaesthesiol,2021,34(2):77-84
参考文献 41
KUMAR V.Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis⁃associated acute lung injury[J].Front Immunol,2020,11:1722
参考文献 42
BOS L D J,WARE L B.Acute respiratory distress syndrome:causes,pathophysiology,and phenotypes[J].Lancet,2022,400(10358):1145-1156
参考文献 43
CHEN X X,TANG J,SHUAI W Z,et al.Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome[J].Inflamm Res,2020,69(9):883-895
参考文献 44
JIAO Y,ZHANG T,ZHANG C,et al.Exosomal miR⁃30d⁃5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury[J].Crit Care,2021,25(1):356
参考文献 45
ZHUO Y,LI D,CUI L,et al.Treatment with 3,4⁃ dihy-droxyphenylethyl alcohol glycoside ameliorates sepsis-induced ALI in mice by reducing inflammation and regulating M1 polarization[J].Biomed Pharmacother,2019,116:109012
参考文献 46
LUO J,WANG J,ZHANG J,et al.Nrf2 deficiency exacerbated CLP-induced pulmonary injury and inflammation through autophagy ⁃and NF ⁃κB/PPARγ⁃mediated macrophage polarization[J].Cells,2022,11(23):3927
参考文献 47
WANG Y,XU Y,ZHANG P,et al.Smiglaside A ameliorates LPS-induced acute lung injury by modulating macrophage polarization via AMPK ⁃PPARγ pathway[J].Biochem Pharmacol,2018,156:385-395
参考文献 48
TONG Y,YU Z,CHEN Z,et al.The HIV protease inhibitor Saquinavir attenuates sepsis⁃induced acute lung injury and promotes M2 macrophage polarization via targeting matrix metalloproteinase ⁃9[J].Cell Death Dis,2021,12(1):67
参考文献 49
HOLLENBERG S M,SINGER M.Pathophysiology of sepsis-induced cardiomyopathy[J].Nat Rev Cardiol,2021,18(6):424-434
参考文献 50
TSCHÖPE C,AMMIRATI E,BOZKURT B,et al.Myocarditis and inflammatory cardiomyopathy:current evidence and future directions[J].Nat Rev Cardiol,2021,18(3):169-193
参考文献 51
MARTIN L,DERWALL M,AL ZOUBI S,et al.The septic heart:current understanding of molecular mechanisms and clinical implications[J].Chest,2019,155(2):427-437
参考文献 52
CHEN X S,WANG S H,LIU C Y,et al.Losartan attenuates sepsis ⁃induced cardiomyopathy by regulating macrophage polarization via TLR4⁃mediated NF⁃κB and MAPK signaling[J].Pharmacol Res,2022,185:106473
参考文献 53
RUAN W,JI X,QIN Y,et al.Harmine alleviated sepsis-induced cardiac dysfunction by modulating macrophage polarization via the STAT/MAPK/NF ⁃ κB pathway[J].Front Cell Dev Biol,2021,9:792257
参考文献 54
BELLOMO R,KELLUM J A,RONCO C.Acute kidney injury[J].Lancet,2012,380(9843):756-766
参考文献 55
ZHANG J,JIANG J,WANG B,et al.SAP130 released by ferroptosis tubular epithelial cells promotes macrophage polarization via Mincle signaling in sepsis acute kidney injury[J].Int Immunopharmacol,2024,129:111564
参考文献 56
ZHANG B,XUE Y,ZHAO J,et al.Shionone attenuates sepsis ⁃induced acute kidney injury by regulating macrophage polarization via the ECM1/STAT5 pathway[J].Front Med(Lausanne),2021,8:796743
参考文献 57
LI Y,ZHAI P,ZHENG Y,et al.Csf2 attenuated sepsis-induced acute kidney injury by promoting alternative macrophage transition[J].Front Immunol,2020,11:1415
参考文献 58
NESSELER N,LAUNEY Y,ANINAT C,et al.Clinical review:the liver in sepsis[J].Crit Care,2012,16(5):235
参考文献 59
JIN G L,LIU H P,HUANG Y X,et al.Koumine regulates macrophage M1/M2 polarization via TSPO,alleviating sepsis⁃associated liver injury in mice[J].Phytomedicine,2022,107:154484
参考文献 60
CHEN Y,YANG L,LI X.Advances in Mesenchymal stem cells regulating macrophage polarization and treatment of sepsis⁃induced liver injury[J].Front Immunol,2023,14:1238972
参考文献 61
LI Z L,YANG B C,GAO M,et al.Naringin improves sepsis-induced intestinal injury by modulating macrophage polarization via PPARγ/miR⁃21 axis[J].Mol Ther Nucleic Acids,2021,25:502-514
参考文献 62
TAN F,CAO Y,ZHENG L,et al.Diabetes exacerbated sepsis ⁃induced intestinal injury by promoting M1 macrophage polarization via miR ⁃ 3061/Snail1 signaling[J].Front Immunol,2022,13:922614
目录contents

    摘要

    巨噬细胞作为人体免疫系统中的关键细胞,具有吞噬、抗原提呈、免疫防御和炎症调节等功能。在不同微环境中,巨噬细胞通过极化为不同亚型进一步发挥其免疫调节功能。脓毒症是由宿主对感染反应失调引起的危及生命的器官功能障碍,是危重症患者死亡的主要原因。巨噬细胞的极化状态对脓毒症炎症反应具有显著影响,进而关系到患者的临床转归。本文就巨噬细胞极化的特征及其在脓毒症免疫和多器官衰竭中发挥的作用进行综述,以期为改善脓毒症患者的预后和治疗提供新的思路。

    Abstract

    Macrophages are crucial immune cells in the body,with functions including phagocytosis,antigen presentation,immune defense,and inflammation regulation. Macrophages polarize into distinct subtypes within diverse microenvironments to further exert their immunoregulatory functions. Sepsis is a life -threatening organ dysfunction caused by a dysregulated host response to infection, and it is the primary cause of mortality in critically ill patients. Macrophage polarization plays a significant role at different stages of the inflammatory response in sepsis,thereby influencing the clinical outcomes of septic patients. This review provides an overview of the characteristics of macrophage polarization and its role in sepsis immunity and organ dysfunction,aiming to offer new insights for improving the prognosis and treatment of septic patients.

