en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

干开丰,E-mail: gankaifeng22@163.com

中图分类号:R329.2

文献标识码:A

文章编号:1007-4368(2024)08-1051-11

DOI:10.7655/NYDXBNSN231175

参考文献 1
VALTANEN R S,YANG Y P,GURTNERG C,et al.Synthetic and bone tissue engineering graft substitutes:What is the future?[J].Injury,2021,52(Suppl 2):S72-S77
参考文献 2
WANG Y,KATYAL P,MONTCLARE J K.Protein⁃engineered functional materials[J].Adv Healthc Mater,2019,8(11):e1801374
参考文献 3
XING M,WANG X,WANG E,et al.Bone tissue engineering strategy based on the synergistic effects of silicon and strontium ions[J].Acta Biomater,2018,72:381-395
参考文献 4
孙上雯,陈汉帮,胡姝颖,等.负载γ⁃Fe2O3的壳聚糖多孔海绵对大鼠骨髓间质干细胞增殖和成骨分化的影响[J].南京医科大学学报(自然科学版),2023,43(3):326-333
参考文献 5
SALAMON A,VAN VLIERBERGHE S,VAN NIEUWEN-HOVE I,et al.Gelatin⁃based hydrogels promote chondro-genic differentiation of human adipose tissue⁃derived mes⁃enchymal stem cells in vitro[J].Materials,2014,7(2):1342-1359
参考文献 6
曹国定,裴豫琦,刘军,等.骨缺损修复材料的研究进展[J].中国骨伤,2021,34(4):382-388
参考文献 7
WANG Z,LIANG R,JIANG X,et al.Electrospun PLGA/PCL/OCP nanofiber membranes promote osteogenic differentiation of mesenchymal stem cells(MSCs)[J].Mater Sci Eng C Mater Biol Appl,2019,104:109796
参考文献 8
康坤龙,王新涛.生物支架材料促进骨髓间充质干细胞成骨分化的研究热点[J].中国组织工程研究,2022,26(4):597-603
参考文献 9
PISHNAMAZI S M,GHADERIAN S M H,IRANI S,et al.Polycaprolactone/poly L-lactic acid nanofibrous scaffold improves osteogenic differentiation of the amniotic fluid-derived stem cells[J].In Vitro Cell Dev Biol Anim,2024,60(1):106-114
参考文献 10
RATHER H A,PATEL R,YADAV U C S,et al.Dual drug-delivering polycaprolactone-collagen scaffold to induce early osteogenic differentiation and coupled angiogenesis[J].Biomed Mater,2020,15(4):045008
参考文献 11
VANDROVCOVÁ M,DOUGLAS T,HAUK D,et al.Influence of collagen and chondroitin sulfate(CS)coatings on poly⁃(lactide⁃co⁃glycolide)(PLGA)on MG63 osteoblast-like cells[J].Physiol Res,2011,60(5):797-813
参考文献 12
PARK S,KIM J E,HAN J,et al.3D⁃printed poly(ε⁃capro-lactone)/hydroxyapatite scaffolds modified with alkaline hydrolysis enhance osteogenesis in vitro[J].Polymers(Basel),2021,13(2):257
参考文献 13
ROZILA I,AZARI P,MUNIRAH S,et al.Polycaprolac-tone ⁃ based scaffolds facilitates osteogenic differentiation of human adipose⁃derived stem cells in a co⁃culture system[J].Polymers,2021,13(4):597
参考文献 14
NIKNAM Z,GOLCHIN A,REZAEI⁃TAVIRANI M,et al.Osteogenic differentiation potential of adipose-derived mesenchymal stem cells cultured on magnesium oxide/polycaprolactone nanofibrous scaffolds for improving bone tissue reconstruction[J].Adv Pharm Bull,2022,12(1):142-154
参考文献 15
KIM H Y,KIM B H,KIM M S.Amine plasma⁃polymerization of 3D polycaprolactone/β⁃tricalcium phosphate scaffold to improving osteogenic differentiation in vitro[J].Materials,2022,15(1):366
参考文献 16
GHOLIPOURMALEKABADI M,ZHAO S,HARRISON B S,et al.Oxygen-generating biomaterials:a new,viable paradigm for tissue engineering?[J].Trends Biotechnol,2016,34(12):1010-1021
参考文献 17
LEI Q,CHEN J,HUANG W,et al.Proteomic analysis of the effect of extracellular calcium ions on human mesenchymal stem cells:implications for bone tissue engineering[J].Chem Biol Interact,2015,233:139-146
参考文献 18
KHOSROPANAH H,LASHKARIZADEH N,AYATOLLA-HI M,et al.The impact of calcium hydroxide on the osteo-inductive capacity of demineralized freeze ⁃dried bone allograft:an in-vitro study[J].J Dent(Shiraz),2018,19(1):19-27
参考文献 19
练雷栋,孙泽晨,张津豪,等.聚已内酯包载过氧化钙微粒的制备、表征及其生物相容性研究[J].浙江大学学报(医学报),2023,52(3):296-305
参考文献 20
LING L,FENG X,WEI T,et al.Human amnion ⁃derived mesenchymal stem cell(hAD-MSC)transplantation improves ovarian function in rats with premature ovarian insufficiency(POI)at least partly through a paracrine mechanism[J].Stem Cell Res Ther,2019,10(1):46
参考文献 21
LI M,LV Y,CHEN F,et al.Co⁃stimulation of LPAR1 and S1PR1/3 increases the transplantation efficacy of human mesenchymal stem cells in drug-induced and alcoholic liver diseases[J].Stem Cell Res Ther,2018,9(1):161
参考文献 22
AUGUSTINE R,CAMCI ⁃UNAL G.Scaffolds with high oxygen content support osteogenic cell survival under hypoxia[J].Biomater Sci,2023,11(16):5560-5575
参考文献 23
储林洋.生物活性煅烧骨支架材料的成骨和成血管性能研究[D].上海:上海交通大学,2023
参考文献 24
LIANG E I,MAH E J,YEE A F,et al.Correlation of focal adhesion assembly and disassembly with cell migration on nanotopography[J].Integr Biol(Camb),2017,9(2):145-155
参考文献 25
PIETRASZEK A,KAREWICZ A,WIDNIC M,et al.Halloysite⁃alkaline phosphatase system,a potential bioactive component of scaffold for bone tissue engineering[J].Colloids Surf B Biointerfaces,2019,173:1-8
参考文献 26
MIDHA S,JAIN K G,BHASKAR N,et al.Tissue⁃specific mesenchymal stem cell ⁃dependent osteogenesis in highly porous chitosan-based bone analogs[J].Stem Cells Transl Med,2021,10(2):303-319
参考文献 27
HASSAN W S,EL⁃HENAWEE M M,GOUDA A A.Spectrophotometric determination of some histamine H1⁃antagonists drugs in their pharmaceutical preparations[J].Spectrochim Acta A Mol Biomol Spectrosc,2008,69(1):245-255
参考文献 28
ZHOU B,PENG K,WANG G,et al.Silencing proteasome 26S Subunit ATPase 2(PSMC2)protects the osteogenic differentiation in vitro and osteogenesis in vivo[J].Calcif Tissue Int,2021,109(1):44-54
参考文献 29
郭宇,王凌,刘仪,等.Wnt/β⁃catenin信号通路在骨代谢疾病中的研究进展[J].南京医科大学学报(自然科学版),2021,41(3):460-464
目录contents