  • 巨噬细胞是早在130年前就被发现的先天免疫细胞,是抵御体内侵入性病原体的主要防线,也是机体固有免疫系统的重要组成部分[1-2]。巨噬细胞具有 3 种基本功能,包括免疫调节、吞噬和抗原提呈。此外,巨噬细胞还具有较高的可塑性,能够通过极化为不同的功能表型来调节宿主的免疫反应, 参与炎症的发生和消退[3]。脓毒症是一种严重的全身性感染疾病,其发病机制涉及广泛的免疫反应网络,巨噬细胞的极化在其中发挥关键作用。本文就巨噬细胞极化在脓毒症免疫及器官功能障碍中的作用进行综述,以期为未来脓毒症的免疫治疗提供新的思路。

  • 1 巨噬细胞极化的类型及调控机制

  • 巨噬细胞极化是指巨噬细胞在不同刺激下表现出不同的功能和表型特征[4]。根据刺激类型、表面分子和分泌细胞因子的差异,巨噬细胞可以被极化为2个主要亚群:经典激活或促炎M1型以及交替激活或抗炎M2型[5]

  • 1.1 M1型巨噬细胞

  • M1 型巨噬细胞,亦被称为经典激活的巨噬细胞或促炎型巨噬细胞,能够激活经典的促炎通路并分泌炎症介质,对细胞毒性、坏死和凋亡产生显著影响,是机体抵御病原体入侵的主要防御力量[6]。 M1 型巨噬细胞的激活通常发生在由 Toll 样受体 (toll⁃like receptor,TLR)和γ干扰素(interferon γ,IFN⁃ γ)信号通路主导的炎症环境中,其可表达特定的标志物,如主要组织相容性复合体Ⅱ(major histocom⁃ patibility complexⅡ,MHC⁃Ⅱ)、CD68、CD80和CD86 等[7]。M1 型巨噬细胞可由多种刺激物,如脂多糖 (lipopolysaccharide,LPS)、肿瘤坏死因子α(tumor necrosis factor α,TNF⁃α)、IFN⁃γ、粒细胞⁃单核细胞集落刺激因子等激活[8-9]。一旦被激活,这些巨噬细胞可分泌更高水平的细胞因子,如 TNF⁃α、白介素 (interleukin,IL)⁃1β、IL⁃6、IL⁃12、IL⁃18、IL⁃23,以及低水平的 IL ⁃10,还可产生一氧化氮(nitric oxide, NO)、活性氧(reactive oxygen species,ROS)和活性氮 (reactive nitrogen species,RNS)等分子[9]。此外,M1 巨噬细胞可表达辅助性 T 细胞(T helper cell,Th)1 和 Th17 极化细胞因子,如 IL⁃12、IL⁃23、IL⁃27,以及 Th1 募集趋化因子 CXCL9、CXCL10 及 CXCL11 等,从而诱导 Th1 免疫应答的激活[7],在清除病原体和异常组织细胞方面发挥重要作用,是炎症反应启动和进展中的关键环节。然而,尽管 M1 型巨噬细胞驱动的炎症反应有助于清除体内的病原体,但当其分化过程失控,导致促炎巨噬细胞的数量过多时,便会破坏机体稳态,进而引发组织损伤[10]

  • 1.2 M2型巨噬细胞

  • M2型巨噬细胞可由 IL⁃4、IL⁃10、IL⁃13、转化生长因子β(transforming growth factor β,TGF⁃β)、糖皮质激素以及免疫复合物等激活,可以通过CD163和 CD206等标志物的表达来鉴定[710]。M2型巨噬细胞具有强大的吞噬能力,能够有效地清除体内的细胞碎片和凋亡细胞,从而推动组织的修复与伤口的愈合。此外,M2型巨噬细胞在免疫调节、促进血管生成、组织重塑以及肿瘤形成和进展等多个方面发挥着至关重要的作用[11-12]。M2型巨噬细胞通过分泌趋化因子CCL17、CCL18、CCL22、CCL24来招募Th2 细胞、调节性T细胞等,有助于调节细胞间的相互作用,进一步促进免疫应答及组织修复[13-14]。M2型巨噬细胞可进一步细分为 M2a、M2b、M2c 和 M2d 亚型,尽管这些亚型在功能上存在差异,但它们均具备分泌高水平 IL⁃10 及低水平促炎细胞因子(如IL⁃12)的能力[15-16]

  • M2a巨噬细胞可由IL⁃4和IL⁃13激活,并分泌促纤维化因子,如纤维连接蛋白、胰岛素样生长因子等,从而在组织修复过程中起到关键作用[17]。M2b 巨噬细胞可由免疫复合物、TLR 激活并分泌多种细胞因子,如 IL⁃1β、IL⁃6、IL⁃10 及 TNF⁃α等,在炎症反应和免疫调节中发挥效应[18]。M2c 巨噬细胞由 IL⁃10 及糖皮质激素激活,能释放 IL⁃10、TGF⁃β 等抗炎细胞因子,从而抑制炎症进展并促进组织修复[19]。M2d 巨噬细胞可由 TLR 激动剂通过腺苷受体诱导产生,腺苷受体激活后,能抑制促炎细胞因子的产生,并诱导抗炎细胞因子和血管内皮生长因子的分泌,这种特性可使M2d巨噬细胞具有肿瘤相关巨噬细胞的促血管生成特征,从而在肿瘤的血管生成和进展中扮演重要的角色[20-21]

  • 1.3 巨噬细胞极化过程的转录因子调控

  • 巨噬细胞极化过程受到信号分子、转录因子、表观遗传修饰(包括非编码RNA、DNA甲基化和组蛋白修饰)、细胞免疫代谢以及天然和合成化合物等多个层面的调控[22]。由于其高度可塑性,巨噬细胞能够根据周围微环境的变化调整其激活状态。因此,针对巨噬细胞极化状态的识别和靶向调控,为急性和慢性炎症性疾病的治疗提供了新的可能性。在巨噬细胞极化过程的调控中发挥关键作用的转录因子概述如下。

  • 1.3.1 信号转导及转录激活蛋白(signal transducer and activator of transcription,STAT)

  • STAT家族在调节巨噬细胞的M1/M2极化过程中起着至关重要的作用。当 IFN⁃γ与细胞表面的 IFN受体结合后,能触发细胞内JAK1/2介导的酪氨酸磷酸化,进而诱导 STAT1 的磷酸化。磷酸化的 STAT1可进一步二聚化形成同源二聚体,并结合到促进M1极化的靶基因启动子上,从而推动M1极化过程[23]。此外,有研究表明,IL⁃10和IL⁃6的刺激可激活STAT3,诱导M2巨噬细胞相关标志物,如TGF⁃β 和甘露糖受体 C1(mannose receptor C type1,Mrc1) 的表达[24]。细胞因子IL⁃4和IL⁃13已被证实能够诱导巨噬细胞的 M2a 极化,这一过程主要依赖于 STAT6来调节M2巨噬细胞相关基因,如Mrc1、抵抗素样分子α(resistin⁃like molecule alpha,RELMα)和几丁质酶3样蛋白1(chitinase3⁃like3,Chi3l3),并在 Th2相关的炎症性疾病中发挥作用[25]

  • 1.3.2 核因子κB(nuclear factor kappa B,NF⁃κB)

  • NF⁃κB是协调各种刺激引起的炎症免疫反应的核心转录因子[26]。LPS作为一种常见的刺激物,能够与TLR4结合并激活NF⁃κB,进而促进M1巨噬细胞的极化。LPS与TLR4结合后能迅速触发促炎细胞因子,如TNF⁃α、IL⁃1β、IL⁃6和IL⁃12的表达,这一过程通常与Th1相关的炎症免疫反应紧密相关[27]。此外,NF⁃κB不仅是M1巨噬细胞极化的关键转录调节因子,同时也参与 M2 巨噬细胞极化的调控。有研究表明,抑制 NF⁃κB 的转录能够促进 M2 型巨噬细胞的极化[28]

  • 1.3.3 过氧化物酶体增殖物激活受体(peroxisome proliferators⁃activated receptor,PPAR)

  • PPAR 是核激素受体家族中的配体激活受体,包括 3 种亚型:PPARα、PPARγ和 PPARβ/δ [29]。其中,PPARγ在M1和M2巨噬细胞极化过程中均扮演重要角色。PPARγ能够通过抑制转录因子 AP⁃1、 STAT和NF⁃κB的活性,负调控M1标志物的基因表达[30-31]。PPARγ的表达可以被IL⁃4和IL⁃13所诱导,其作为 STAT6 的直接下游靶点,正向调控 M2 极化标志基因的表达,从而促进Th2免疫应答[32]。此外, PPARγ主要在脂肪组织巨噬细胞中表达,属于调节脂质代谢的关键分子[29]。若脂肪组织巨噬细胞缺乏PPARγ,则无法成功极化为M2表型,从而可能导致胰岛素抵抗[33]。另外,在炎症刺激下,M2脂肪组织巨噬细胞能向 M1 表型转化,加剧炎症及胰岛素抵抗[33]

  • 2 巨噬细胞极化与脓毒症免疫

  • 脓毒症的进展遵循一定的免疫动力学变化模式,患者在疾病的不同阶段会展现出各异的免疫状态,即便是相同的免疫细胞亦可呈现不同的免疫状态模式[34]。因此,针对脓毒症不同免疫阶段的特征来制定个性化的治疗策略,对于改善脓毒症患者的预后具有重要意义。巨噬细胞的极化与炎症消退过程紧密相关,这种极化能发生在炎症过程的任一阶段。M1型和M2型巨噬细胞具有不同的功能,可破坏病原体或减轻炎症并维持体内平衡。这种功能多样性使得巨噬细胞在脓毒症的免疫进程中扮演着至关重要的角色。

  • 2.1 脓毒症的定义及免疫机制

  • 脓毒症是一种由于宿主对感染反应失调而引发的器官功能障碍综合征,其发病率和病死率极高,是危重症患者的主要死因[35]。根据2020年全球首份关于脓毒症发病率和病死率的报告,全球估计有4 890万例脓毒症病例,其中1 100万例出现脓毒症相关死亡[36]。脓毒症的病理生理机制极为复杂,当脓毒症发生时,病原体相关分子模式(pathogen⁃ associated molecular pattern,PAMP)和损伤相关分子模式(damage⁃associated molecular pattern,DAMP)被先天免疫细胞表面或细胞内的模式识别受体,如 TLR、晚期糖基化终产物受体(receptor for advanced glycation endproduct,RAGE)和Nod样受体(Nod⁃like receptor,NLR)所识别[37]。这种特定的受体与PAMP 或DAMP相互作用能够触发一系列信号级联反应,包括 ROS 和 RNS、趋化因子、促炎细胞因子以及抗菌相关肽的产生,这些反应不仅增强了吞噬作用,还有助于有效消除微生物感染[38-39]。虽然感染初期的宿主反应对于清除入侵病原体至关重要,但在脓毒症中,这种反应的失调可能会对宿主造成损害,过度的炎症反应可能导致潜在的器官损伤,而严重的免疫抑制则可能增加继发感染的风险[40]。这种同时存在的促炎反应和抗炎反应的失衡及持续,可能引发持续或反复感染,进而造成严重的器官功能障碍,最终导致患者死亡。

  • 2.2 巨噬细胞极化在脓毒症炎症反应中的作用

  • 在脓毒症的早期阶段,巨噬细胞作为主要的免疫细胞被过度激活。在此过程中,促炎因子如 IFN⁃γ和LPS在宿主体内诱导M1巨噬细胞极化。随着 M1 巨噬细胞数量持续增加,它们能释放大量的促炎因子和趋化因子,激活凝血和补体系统,诱发全身炎症反应综合征,诱导多种抗菌机制的激活,促进病原体的杀灭和炎症的消退[2234]。然而,过度的炎症反应也能导致感染性休克和器官损伤。因此,在脓毒症早期的促炎阶段可通过靶向抑制 M1 巨噬细胞,减少促炎因子的释放,从而降低患者组织损伤和病死率。

  • 在脓毒症的晚期阶段,为了抑制过度的炎症反应,巨噬细胞会发生凋亡或向M2表型极化。M2型巨噬细胞在此过程中释放丰富的抗炎介质,旨在保护宿主免受过度炎症造成的损伤,并促进伤口愈合及组织修复[10]。然而,随着多种免疫细胞,包括巨噬细胞、T淋巴细胞和B淋巴细胞的凋亡,M2表型巨噬细胞可能促使免疫抑制状态的形成,进而加重免疫抑制并增加感染风险。有研究表明,通过干预手段抑制免疫细胞的凋亡过程,能够显著降低器官损伤程度,从而改善脓毒症患者的临床预后[37]