    摘要

    目的:探究聚己内酯(polycaprolactone,PCL)包载过氧化钙(calcium peroxide,CPO)的CPO-PCL微粒在缺氧条件下对脂肪间充质干细胞(adipose-derived mesenchymal stem cell,ADMSC)体外增殖及成骨分化作用的影响。方法:提取大鼠 ADMSC,并加入制备的CPO-PCL微粒,在缺氧/常氧环境下,正常培养或成骨分化培养细胞,分别于培养第7天和第14天MTT实验检测ADMSC增殖,碱性磷酸酶(alkaline phosphatase,ALP)试剂盒检测ALP水平;茜素红染色观察钙化结节情况,免疫荧光染色观察ADMSC核心转录因子-2(Runt-related transcription factor 2,RUNX2)、骨钙素(Osteocalcin)和骨桥蛋白(Osteopontin)的荧光表达量。结果:在缺氧成骨分化培养条件下,1.00% CPO-PCL微粒显著促进细胞增殖(P < 0.05),0.50%和1.00% CPO-PCL微粒显著增加ADMSC ALP和钙结节生成量(P < 0.001),促进RUNX2、Osteocalcin和Osteopontin蛋白表达(P < 0.05)。在缺氧正常培养条件下,1.00% CPO-PCL微粒增加ADMSC ALP含量,促进RUNX2、Osteocalcin和Osteopontin蛋白表达(P < 0.05)。在常氧成骨分化培养条件下,1.00% CPO-PCL微粒增加ALP和钙结节生成量,0.50%和1.00% CPO-PCL微粒促进RUNX2、Osteocalcin蛋白表达(P < 0.001)。在常氧正常培养条件下,0.50%和1.00% CPO-PCL微粒促进RUNX2、Osteocalcin和Osteopontin蛋白表达 (P < 0.05),但对细胞成骨分化无显著影响。结论:1.00% CPO-PCL微粒在缺氧成骨分化培养条件下能够促进ADMSC体外增殖及成骨分化。

    Abstract

    Objective:To investigate the effects of calcium peroxide(CPO)-loaded polycaprolactone(PCL)microparticles(CPO-PCL)on the proliferation and bone differentiation of adipose-derived mesenchymal stem cells(ADMSCs)in vitro under hypoxia. Methods:Rat ADMSCs were extracted and added with the prepared CPO-PCL particles for normal or osteogenic differentiation culture under hypoxia/normoxia environment. On the 7th and 14th days,cell proliferation,alkaline phosphatase(ALP)level,the calcification of nodulation,and the fluorescence intensity of Runt-related transcription factor 2(RUNX2),Osteocalcin and Osteopontin were examined by the MTT assay,alkaline phosphatase(ALP)kit,alizarine red staining and immunofluorescence staining,respectively. Results: Under hypoxia and osteogenic differentiation culture conditions,1.00% CPO-PCL microparticles significantly promoted ADMSCs proliferation(P < 0.05),and CPO-PCL microparticles of 0.50% and 1.00% concentrations notably increased the production of ALP and calcium nodules(P < 0.001),while enhancing the expressions of RUNX2,Osteocalcin and Osteopontin proteins(P < 0.05). Under hypoxia and normal culture conditions,1.00% CPO-PCL microparticles elevated ALP levels,increased the expression levels of RUNX2,Osteocalcin and Osteopontin(P < 0.05). Under normoxia and differentiation culture conditions,1.00% CPO-PCL microparticles increased the production of ALP and calcium nodules,and CPO-PCL microparticles of 0.50% and 1.00% concentrations promoted the expression levels of RUNX2 and Osteocalcin proteins(P < 0.001). Under normoxia and normal culture conditions,0.50% and 1.00% CPO-PCL microparticles up-regulated RUNX2,Osteocalcin and Osteopontin expression levels(P < 0.05),but rarely affect osteoblast differentiation. Conclusion:CPO-PCL microparticles of 1.00% promote the proliferation and bone differentiation of ADMSCs in vitro under hypoxia and osteogenic differentiation culture.