  • 3 巨噬细胞极化与脓毒症多器官衰竭

  • 严重的器官功能障碍是脓毒症免疫反应失调的另一严重后果。脓毒症所致器官衰竭可能是与感染相关的直接机制或者是由脓毒症治疗的不良后遗症所引起的间接机制所致[34]。巨噬细胞M1和 M2极化状态之间的转换及其平衡调控,对于防止过度的免疫炎症反应、减少宿主组织损伤、维护器官功能以及改善患者预后至关重要,这为脓毒症的治疗提供了新的方向和研究思路。

  • 3.1 脓毒症相关急性肺损伤

  • 急性肺损伤是脓毒症常见的并发症之一,也是导致患者生活质量降低甚至死亡的关键因素。脓毒症所致急性肺损伤的发病机制包括血管内皮和肺泡上皮的损伤,肺泡毛细血管通透性增加及肺泡表面活性物质减少等[41-42]。在脓毒症的进展过程中,M1型巨噬细胞的大量产生加重肺部炎症及肺泡损伤,进而加剧脓毒症急性肺损伤的程度,而M2型巨噬细胞的产生则有助于肺泡的修复和再生,对脓毒症急性肺损伤的恢复起到积极的促进作用[43]。已有研究揭示,中性粒细胞来源外泌体中miR⁃30d⁃ 5p通过激活NF⁃κB信号通路诱导巨噬细胞的M1极化,从而促进脓毒症急性肺损伤的发生[44]。另一项研究表明,3,4⁃二羟基苯乙醇糖苷能通过抑制 Notch1 信号通路的激活,减少 M1 巨噬细胞的极化,从而改善脓毒症诱导小鼠的急性肺损伤[45]。 Luo等[46] 的研究显示,核因子红细胞衍生2相关因子 2(nuclear factor erythroid⁃derived 2⁃like2,Nrf2)的下调能够通过NF⁃κB/PPARγ介导的巨噬细胞M1极化加剧盲肠结扎穿刺诱导的肺损伤和炎症。有研究表明,苯丙素糖苷(Smiglaside A)能够通过刺激AMP 活化的蛋白激酶(AMP ⁃ activated protein kinase, AMPK)⁃PPARγ来促进巨噬细胞向M2表型极化,从而改善LPS诱导的急性肺损伤[47]。也有文献报道,药物沙奎那韦能通过抑制基质金属蛋白酶⁃9 促进 M2巨噬细胞极化,进而减轻脓毒症诱导的急性肺损伤[48]。上述研究均为脓毒症相关急性肺损伤发生机制和治疗策略提供了新的理论依据和启示。

  • 3.2 脓毒症相关心肌病

  • 在脓毒症的发生过程中,免疫细胞浸润心肌并释放多种促炎细胞因子,如IL⁃1β、IL⁃6、TNF⁃α、C5a 和NO,从而损害心肌的顺应性及降低收缩力[49-51]。针对免疫细胞的过度活化和细胞因子的释放进行干预,是脓毒症相关心肌病的一种有效治疗策略。有研究表明,氯沙坦能够通过 TLR4 介导的 NF⁃κB 和丝裂原活化蛋白激酶(mitogen ⁃activated protein kinase,MAPK)信号通路,调节巨噬细胞从M1到M2亚型的极化,从而维持心肌细胞线粒体动力学平衡,减少氧化应激和心肌细胞凋亡,进而减轻脓毒症相关心肌病[52]。另一项研究表明,肉叶芸香碱 (Harmine)能够通过STAT/MAPK/NF⁃κB信号通路抑制巨噬细胞向 M1 表型极化,从而减轻脓毒症引起的心脏功能障碍[53]

  • 3.3 脓毒症相关急性肾损伤

  • 脓毒症相关急性肾损伤发生时,肾小管上皮细胞因缺血、缺氧、炎症介质攻击等多种原因而死亡,导致肾功能迅速下降,血清肌酐水平显著升高[54]。在脓毒症急性肾损伤的进展过程中,发生铁死亡的肾小管上皮细胞释放剪接体相关蛋白130(spliceosome⁃ associated protein 130,SAP130),并通过 Mincle/syk/ NF⁃κB通路促进巨噬细胞向M1极化,这一过程进一步加剧了肾小管上皮细胞的铁死亡[55]。此外,有研究表明紫菀酮(Shionone)通过调节 ECM1/STAT5 促进巨噬细胞 M2 极化,减轻脓毒症诱导的急性肾损伤[56]。集落刺激因子 2(colony stimulating factor 2, CSF2)激活 p⁃STAT5 能够促进巨噬细胞由 M1 表型向 M2 表型的转变,进而降低脓毒症相关急性肾损伤的炎症损伤程度[57]

  • 3.4 脓毒症相关肝损伤

  • 在脓毒症进程中,肝脏发挥着清除细菌内毒素和炎症介质的重要作用,脓毒症相关肝功能障碍通常与肝脏灌注不足有关,并可能导致弥散性血管内凝血和多器官衰竭[58]。有学者指出,钩吻素子 (Koumine)可通过转位蛋白(translocator protein, TSPO)抑制巨噬细胞的M1极化并促进其M2极化,从而减轻小鼠脓毒症相关的肝损伤[59]。此外,还有研究表明,骨髓间充质干细胞对巨噬细胞极化的调控可为脓毒症引起的肝损伤提供一种有前景的治疗方式。骨髓间充质干细胞可通过其旁分泌作用释放具有细胞功能的外泌体及其归巢到肝脏的能力,调控巨噬细胞的M1极化过程,从而减少肝损伤并促进组织修复[60]

  • 3.5 脓毒症相关肠道损伤

  • 在脓毒症中,肠道血供减少、菌群失调、黏膜损伤及炎症反应失控等均可进一步增加肠道功能障碍的风险。近年来,研究表明针对巨噬细胞极化状态的调控可以有效地减轻炎症损伤,从而缓解脓毒症导致的肠道功能障碍。有研究显示,柚皮苷可通过PPARγ/miR⁃21轴促进巨噬细胞M2极化,从而缓解脓毒症诱导的肠道损伤[61]。然而,糖尿病状态则能通过 miR⁃3061/Snail1 促进 M1 巨噬细胞极化,加剧脓毒症引起的肠道损伤[62]