    关键词

    CPO-PCL微粒ADMSC成骨分化细胞增殖缺氧

  • 大段骨缺损是骨科修复面临的重大难题,随着骨组织工程的不断深入研究和发展,人工合成的生物材料现已逐步成为可以替代骨组织的植入物[1]。目前用于临床的生物材料兼具多种理化性质和生物性能,是组织工程的基础[2]。骨组织工程包含干细胞或前体细胞、生物支架和生长因子三要素,其核心在于通过植入生物材料、活化种子细胞在内的三维结构复合体,构建具有生物活性和功能的组织,重塑缺损的组织形态,从而恢复功能结构[3-4]。多种生物材料有利于促进细胞黏附、生长和分化,如促进人脂肪间充质干细胞(adipose⁃derived mesen⁃ chymal stem cell,ADMSC)的成骨分化,发挥引导组织再生的作用[5]。本课题组设计并制备了一种新型的产氧性生物材料——聚己内酯(polycaprolactone, PCL)包载过氧化钙(calcium peroxide,CPO)的 CPO⁃PCL 微粒,目前已被证实其能持续可控地产氧,本研究为了进一步探究该材料的生物效能,检测CPO⁃PCL微粒在不同氧环境下对ADMSC成骨分化的影响。

  • 1 材料和方法

  • 1.1 材料

  • 清洁级雄性Sprague⁃Dawley(SD)大鼠30只,体重(120±10)g,由浙江省实验动物中心提供(实验动物生产许可证号:SYXK(浙)2016⁃0022),饲养于浙江省中医药研究院实验动物中心,温度(22±2)℃,湿度50%~60%,12 h昼夜节律饲养,实验动物使用许可证号:SYXK(浙)2019⁃0010。普通饲料为实验动物标准饲料,由浙江省中医药研究院实验动物中心提供。所有动物使用符合3R原则,并且经宁波大学实验动物伦理委员会批准(伦理号:2020⁃159)。

  • 成骨分化培养基(PD ⁃033)和正常培养基 (CM ⁃H202)(武汉普诺赛公司);PCL(P299385)、 CPO(C111789)(上海阿拉丁公司),明胶(1288485,Sigma⁃Aldrich公司,美国);抗核心转录因子⁃2(Runt ⁃related transcription factor 2,RUNX2)抗体、抗骨钙素(Osteocalcin)抗体、抗骨桥蛋白(Osteopontin)抗体、荧光标记的抗免IgG(Cell Signal Technology公司,美国);碱性磷酸酶(alkaline phosphatase,ALP)检测试剂盒(P0321S)、茜素红染色试剂盒(C0148S)(上海碧云天公司);Trizo(l119704,Ambion公司,美国)、异丙醇(2015122801,成都市科龙化工试剂厂);反转录试剂盒(AK22 355A)、荧光定量Polymerase Chain Reaction(PCR)试剂盒(AK31 128A)(Takara公司,日本)。电镜(JEM⁃F200,宁波欧普仪器有限公司),紫外分光光度计(Alpha⁃1900,上海谱元仪器有限公司),StepOnePlus 荧光定量 PCR 仪(ABI 公司,美国),Centrifuge5810R 型离心机(Eppendorf 公司,德国),TP1020⁃1 型组织脱水机、EG1150 型石蜡包埋机、RM2235型石蜡切片机(莱卡公司,德国)。荧光显微镜(EVOS M7000,上海赛默飞公司)。

  • 1.2 方法

  • 1.2.1 CPO⁃PCL微粒制备

  • 10% PCL溶液制备:称取PCL 10 g,加入90 mL 二氯甲烷溶液内,充分溶解,将溶液置于试剂瓶中密封备用。1% 明胶溶液制备:称取明胶粉末2 g,加入298 mL去离子水溶液内,充分溶解,将溶液置于试剂瓶中密封备用。3% CPO制备:称取CPO 3 g,加入97 mL去离子水溶液内,充分溶解,将溶液置于试剂瓶中密封备用。量取1 mL 3% CPO溶液,将其加入到10 mL 10% PCL溶液中,对溶液进行30 kHz超声波乳化处理20 min。向乳化后的混合溶液中加入1%的明胶 150 mL,对溶液进行 30 kHz 超声波乳化处理 30 min。将最终乳化后的混合液置于加热磁力搅拌器内,在 60℃下加热搅拌 6 h,再将得到的混合液 3 000 r/min 离心 10 min,弃上清液,向沉淀中加入 20 mL 甲醇,震荡 30 s 后静置 10 min,重复 3 次, 5 000 r/min离心20 min,弃上清液,再加入20 mL甲醇,震荡 30 s 后静置 10 min,重复 3 次,5 000 r/min 离心 20 min,弃上清液,加入 40 mL 去离子水,震荡 15 s后静置5 min,如此重复2次,再次5 000 r/min 离心20 min,弃上清液,所得沉淀经液氮快速冷却,并冷冻干燥处理4 d,最终得到CPO⁃PCL微粒。

  • 1.2.2 提取和培养大鼠ADMSC

  • 无菌条件下,将SD大鼠皮肤组织取出,用磷酸缓冲盐溶液(phosphate buffered saline,PBS)洗3次,将皮下脂肪剔下剪碎,置于0.25%胰酶中37℃震荡消化30 min,800 r/min离心4 min。将沉淀置于0.1% Ⅳ型胶原酶中37℃震荡消化50 min,200 目细胞筛过滤除去纤维组织,800 r/min 离心 4 min,除去上清液,用含10%~15%胎牛血清的完全培养基重悬细胞,接种到25T培养瓶中,使用大鼠ADMSC完全培养基(42 mL DMEM/F12细胞培养基+7.5 mL胎牛血清+0.5 mL双抗)在37℃、5% CO2中培养。大鼠原代 ADMSC生长速率较慢,第1代约10 d即生长融合,观察到较大细胞集落即可传代。

  • 1.2.3 微粒对ADMSC的成骨诱导

  • 在 96 孔板里铺 5×103 个/孔 ADMSC 细胞,加入不同浓度(0%、0.10%、0.25%、0.50%和 1.00%)的 CPO⁃PCL微粒,分为4组,即缺氧成骨分化培养组、缺氧正常培养组、常氧成骨分化培养组和常氧正常培养组。

  • 成骨分化培养使用 ADMSC 成骨分化培养基,正常培养使用完全培养基,分别培养7、14 d 后收集细胞进行实验。

  • 1.2.4 MTT实验

  • 分别于培养第7、14天采用MTT实验检测不同浓度CPO⁃PCL微粒对ADMSC活力的影响。各组细胞接种于96孔板中,每孔加入50 μL含有10%胎牛血清的细胞完全培养基,细胞密度为3×104 个/孔。培养 48 h 后,加入 20 μL/孔 MTT(5 mg/mL)继续孵育 4 h,弃培养上清液,加入150 μL二甲亚砜(DMSO)振荡10 min 溶解沉淀。分光光度计在490 nm波长测量各孔的吸光度值。观察计算各组细胞增殖情况,实验重复3次。