  • 4 总结与展望

  • 脓毒症涉及复杂的免疫机制和病理生理过程,其中巨噬细胞 M1/M2 状态的调控与平衡对于维持脓毒症期间的免疫反应、机体稳态以及减少组织和器官损伤具有至关重要的作用。因此,针对巨噬细胞极化状态的调控在脓毒症免疫治疗方面具有巨大的潜力。目前,已有部分研究致力于探索调控巨噬细胞极化的有效手段。然而,脓毒症中巨噬细胞极化的具体调控机制及其影响因素仍需进行深入研究,以期为脓毒症的治疗提供坚实的实验基础和理论依据。

  • 参考文献

    • [1] RUIZ ⁃BACA E,PÉREZ-TORRES A,ROMO-LOZANO Y,et al.The role of macrophages in the host’s defense against Sporothrix schenckii[J].Pathogens,2021,10(7):905

    • [2] MOSSER D M,HAMIDZADEH K,GONCALVES R.Macrophages and the maintenance of homeostasis[J].Cell Mol Immunol,2021,18(3):579-587

    • [3] LOCATI M,CURTALE G,MANTOVANI A.Diversity,mechanisms,and significance of macrophage plasticity[J].Annu Rev Pathol,2020,15:123-147

    • [4] MURRAY P J.Macrophage polarization[J].Annu Rev Physiol,2017,79:541-566

    • [5] YUNNA C,MENGRU H,LEI W,et al.Macrophage M1/M2 polarization[J].Eur J Pharmacol,2020,877:173090

    • [6] WANG Y,SMITH W,HAO D,et al.M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds[J].Int Immunopharmacol,2019,70:459-466

    • [7] CHEN S,SAEED A F U H,LIU Q,et al.Macrophages in immunoregulation and therapeutics[J].Signal Transduct Target Ther,2023,8(1):207

    • [8] LOUISELLE A E,NIEMIEC S M,ZGHEIB C,et al.Macrophage polarization and diabetic wound healing[J].Transl Res,2021,236:109-116

    • [9] BASHIR S,SHARMA Y,ELAHI A,et al.Macrophage polarization:the link between inflammation and related diseases[J].Inflamm Res,2016,65(1):1-11

    • [10] NI R,JIANG L,ZHANG C,et al.Biologic mechanisms of macrophage phenotypes responding to infection and the novel therapies to moderate inflammation[J].Int J Mol Sci,2023,24(9):8358

    • [11] ARABPOUR M,SAGHAZADEH A,REZAEI N.Anti-inflammatory and M2 macrophage polarization⁃promoting effect of mesenchymal stem cell-derived exosomes[J].Int Immunopharmacol,2021,97:107823

    • [12] VIOLA A,MUNARI F,SÁNCHEZ⁃RODRÍGUEZ R,et al.The metabolic signature of macrophage responses[J].Front Immunol,2019,10:1462

    • [13] SCHULTZE J L,SCHMIDT S V.Molecular features of macrophage activation[J].Semin Immunol,2015,27(6):416-423

    • [14] YOUSAF H,KHAN M I U,ALI I,et al.Emerging role of macrophages in non⁃infectious diseases:an update[J].Biomed Pharmacother,2023,161:114426

    • [15] ZHANG Q,SIOUD M.Tumor⁃associated macrophage subsets:shaping polarization and targeting[J].Int J Mol Sci,2023,24(8):7493

    • [16] SCHLUNDT C,FISCHER H,BUCHER C H,et al.The multifaceted roles of macrophages in bone regeneration:a story of polarization,activation and time[J].Acta Bioma-ter,2021,133:46-57

    • [17] HOLTHAUS M,SANTHAKUMAR N,WAHLERS T,et al.The secretome of preconditioned mesenchymal stem cells drives polarization and reprogramming of M2a macrophages toward an IL ⁃ 10 ⁃ producing phenotype[J].Int J Mol Sci,2022,23(8):4104

    • [18] WANG L X,ZHANG S X,WU H J,et al.M2b macrophage polarization and its roles in diseases[J].J Leukoc Biol,2019,106(2):345-358

    • [19] LEE C,JEONG H,LEE H,et al.Magnolol attenuates cisplatin-induced muscle wasting by M2c macrophage activation[J].Front Immunol,2020,11:77

    • [20] WEISS G,SCHAIBLE U E.Macrophage defense mechanisms against intracellular bacteria[J].Immunol Rev,2015,264(1):182-203

    • [21] WANG Q,NI H,LAN L,et al.Fra⁃1 protooncogene regulates IL ⁃ 6 expression in macrophages and promotes the generation of M2d macrophages[J].Cell Res,2010,20(6):701-712

    • [22] CHEN X,LIU Y,GAO Y,et al.The roles of macrophage polarization in the host immune response to sepsis[J].Int Immunopharmacol,2021,96:107791

    • [23] LAWRENCE T,NATOLI G.Transcriptional regulation of macrophage polarization:enabling diversity with identity[J].Nat Rev Immunol,2011,11(11):750-761

    • [24] FU X L,DUAN W,SU C Y,et al.Interleukin 6 induces M2 macrophage differentiation by STAT3 activation that correlates with gastric cancer progression[J].Cancer Immunol Immunother,2017,66(12):1597-1608

    • [25] SICA A,MANTOVANI A.Macrophage plasticity and polarization:in vivo veritas[J].J Clin Invest,2012,122(3):787-795

    • [26] CAPECE D,VERZELLA D,FLATI I,et al.NF ⁃ κB:blending metabolism,immunity,and inflammation[J].Trends Immunol,2022,43(9):757-775

    • [27] ZHANG G,GHOSH S.Toll⁃like receptor⁃mediated NF-kappaB activation:a phylogenetically conserved paradigm in innate immunity[J].J Clin Invest,2001,107(1):13-19

    • [28] NI L,LIN Z,HU S,et al.Itaconate attenuates osteoarthritis by inhibiting STING/NF ⁃ κB axis in chondrocytes and promoting M2 polarization in macrophages[J].Biochem Pharmacol,2022,198:114935

    • [29] WAGNER N,WAGNER K D.The role of PPARs in disease[J].Cells,2020,9(11):2367

    • [30] RICOTE M,LI A C,WILLSON T M,et al.The peroxisome proliferator⁃activated receptor⁃gamma is a negative regulator of macrophage activation[J].Nature,1998,391(6662):79-82

    • [31] CROASDELL A,DUFFNEY P F,KIM N,et al.PPARγ and the innate immune system mediate the resolution of inflammation[J].PPAR Res,2015,2015:549691