  • 1.2.5 ALP水平检测

  • 吸弃细胞培养基,PBS清洗,然后加入50 μL显色底物,用枪头吹打混匀,37℃孵育10 min,然后加入终止反应液100 μL。Image J软件定量ALP染色强度,蓝色沉淀物越多表明成骨分化越好。

  • 1.2.6 茜素红染色

  • 吸去 6 孔板中的成骨诱导分化培养基,用 PBS清洗。将细胞置于 4%多聚甲醛中固定 30 min 后,加入2 mL 茜素红染色液,染色10 min,显微镜下观察染色结果。Image J软件定量茜素红的染色强度,橘红色复合物越多说明诱导成骨分化越成功。

  • 1.2.7 细胞免疫荧光染色

  • CPO⁃PCL微粒处理的ADMSC用4%多聚甲醛固定10 min,0.5% Triton X⁃100覆盖10 min,胎牛血清封闭30 min,再滴加一抗RUNX2抗体、Osteocalcin抗体、Osteopontin 抗体(均 1∶1 000 稀释)覆盖细胞于 4℃避光12 h。PBS清洗玻片后加入荧光标记的抗兔 IgG(1∶1 000)在室温下孵育 1 h,最后 DAPI 染核 1 min,防荧光淬灭剂封片观察结果。Image J 软件定量荧光染色强度。

  • 1.3 统计学方法

  • 采用 SPSS 17.0 统计软件进行处理数据,各组计量资料数据用均数±标准差(x-±s)表示,多组间均数比较采用方差分析,以P <0.05为差异有统计学意义。

  • 2 结果

  • 2.1 不同浓度CPO⁃PCL微粒对ADMSC体外增殖的影响

  • 分别于培养第7天和14天收集各组缺氧或常氧条件下经不同浓度(0%、0.10%、0.25%、0.50%、 1.00%)CPO⁃PCL微粒处理的 ADMSC 增殖情况(图1),结果显示,无论在缺氧还是常氧条件下,成骨分化培养第7天,不同浓度的CPO⁃PCL微粒均促进 ADMSC 增殖,其中,1.00%的 CPO ⁃ PCL 微粒促进 ADMSC 增殖达到显著水平(P <0.05)。然而,在培养 14 d 后,不同浓度的 CPO⁃PCL 微粒促进 ADMSC 增殖的能力下降,均未达到显著水平(图2)。

  • 2.2 不同浓度CPO⁃PCL微粒对ADMSC中ALP含量的影响

  • 缺氧成骨分化培养 7 d 条件下,0.10%~1.00% CPO ⁃PCL 微粒均显著促进 ADMSC 的成骨分化, ALP相对含量增多(P <0.001)。缺氧正常培养7 d, 0.25%和 1.00% CPO⁃PCL 微粒显著促进细胞的成骨分化(P <0.05)。常氧成骨分化培养 7 d,1.00% CPO⁃PCL微粒显著促进细胞的成骨分化,ALP相对含量增多(P <0.001)。而常氧正常培养,各浓度 CPO⁃PCL 微粒均不会促进细胞向成骨方向分化 (图3)。

  • 缺氧成骨分化培养14 d,随着CPO⁃PCL微粒浓度增加,ADMSC中ALP相对含量增多。其中0.25%~1.00 %浓度的 CPO⁃PCL 微粒对ADMSC 成骨诱导明显,ALP 相对含量增多(P <0.05),缺氧正常培养 14 d,1.00% CPO⁃PCL微粒显著促进ADMSC向成骨方向分化,ALP相对含量增多(P <0.001);常氧成骨分化培养14 d,0.50%和1.00%的CPO⁃PCL微粒显著促进细胞成骨分化,ALP相对含量增多,而常氧正常培养14 d,未见ALP相对含量增多(图4)。

  • 图1 培养7 d MTT检测不同浓度CPO⁃PCL处理的ADMSC增殖情况

  • Figure1 The proliferation of ADMSC after treatment with different concentrations of CPO ⁃PCL for 7 days detected by MTT

  • 图2 培养14 d MTT检测不同浓度CPO⁃PCL处理的ADMSC增殖情况

  • Figure2 The proliferation of ADMSC after treatment with different concentrations of CPO⁃PCL for 14 days detected by MTT

  • 图3 ALP检测缺氧或常氧培养7 d不同浓度CPO⁃PCL对ADMSC成骨分化培养和正常培养的影响

  • Figure3 The effects of different concentrations of CPO⁃PCL on ADMSC with osteogenic differentiation culture or normal culture under hypoxia or normoxia for 7 days detected by ALP

  • 综上所述,缺氧成骨分化培养条件下,0.10%~1.00% CPO⁃PCL微粒均可促进ADMSC成骨分化;缺氧正常培养或者常氧成骨分化培养条件下,1.00%CPO⁃PCL 微粒可促进 ADMSC 成骨分化;常氧正常培养条件下,CPO⁃PCL 微粒浓度对 ADMSC 成骨分化没有显著影响。

  • 图4 ALP检测缺氧或常氧培养14 d不同浓度CPO⁃PCL对ADMSC成骨分化培养和正常培养的影响

  • Figure4 The effects of different concentrations of CPO⁃PCL on ADMSC with osteogenic differentiation culture or normal culture under hypoxia or normoxia for 14 days detected by ALP

  • 2.3 不同浓度CPO⁃PCL微粒对ADMSC中钙结节生成量的影响

  • 缺氧成骨分化培养 7 d,随着 CPO⁃PCL 微粒浓度的增加,莤素红染色实验显示,ADMSC内橘红色复合物形成增多,提示钙结节生成量增加,在CPO⁃ PCL 微粒 0.50%和 1.00%浓度下达到显著水平(P <0.05),表明在缺氧成骨分化培养条件下,随着微粒浓度增大,钙结节生成量增加,诱导分化成骨形成增加;而缺氧正常培养结果显示各浓度微粒组橘红色复合物形成差异无统计学意义(图5A、B)。

  • 常氧成骨分化培养7 d,随着微粒浓度的增加, ADMSC 内橘红色复合物形成增多,在 0.50%和 1.00%浓度下达到显著水平(P <0.01),显著诱导分化成骨细胞;常氧正常培养,各浓度CPO⁃PCL微粒没有诱导ADMSC向成骨细胞分化的能力(图5C、D)。

  • 缺氧成骨分化培养 14 d,橘红色复合物随着 CPO⁃PCL浓度的增加而增加,且0.25%~1.00% CPO⁃PCL微粒浓度下钙结节生成显著增加,说明在该浓度下易诱导分化成骨形成。缺氧正常培养14 d,与对照组相比,不同浓度的CPO⁃PCL微粒并不会诱导 ADMSC向成骨细胞分化(图6A、B)。

  • 图5 茜素红染色检测缺氧或正常氧培养7 d不同浓度CPO⁃PCL对ADMSC钙结节生成量的影响

  • Figure5 The effects of different concentrations of CPO⁃PCL on ADMSC with osteogenic differentiation culture or normal culture under hypoxia or normoxia for 7 days detected by alizarin red staining

  • 常氧成骨分化培养14 d,与对照组相比,随着微粒浓度的增加,ADMSC中橘红色复合物增多,且在 1.00%时达到显著水平;而常氧正常培养14 d,与对照组相比,不同浓度CPO⁃PCL微粒处理的ADMSC中橘红色复合物差异无统计学意义,提示并不会诱导 ADMSC向成骨细胞分化(图6C、D)。

  • 综上所述,在缺氧成骨分化培养条件下,0.50%~1.00% CPO⁃PCL微粒对ADMSC成骨有诱导作用;在缺氧正常培养条件下CPO⁃PCL 微粒对ADMSC成骨不具有诱导作用;在常氧成骨分化培养条件下,1.00 % CPO⁃PCL 微粒具有诱导ADMSC分化成骨细胞的能力;在常氧正常培养条件下CPO⁃PCL 微粒对 ADMSC成骨分化没有诱导作用。

  • 图6 茜素红染色检测缺氧或正常氧培养14 d不同浓度CPO⁃PCL微粒对ADMSC钙结节生成量的影响

  • Figure6 The effects of different concentrations of CPO⁃PCL microparticles on ADMSC with osteogenic differentiation cul⁃ ture or normal culture under hypoxia or normoxia for 14 days detected by alizarin red staining

  • 2.4 不同浓度CPO⁃PCL微粒对ADMSC中RUNX2、 Osteocalcin和Osteopontin表达水平的影响

  • 缺氧成骨分化培养 7 d,ADMSC 中 RUNX2、 Osteocalcin 和Osteopontin 3种蛋白的荧光强度随着 CPO⁃PCL 微粒浓度增加而增加,在 0.25%、0.50%、 1.00%浓度下差异均有统计学意义(P <0.001);缺氧正常培养7 d,ADMSC中Osteocalcin和Osteopontin 荧光强度随着 CPO⁃PCL 微粒浓度增加而显著增加 (P <0.05),但RUNX2荧光强度无明显变化(图7)。

  • 常氧成骨分化培养或正常培养7 d,CPO⁃PCL微粒浓度不同,ADMSC细胞中RUNX2、Osteocalcin 和 Osteopontin 3 种蛋白的荧光强度增加程度不同,在 0.50%和 1.00%浓度下 3 种蛋白表达均显著增加 (P <0.01,图8)。

  • 缺氧成骨分化培养和正常培养14 d,ADMSC中 RUNX2、Osteocalcin 和 Osteopontin 3 种蛋白的荧光强度随着CPO⁃PCL微粒浓度的增加而增加。0.50% 和1.00%浓度下ADMSC中3种蛋白表达均显著增加 (P <0.001,图9)。

  • 常氧常规培养 14 d 后,CPO ⁃ PCL 微粒浓度 0.25%、0.50%、1.00% 时,RUNX2、Osteocalcin 和 Osteopontin 3 种蛋白的荧光强度都显著增加(P <0.05),而常氧成骨分化培养14 d,CPO⁃PCL微粒浓度为 0.50%和 1.00%时,RUNX2、Osteocalcin 的荧光强度显著增加(P <0.01),而Osteopontin的荧光强度没有明显变化,差异无统计学意义(图10)。

  • 综上所述,缺氧成骨分化、缺氧正常或者常氧正常培养条件下,CPO⁃PCL 微粒可以增加 ADMSC 中 RUNX2、Osteocalcin 和 Osteopontin 3 种蛋白的表达;而在常氧成骨分化培养条件下,ADMSC 中 Osteopontin的表达变化差异无统计学意义。

  • 3 讨论

  • 理想的人工骨修复材料应该能为成骨细胞生长提供骨床和微环境,或者可以携带有效的生长因子,缓慢持久释放以最大程度地促进骨细胞生长,进而填充骨质缺损[6-7]。PCL 可降解,有良好的加工、可塑性和生物相容性,但亲水性低,机械性能差,而与其他材料复合可以改善其柔性和弹性,满足生物支架所需的强度[8]。PCL 与聚L⁃乳酸、胶原等复合支架可以诱导干细胞的成骨分化,促进血管生成[9-10]。进一步研究分析表明羟基磷灰石/胶原涂层的聚己内酯支架可以显著提高成骨细胞分化激活的关键因子Runx2、ALP、Osteocalcin等mRNA和蛋白水平,促进成骨分化,这可能与其表面亲水性和机械强度增加相关[11-13]。此外有研究表明氧化镁或β⁃磷酸三钙与PCL的复合材料通过增加ALP活性、钙沉积和成骨基因表达增强成骨分化[14-15]。CPO 是一种普遍应用于生物化学领域的产氧性化合物[16],经化学反应产生 O2,其中的钙元素是骨生成所必需的成分之一,且钙离子可以诱导间充质干细胞的骨分化[17],反应产物氢氧化钙亦具有诱导成骨作用[18]。并且 PCL 可以防止其包被的 CPO 颗粒与水性溶液接触。