    • [32] MARTINEZ F O,HELMING L,GORDON S.Alternative activation of macrophages:an immunologic functional perspective[J].Annu Rev Immunol,2009,27:451-483

    • [33] ODEGAARD J I,RICARDO-GONZALEZ R R,GO-FORTH M H,et al.Macrophage⁃specific PPARγ controls alternative activation and improves insulin resistance[J].Nature,2007,447(7148):1116-1120

    • [34] GIAMARELLOS⁃BOURBOULIS E J,ASCHENBRENNER A C,BAUER M,et al.The pathophysiology of sepsis and precision⁃medicine⁃based immunotherapy[J].Nat Immunol,2024,25(1):19-28

    • [35] SINGER M,DEUTSCHMAN C S,SEYMOUR C W,et al.The third international consensus definitions for sepsis and septic shock(Sepsis ⁃3)[J].JAMA,2016,315(8):801-810

    • [36] RUDD K E,JOHNSON S C,AGESA K M,et al.Global,regional,and national sepsis incidence and mortality,1990 ⁃ 2017:analysis for the Global Burden of Disease Study[J].Lancet,2020,395(10219):200-211

    • [37] VAN DER POLL T,SHANKAR ⁃HARI M,WIERSINGA W J.The immunology of sepsis[J].Immunity,2021,54(11):2450-2464

    • [38] SAEED A F U H,RUAN X,GUAN H,et al.Regulation of cGAS⁃mediatedimmune responses andimmunotherapy[J].Adv Sci(Weinh),2020,7(6):1902599

    • [39] KUMAR V.Toll⁃like receptors in sepsis⁃associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets[J].Int Immunopharmacol,2020,89(Pt B):107087

    • [40] ARINA P,SINGER M.Pathophysiology of sepsis[J].Curr Opin Anaesthesiol,2021,34(2):77-84

    • [41] KUMAR V.Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis⁃associated acute lung injury[J].Front Immunol,2020,11:1722

    • [42] BOS L D J,WARE L B.Acute respiratory distress syndrome:causes,pathophysiology,and phenotypes[J].Lancet,2022,400(10358):1145-1156

    • [43] CHEN X X,TANG J,SHUAI W Z,et al.Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome[J].Inflamm Res,2020,69(9):883-895

    • [44] JIAO Y,ZHANG T,ZHANG C,et al.Exosomal miR⁃30d⁃5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury[J].Crit Care,2021,25(1):356

    • [45] ZHUO Y,LI D,CUI L,et al.Treatment with 3,4⁃ dihy-droxyphenylethyl alcohol glycoside ameliorates sepsis-induced ALI in mice by reducing inflammation and regulating M1 polarization[J].Biomed Pharmacother,2019,116:109012

    • [46] LUO J,WANG J,ZHANG J,et al.Nrf2 deficiency exacerbated CLP-induced pulmonary injury and inflammation through autophagy ⁃and NF ⁃κB/PPARγ⁃mediated macrophage polarization[J].Cells,2022,11(23):3927

    • [47] WANG Y,XU Y,ZHANG P,et al.Smiglaside A ameliorates LPS-induced acute lung injury by modulating macrophage polarization via AMPK ⁃PPARγ pathway[J].Biochem Pharmacol,2018,156:385-395

    • [48] TONG Y,YU Z,CHEN Z,et al.The HIV protease inhibitor Saquinavir attenuates sepsis⁃induced acute lung injury and promotes M2 macrophage polarization via targeting matrix metalloproteinase ⁃9[J].Cell Death Dis,2021,12(1):67

    • [49] HOLLENBERG S M,SINGER M.Pathophysiology of sepsis-induced cardiomyopathy[J].Nat Rev Cardiol,2021,18(6):424-434

    • [50] TSCHÖPE C,AMMIRATI E,BOZKURT B,et al.Myocarditis and inflammatory cardiomyopathy:current evidence and future directions[J].Nat Rev Cardiol,2021,18(3):169-193

    • [51] MARTIN L,DERWALL M,AL ZOUBI S,et al.The septic heart:current understanding of molecular mechanisms and clinical implications[J].Chest,2019,155(2):427-437

    • [52] CHEN X S,WANG S H,LIU C Y,et al.Losartan attenuates sepsis ⁃induced cardiomyopathy by regulating macrophage polarization via TLR4⁃mediated NF⁃κB and MAPK signaling[J].Pharmacol Res,2022,185:106473

    • [53] RUAN W,JI X,QIN Y,et al.Harmine alleviated sepsis-induced cardiac dysfunction by modulating macrophage polarization via the STAT/MAPK/NF ⁃ κB pathway[J].Front Cell Dev Biol,2021,9:792257

    • [54] BELLOMO R,KELLUM J A,RONCO C.Acute kidney injury[J].Lancet,2012,380(9843):756-766

    • [55] ZHANG J,JIANG J,WANG B,et al.SAP130 released by ferroptosis tubular epithelial cells promotes macrophage polarization via Mincle signaling in sepsis acute kidney injury[J].Int Immunopharmacol,2024,129:111564

    • [56] ZHANG B,XUE Y,ZHAO J,et al.Shionone attenuates sepsis ⁃induced acute kidney injury by regulating macrophage polarization via the ECM1/STAT5 pathway[J].Front Med(Lausanne),2021,8:796743

    • [57] LI Y,ZHAI P,ZHENG Y,et al.Csf2 attenuated sepsis-induced acute kidney injury by promoting alternative macrophage transition[J].Front Immunol,2020,11:1415

    • [58] NESSELER N,LAUNEY Y,ANINAT C,et al.Clinical review:the liver in sepsis[J].Crit Care,2012,16(5):235

    • [59] JIN G L,LIU H P,HUANG Y X,et al.Koumine regulates macrophage M1/M2 polarization via TSPO,alleviating sepsis⁃associated liver injury in mice[J].Phytomedicine,2022,107:154484

    • [60] CHEN Y,YANG L,LI X.Advances in Mesenchymal stem cells regulating macrophage polarization and treatment of sepsis⁃induced liver injury[J].Front Immunol,2023,14:1238972

    • [61] LI Z L,YANG B C,GAO M,et al.Naringin improves sepsis-induced intestinal injury by modulating macrophage polarization via PPARγ/miR⁃21 axis[J].Mol Ther Nucleic Acids,2021,25:502-514

    • [62] TAN F,CAO Y,ZHENG L,et al.Diabetes exacerbated sepsis ⁃induced intestinal injury by promoting M1 macrophage polarization via miR ⁃ 3061/Snail1 signaling[J].Front Immunol,2022,13:922614

  • 参考文献

    • [1] RUIZ ⁃BACA E,PÉREZ-TORRES A,ROMO-LOZANO Y,et al.The role of macrophages in the host’s defense against Sporothrix schenckii[J].Pathogens,2021,10(7):905

    • [2] MOSSER D M,HAMIDZADEH K,GONCALVES R.Macrophages and the maintenance of homeostasis[J].Cell Mol Immunol,2021,18(3):579-587

    • [3] LOCATI M,CURTALE G,MANTOVANI A.Diversity,mechanisms,and significance of macrophage plasticity[J].Annu Rev Pathol,2020,15:123-147

    • [4] MURRAY P J.Macrophage polarization[J].Annu Rev Physiol,2017,79:541-566

    • [5] YUNNA C,MENGRU H,LEI W,et al.Macrophage M1/M2 polarization[J].Eur J Pharmacol,2020,877:173090

    • [6] WANG Y,SMITH W,HAO D,et al.M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds[J].Int Immunopharmacol,2019,70:459-466

    • [7] CHEN S,SAEED A F U H,LIU Q,et al.Macrophages in immunoregulation and therapeutics[J].Signal Transduct Target Ther,2023,8(1):207

    • [8] LOUISELLE A E,NIEMIEC S M,ZGHEIB C,et al.Macrophage polarization and diabetic wound healing[J].Transl Res,2021,236:109-116

    • [9] BASHIR S,SHARMA Y,ELAHI A,et al.Macrophage polarization:the link between inflammation and related diseases[J].Inflamm Res,2016,65(1):1-11

    • [10] NI R,JIANG L,ZHANG C,et al.Biologic mechanisms of macrophage phenotypes responding to infection and the novel therapies to moderate inflammation[J].Int J Mol Sci,2023,24(9):8358

    • [11] ARABPOUR M,SAGHAZADEH A,REZAEI N.Anti-inflammatory and M2 macrophage polarization⁃promoting effect of mesenchymal stem cell-derived exosomes[J].Int Immunopharmacol,2021,97:107823

    • [12] VIOLA A,MUNARI F,SÁNCHEZ⁃RODRÍGUEZ R,et al.The metabolic signature of macrophage responses[J].Front Immunol,2019,10:1462

    • [13] SCHULTZE J L,SCHMIDT S V.Molecular features of macrophage activation[J].Semin Immunol,2015,27(6):416-423

    • [14] YOUSAF H,KHAN M I U,ALI I,et al.Emerging role of macrophages in non⁃infectious diseases:an update[J].Biomed Pharmacother,2023,161:114426

    • [15] ZHANG Q,SIOUD M.Tumor⁃associated macrophage subsets:shaping polarization and targeting[J].Int J Mol Sci,2023,24(8):7493

    • [16] SCHLUNDT C,FISCHER H,BUCHER C H,et al.The multifaceted roles of macrophages in bone regeneration:a story of polarization,activation and time[J].Acta Bioma-ter,2021,133:46-57

    • [17] HOLTHAUS M,SANTHAKUMAR N,WAHLERS T,et al.The secretome of preconditioned mesenchymal stem cells drives polarization and reprogramming of M2a macrophages toward an IL ⁃ 10 ⁃ producing phenotype[J].Int J Mol Sci,2022,23(8):4104

    • [18] WANG L X,ZHANG S X,WU H J,et al.M2b macrophage polarization and its roles in diseases[J].J Leukoc Biol,2019,106(2):345-358

    • [19] LEE C,JEONG H,LEE H,et al.Magnolol attenuates cisplatin-induced muscle wasting by M2c macrophage activation[J].Front Immunol,2020,11:77

    • [20] WEISS G,SCHAIBLE U E.Macrophage defense mechanisms against intracellular bacteria[J].Immunol Rev,2015,264(1):182-203

    • [21] WANG Q,NI H,LAN L,et al.Fra⁃1 protooncogene regulates IL ⁃ 6 expression in macrophages and promotes the generation of M2d macrophages[J].Cell Res,2010,20(6):701-712

    • [22] CHEN X,LIU Y,GAO Y,et al.The roles of macrophage polarization in the host immune response to sepsis[J].Int Immunopharmacol,2021,96:107791

    • [23] LAWRENCE T,NATOLI G.Transcriptional regulation of macrophage polarization:enabling diversity with identity[J].Nat Rev Immunol,2011,11(11):750-761

    • [24] FU X L,DUAN W,SU C Y,et al.Interleukin 6 induces M2 macrophage differentiation by STAT3 activation that correlates with gastric cancer progression[J].Cancer Immunol Immunother,2017,66(12):1597-1608

    • [25] SICA A,MANTOVANI A.Macrophage plasticity and polarization:in vivo veritas[J].J Clin Invest,2012,122(3):787-795

    • [26] CAPECE D,VERZELLA D,FLATI I,et al.NF ⁃ κB:blending metabolism,immunity,and inflammation[J].Trends Immunol,2022,43(9):757-775

    • [27] ZHANG G,GHOSH S.Toll⁃like receptor⁃mediated NF-kappaB activation:a phylogenetically conserved paradigm in innate immunity[J].J Clin Invest,2001,107(1):13-19

    • [28] NI L,LIN Z,HU S,et al.Itaconate attenuates osteoarthritis by inhibiting STING/NF ⁃ κB axis in chondrocytes and promoting M2 polarization in macrophages[J].Biochem Pharmacol,2022,198:114935

    • [29] WAGNER N,WAGNER K D.The role of PPARs in disease[J].Cells,2020,9(11):2367

    • [30] RICOTE M,LI A C,WILLSON T M,et al.The peroxisome proliferator⁃activated receptor⁃gamma is a negative regulator of macrophage activation[J].Nature,1998,391(6662):79-82

    • [31] CROASDELL A,DUFFNEY P F,KIM N,et al.PPARγ and the innate immune system mediate the resolution of inflammation[J].PPAR Res,2015,2015:549691

    • [32] MARTINEZ F O,HELMING L,GORDON S.Alternative activation of macrophages:an immunologic functional perspective[J].Annu Rev Immunol,2009,27:451-483