  • 本课题组前期研究已经证实 CPO⁃PCL 微粒植入大鼠背部肌肉组织后具有较好的释氧性,对组织损伤较小,具有较佳的生物相容性[19],但是其生物效能即在植入组织后对于骨生成的影响,尚未见研究报道。此外,ADMSC 具有向骨、脂肪、软骨分化的能力,且该类细胞增殖能力强、来源广泛、取材简单,成为骨组织工程研究的基础。研究表明 ADMSC 的增殖和分化受多种内在机制和微环境的影响,其中微环境是 ADMSC 移植治疗、组织再生的重要影响因素[20-21]。因此在之前研究的基础上,本研究通过 CPO⁃PCL 微粒处理 ADMSC,观察细胞成骨分化情况,继续深入探讨 CPO⁃PCL 对骨生成的影响。

  • 图7 免疫荧光检测缺氧7 d不同浓度CPO⁃PCL微粒对ADMSC成骨分化培养和正常培养中RUNX2、Osteocalcin 和 Osteo⁃ pontin的表达情况

  • Figure7 Expression levels of RUNX2,Osteocalcin,and Osteopontin in ADMSC with osteogenic differentiation culture or normal culture after treatment of different concentrations of CPO⁃PCL microparticles under hypoxia for 7 days detected by immunofluorescence

  • 之前的研究通过对CPO⁃PCL微粒植入的大鼠组织进行观察,从宏观角度证实该生物材料在体内具有较佳的相容性[19]。本研究则从微观角度——体外细胞实验,评估CPO⁃PCL 生物材料的细胞毒性,结果显示,浓度≤1%的CPO⁃PCL微粒没有细胞毒性,相反,无论在常氧还是缺氧条件,CPO⁃PCL 微粒都明显促进细胞增殖。此外,与本研究相似的是, Augustine 等[22] 制备的静电纺丝 PCL 和 CPO 的纳米复合材料也支持细胞增殖,同时保护成骨前细胞免受缺氧诱导的细胞死亡。综上结果,不论是在体内还是体外,CPO⁃PCL植入对机体损害较小,可以促进干细胞增殖,具有良好的生物相容性。然而,有研究表明,细胞黏附决定细胞的增殖能力,黏附斑为细胞在材料表面定植和铺展提供支持[23]。Liang等[24] 研究证明,纳米材料通过黏附斑相关通路调控细胞骨架结构。因此后续将根据这一观点继续深入探讨CPO⁃PCL的生物活性作用。

  • 图8 免疫荧光检测常氧7 d不同浓度CPO⁃PCL微粒对ADMSC成骨分化培养和正常培养中RUNX2、Osteocalcin 和 Osteopo⁃ tin的表达情况

  • Figure8 Expression levels of RUNX2,Osteocalcin and Osteopotin in ADMSC with osteogenic differentiation culture or normal culture after treatment of different concentrations of CPO⁃PCL microparticles under normoxia for 7 days detected by immunofluorescence

  • 目前普遍认为骨中 ALP 与骨钙化作用密切相关,成骨细胞中 ALP 可产生磷酸,与骨中的钙生成磷酸钙沉积于骨中[25],相关生物材料研究显示,体内植入未分化的间充质干细胞负载聚(乳酸⁃CO⁃乙醇酸)/HA(PLGA/HA)复合材料时,ALP的mRNA水平明显高于分化的间充质干细胞负载支架[26]。细胞骨分化形成的钙结节通常采用茜素红染色来观察,茜素红试剂的茜素磺酸钠盐与成骨细胞的钙盐螯合形成橘红色复合物,橘红色复合物越多说明诱导分化成骨形成越成功[27]。此外,RUNX2、Osteocalcin 和Osteopontin常被作为成骨的标志物[28]。因此,本研究观察了CPO⁃PCL作用后细胞ALP、钙结节以及 RUNX2、Osteocalcin和Osteopontin蛋白表达的变化,结果发现在缺氧成骨分化培养条件下,CPO⁃PCL微粒可促进ADMSC成骨分化。因此推测CPO⁃PCL微粒在促进干细胞成骨分化中具有较佳的临床效能。未来还需设计体内和临床试验进一步深入研究CPO⁃PCL微粒的成骨分化效能。此外,在良好的骨修复过程中,成骨和血管生成作用相互促进[23],因此CPO⁃PCL微粒是否有促血管生成作用也是需要研究的问题。此外,Wnt/β⁃catenin信号通路与间充质干细胞的增殖、成骨分化密切相关[29],而CPO⁃PCL微粒是否参与Wnt/β⁃catenin信号通路调控ADMSC的增殖及成骨分化还需要进一步研究。

  • 图9 免疫荧光检测缺氧14 d不同浓度CPO⁃PCL微粒对ADMSC成骨分化培养和正常培养中RUNX2、Osteocalcin 和 Osteopontin的表达情况

  • Figure9 Expression levels of RUNX2,Osteocalcin and Osteopontin in ADMSC with osteogenic differentiation culture or normal culture after treatment of different concentrations of CPO⁃PCL microparticles under hypoxia for 14 days detected by immunofluorescence

  • 综上所述,CPO⁃PCL 微粒在缺氧条件下能够促进 ADMSC 体外增殖及成骨分化,且作用随着 CPO⁃PCL微粒浓度的升高而更加显著,为临床开发治疗骨缺损的新方法奠定了基础。

  • 图10 免疫荧光检测常氧14 d不同浓度CPO⁃PCL微粒对ADMSC成骨分化培养和正常培养中RUNX2、Osteocalcin 和 Osteopontin的表达情况

  • Figure10 Expression levels of RUNX2,Osteocalcin and Osteopontin in ADMSC with osteogenic differentiation culture or normal culture after treatment of different concentrations of CPO ⁃PCL microparticles under normoxia for 14 days detected by immunofluorescence

  • 参考文献

    • [1] VALTANEN R S,YANG Y P,GURTNERG C,et al.Synthetic and bone tissue engineering graft substitutes:What is the future?[J].Injury,2021,52(Suppl 2):S72-S77

    • [2] WANG Y,KATYAL P,MONTCLARE J K.Protein⁃engineered functional materials[J].Adv Healthc Mater,2019,8(11):e1801374

    • [3] XING M,WANG X,WANG E,et al.Bone tissue engineering strategy based on the synergistic effects of silicon and strontium ions[J].Acta Biomater,2018,72:381-395

    • [4] 孙上雯,陈汉帮,胡姝颖,等.负载γ⁃Fe2O3的壳聚糖多孔海绵对大鼠骨髓间质干细胞增殖和成骨分化的影响[J].南京医科大学学报(自然科学版),2023,43(3):326-333

    • [5] SALAMON A,VAN VLIERBERGHE S,VAN NIEUWEN-HOVE I,et al.Gelatin⁃based hydrogels promote chondro-genic differentiation of human adipose tissue⁃derived mes⁃enchymal stem cells in vitro[J].Materials,2014,7(2):1342-1359

    • [6] 曹国定,裴豫琦,刘军,等.骨缺损修复材料的研究进展[J].中国骨伤,2021,34(4):382-388

    • [7] WANG Z,LIANG R,JIANG X,et al.Electrospun PLGA/PCL/OCP nanofiber membranes promote osteogenic differentiation of mesenchymal stem cells(MSCs)[J].Mater Sci Eng C Mater Biol Appl,2019,104:109796

    • [8] 康坤龙,王新涛.生物支架材料促进骨髓间充质干细胞成骨分化的研究热点[J].中国组织工程研究,2022,26(4):597-603

    • [9] PISHNAMAZI S M,GHADERIAN S M H,IRANI S,et al.Polycaprolactone/poly L-lactic acid nanofibrous scaffold improves osteogenic differentiation of the amniotic fluid-derived stem cells[J].In Vitro Cell Dev Biol Anim,2024,60(1):106-114

    • [10] RATHER H A,PATEL R,YADAV U C S,et al.Dual drug-delivering polycaprolactone-collagen scaffold to induce early osteogenic differentiation and coupled angiogenesis[J].Biomed Mater,2020,15(4):045008

    • [11] VANDROVCOVÁ M,DOUGLAS T,HAUK D,et al.Influence of collagen and chondroitin sulfate(CS)coatings on poly⁃(lactide⁃co⁃glycolide)(PLGA)on MG63 osteoblast-like cells[J].Physiol Res,2011,60(5):797-813

    • [12] PARK S,KIM J E,HAN J,et al.3D⁃printed poly(ε⁃capro-lactone)/hydroxyapatite scaffolds modified with alkaline hydrolysis enhance osteogenesis in vitro[J].Polymers(Basel),2021,13(2):257

    • [13] ROZILA I,AZARI P,MUNIRAH S,et al.Polycaprolac-tone ⁃ based scaffolds facilitates osteogenic differentiation of human adipose⁃derived stem cells in a co⁃culture system[J].Polymers,2021,13(4):597

    • [14] NIKNAM Z,GOLCHIN A,REZAEI⁃TAVIRANI M,et al.Osteogenic differentiation potential of adipose-derived mesenchymal stem cells cultured on magnesium oxide/polycaprolactone nanofibrous scaffolds for improving bone tissue reconstruction[J].Adv Pharm Bull,2022,12(1):142-154

    • [15] KIM H Y,KIM B H,KIM M S.Amine plasma⁃polymerization of 3D polycaprolactone/β⁃tricalcium phosphate scaffold to improving osteogenic differentiation in vitro[J].Materials,2022,15(1):366

    • [16] GHOLIPOURMALEKABADI M,ZHAO S,HARRISON B S,et al.Oxygen-generating biomaterials:a new,viable paradigm for tissue engineering?[J].Trends Biotechnol,2016,34(12):1010-1021

    • [17] LEI Q,CHEN J,HUANG W,et al.Proteomic analysis of the effect of extracellular calcium ions on human mesenchymal stem cells:implications for bone tissue engineering[J].Chem Biol Interact,2015,233:139-146

    • [18] KHOSROPANAH H,LASHKARIZADEH N,AYATOLLA-HI M,et al.The impact of calcium hydroxide on the osteo-inductive capacity of demineralized freeze ⁃dried bone allograft:an in-vitro study[J].J Dent(Shiraz),2018,19(1):19-27

    • [19] 练雷栋,孙泽晨,张津豪,等.聚已内酯包载过氧化钙微粒的制备、表征及其生物相容性研究[J].浙江大学学报(医学报),2023,52(3):296-305

    • [20] LING L,FENG X,WEI T,et al.Human amnion ⁃derived mesenchymal stem cell(hAD-MSC)transplantation improves ovarian function in rats with premature ovarian insufficiency(POI)at least partly through a paracrine mechanism[J].Stem Cell Res Ther,2019,10(1):46

    • [21] LI M,LV Y,CHEN F,et al.Co⁃stimulation of LPAR1 and S1PR1/3 increases the transplantation efficacy of human mesenchymal stem cells in drug-induced and alcoholic liver diseases[J].Stem Cell Res Ther,2018,9(1):161

    • [22] AUGUSTINE R,CAMCI ⁃UNAL G.Scaffolds with high oxygen content support osteogenic cell survival under hypoxia[J].Biomater Sci,2023,11(16):5560-5575

    • [23] 储林洋.生物活性煅烧骨支架材料的成骨和成血管性能研究[D].上海:上海交通大学,2023

    • [24] LIANG E I,MAH E J,YEE A F,et al.Correlation of focal adhesion assembly and disassembly with cell migration on nanotopography[J].Integr Biol(Camb),2017,9(2):145-155

    • [25] PIETRASZEK A,KAREWICZ A,WIDNIC M,et al.Halloysite⁃alkaline phosphatase system,a potential bioactive component of scaffold for bone tissue engineering[J].Colloids Surf B Biointerfaces,2019,173:1-8

    • [26] MIDHA S,JAIN K G,BHASKAR N,et al.Tissue⁃specific mesenchymal stem cell ⁃dependent osteogenesis in highly porous chitosan-based bone analogs[J].Stem Cells Transl Med,2021,10(2):303-319

    • [27] HASSAN W S,EL⁃HENAWEE M M,GOUDA A A.Spectrophotometric determination of some histamine H1⁃antagonists drugs in their pharmaceutical preparations[J].Spectrochim Acta A Mol Biomol Spectrosc,2008,69(1):245-255

    • [28] ZHOU B,PENG K,WANG G,et al.Silencing proteasome 26S Subunit ATPase 2(PSMC2)protects the osteogenic differentiation in vitro and osteogenesis in vivo[J].Calcif Tissue Int,2021,109(1):44-54