    • [33] ODEGAARD J I,RICARDO-GONZALEZ R R,GO-FORTH M H,et al.Macrophage⁃specific PPARγ controls alternative activation and improves insulin resistance[J].Nature,2007,447(7148):1116-1120

    • [34] GIAMARELLOS⁃BOURBOULIS E J,ASCHENBRENNER A C,BAUER M,et al.The pathophysiology of sepsis and precision⁃medicine⁃based immunotherapy[J].Nat Immunol,2024,25(1):19-28

    • [35] SINGER M,DEUTSCHMAN C S,SEYMOUR C W,et al.The third international consensus definitions for sepsis and septic shock(Sepsis ⁃3)[J].JAMA,2016,315(8):801-810

    • [36] RUDD K E,JOHNSON S C,AGESA K M,et al.Global,regional,and national sepsis incidence and mortality,1990 ⁃ 2017:analysis for the Global Burden of Disease Study[J].Lancet,2020,395(10219):200-211

    • [37] VAN DER POLL T,SHANKAR ⁃HARI M,WIERSINGA W J.The immunology of sepsis[J].Immunity,2021,54(11):2450-2464

    • [38] SAEED A F U H,RUAN X,GUAN H,et al.Regulation of cGAS⁃mediatedimmune responses andimmunotherapy[J].Adv Sci(Weinh),2020,7(6):1902599

    • [39] KUMAR V.Toll⁃like receptors in sepsis⁃associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets[J].Int Immunopharmacol,2020,89(Pt B):107087

    • [40] ARINA P,SINGER M.Pathophysiology of sepsis[J].Curr Opin Anaesthesiol,2021,34(2):77-84

    • [41] KUMAR V.Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis⁃associated acute lung injury[J].Front Immunol,2020,11:1722

    • [42] BOS L D J,WARE L B.Acute respiratory distress syndrome:causes,pathophysiology,and phenotypes[J].Lancet,2022,400(10358):1145-1156

    • [43] CHEN X X,TANG J,SHUAI W Z,et al.Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome[J].Inflamm Res,2020,69(9):883-895

    • [44] JIAO Y,ZHANG T,ZHANG C,et al.Exosomal miR⁃30d⁃5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury[J].Crit Care,2021,25(1):356

    • [45] ZHUO Y,LI D,CUI L,et al.Treatment with 3,4⁃ dihy-droxyphenylethyl alcohol glycoside ameliorates sepsis-induced ALI in mice by reducing inflammation and regulating M1 polarization[J].Biomed Pharmacother,2019,116:109012

    • [46] LUO J,WANG J,ZHANG J,et al.Nrf2 deficiency exacerbated CLP-induced pulmonary injury and inflammation through autophagy ⁃and NF ⁃κB/PPARγ⁃mediated macrophage polarization[J].Cells,2022,11(23):3927

    • [47] WANG Y,XU Y,ZHANG P,et al.Smiglaside A ameliorates LPS-induced acute lung injury by modulating macrophage polarization via AMPK ⁃PPARγ pathway[J].Biochem Pharmacol,2018,156:385-395

    • [48] TONG Y,YU Z,CHEN Z,et al.The HIV protease inhibitor Saquinavir attenuates sepsis⁃induced acute lung injury and promotes M2 macrophage polarization via targeting matrix metalloproteinase ⁃9[J].Cell Death Dis,2021,12(1):67

    • [49] HOLLENBERG S M,SINGER M.Pathophysiology of sepsis-induced cardiomyopathy[J].Nat Rev Cardiol,2021,18(6):424-434

    • [50] TSCHÖPE C,AMMIRATI E,BOZKURT B,et al.Myocarditis and inflammatory cardiomyopathy:current evidence and future directions[J].Nat Rev Cardiol,2021,18(3):169-193

    • [51] MARTIN L,DERWALL M,AL ZOUBI S,et al.The septic heart:current understanding of molecular mechanisms and clinical implications[J].Chest,2019,155(2):427-437

    • [52] CHEN X S,WANG S H,LIU C Y,et al.Losartan attenuates sepsis ⁃induced cardiomyopathy by regulating macrophage polarization via TLR4⁃mediated NF⁃κB and MAPK signaling[J].Pharmacol Res,2022,185:106473

    • [53] RUAN W,JI X,QIN Y,et al.Harmine alleviated sepsis-induced cardiac dysfunction by modulating macrophage polarization via the STAT/MAPK/NF ⁃ κB pathway[J].Front Cell Dev Biol,2021,9:792257

    • [54] BELLOMO R,KELLUM J A,RONCO C.Acute kidney injury[J].Lancet,2012,380(9843):756-766

    • [55] ZHANG J,JIANG J,WANG B,et al.SAP130 released by ferroptosis tubular epithelial cells promotes macrophage polarization via Mincle signaling in sepsis acute kidney injury[J].Int Immunopharmacol,2024,129:111564

    • [56] ZHANG B,XUE Y,ZHAO J,et al.Shionone attenuates sepsis ⁃induced acute kidney injury by regulating macrophage polarization via the ECM1/STAT5 pathway[J].Front Med(Lausanne),2021,8:796743

    • [57] LI Y,ZHAI P,ZHENG Y,et al.Csf2 attenuated sepsis-induced acute kidney injury by promoting alternative macrophage transition[J].Front Immunol,2020,11:1415

    • [58] NESSELER N,LAUNEY Y,ANINAT C,et al.Clinical review:the liver in sepsis[J].Crit Care,2012,16(5):235

    • [59] JIN G L,LIU H P,HUANG Y X,et al.Koumine regulates macrophage M1/M2 polarization via TSPO,alleviating sepsis⁃associated liver injury in mice[J].Phytomedicine,2022,107:154484

    • [60] CHEN Y,YANG L,LI X.Advances in Mesenchymal stem cells regulating macrophage polarization and treatment of sepsis⁃induced liver injury[J].Front Immunol,2023,14:1238972

    • [61] LI Z L,YANG B C,GAO M,et al.Naringin improves sepsis-induced intestinal injury by modulating macrophage polarization via PPARγ/miR⁃21 axis[J].Mol Ther Nucleic Acids,2021,25:502-514

    • [62] TAN F,CAO Y,ZHENG L,et al.Diabetes exacerbated sepsis ⁃induced intestinal injury by promoting M1 macrophage polarization via miR ⁃ 3061/Snail1 signaling[J].Front Immunol,2022,13:922614