    • [29] 郭宇,王凌,刘仪,等.Wnt/β⁃catenin信号通路在骨代谢疾病中的研究进展[J].南京医科大学学报(自然科学版),2021,41(3):460-464

  • 参考文献

    • [1] VALTANEN R S,YANG Y P,GURTNERG C,et al.Synthetic and bone tissue engineering graft substitutes:What is the future?[J].Injury,2021,52(Suppl 2):S72-S77

    • [2] WANG Y,KATYAL P,MONTCLARE J K.Protein⁃engineered functional materials[J].Adv Healthc Mater,2019,8(11):e1801374

    • [3] XING M,WANG X,WANG E,et al.Bone tissue engineering strategy based on the synergistic effects of silicon and strontium ions[J].Acta Biomater,2018,72:381-395

    • [4] 孙上雯,陈汉帮,胡姝颖,等.负载γ⁃Fe2O3的壳聚糖多孔海绵对大鼠骨髓间质干细胞增殖和成骨分化的影响[J].南京医科大学学报(自然科学版),2023,43(3):326-333

    • [5] SALAMON A,VAN VLIERBERGHE S,VAN NIEUWEN-HOVE I,et al.Gelatin⁃based hydrogels promote chondro-genic differentiation of human adipose tissue⁃derived mes⁃enchymal stem cells in vitro[J].Materials,2014,7(2):1342-1359

    • [6] 曹国定,裴豫琦,刘军,等.骨缺损修复材料的研究进展[J].中国骨伤,2021,34(4):382-388

    • [7] WANG Z,LIANG R,JIANG X,et al.Electrospun PLGA/PCL/OCP nanofiber membranes promote osteogenic differentiation of mesenchymal stem cells(MSCs)[J].Mater Sci Eng C Mater Biol Appl,2019,104:109796

    • [8] 康坤龙,王新涛.生物支架材料促进骨髓间充质干细胞成骨分化的研究热点[J].中国组织工程研究,2022,26(4):597-603

    • [9] PISHNAMAZI S M,GHADERIAN S M H,IRANI S,et al.Polycaprolactone/poly L-lactic acid nanofibrous scaffold improves osteogenic differentiation of the amniotic fluid-derived stem cells[J].In Vitro Cell Dev Biol Anim,2024,60(1):106-114

    • [10] RATHER H A,PATEL R,YADAV U C S,et al.Dual drug-delivering polycaprolactone-collagen scaffold to induce early osteogenic differentiation and coupled angiogenesis[J].Biomed Mater,2020,15(4):045008

    • [11] VANDROVCOVÁ M,DOUGLAS T,HAUK D,et al.Influence of collagen and chondroitin sulfate(CS)coatings on poly⁃(lactide⁃co⁃glycolide)(PLGA)on MG63 osteoblast-like cells[J].Physiol Res,2011,60(5):797-813

    • [12] PARK S,KIM J E,HAN J,et al.3D⁃printed poly(ε⁃capro-lactone)/hydroxyapatite scaffolds modified with alkaline hydrolysis enhance osteogenesis in vitro[J].Polymers(Basel),2021,13(2):257

    • [13] ROZILA I,AZARI P,MUNIRAH S,et al.Polycaprolac-tone ⁃ based scaffolds facilitates osteogenic differentiation of human adipose⁃derived stem cells in a co⁃culture system[J].Polymers,2021,13(4):597

    • [14] NIKNAM Z,GOLCHIN A,REZAEI⁃TAVIRANI M,et al.Osteogenic differentiation potential of adipose-derived mesenchymal stem cells cultured on magnesium oxide/polycaprolactone nanofibrous scaffolds for improving bone tissue reconstruction[J].Adv Pharm Bull,2022,12(1):142-154

    • [15] KIM H Y,KIM B H,KIM M S.Amine plasma⁃polymerization of 3D polycaprolactone/β⁃tricalcium phosphate scaffold to improving osteogenic differentiation in vitro[J].Materials,2022,15(1):366

    • [16] GHOLIPOURMALEKABADI M,ZHAO S,HARRISON B S,et al.Oxygen-generating biomaterials:a new,viable paradigm for tissue engineering?[J].Trends Biotechnol,2016,34(12):1010-1021

    • [17] LEI Q,CHEN J,HUANG W,et al.Proteomic analysis of the effect of extracellular calcium ions on human mesenchymal stem cells:implications for bone tissue engineering[J].Chem Biol Interact,2015,233:139-146

    • [18] KHOSROPANAH H,LASHKARIZADEH N,AYATOLLA-HI M,et al.The impact of calcium hydroxide on the osteo-inductive capacity of demineralized freeze ⁃dried bone allograft:an in-vitro study[J].J Dent(Shiraz),2018,19(1):19-27

    • [19] 练雷栋,孙泽晨,张津豪,等.聚已内酯包载过氧化钙微粒的制备、表征及其生物相容性研究[J].浙江大学学报(医学报),2023,52(3):296-305

    • [20] LING L,FENG X,WEI T,et al.Human amnion ⁃derived mesenchymal stem cell(hAD-MSC)transplantation improves ovarian function in rats with premature ovarian insufficiency(POI)at least partly through a paracrine mechanism[J].Stem Cell Res Ther,2019,10(1):46

    • [21] LI M,LV Y,CHEN F,et al.Co⁃stimulation of LPAR1 and S1PR1/3 increases the transplantation efficacy of human mesenchymal stem cells in drug-induced and alcoholic liver diseases[J].Stem Cell Res Ther,2018,9(1):161

    • [22] AUGUSTINE R,CAMCI ⁃UNAL G.Scaffolds with high oxygen content support osteogenic cell survival under hypoxia[J].Biomater Sci,2023,11(16):5560-5575

    • [23] 储林洋.生物活性煅烧骨支架材料的成骨和成血管性能研究[D].上海:上海交通大学,2023

    • [24] LIANG E I,MAH E J,YEE A F,et al.Correlation of focal adhesion assembly and disassembly with cell migration on nanotopography[J].Integr Biol(Camb),2017,9(2):145-155

    • [25] PIETRASZEK A,KAREWICZ A,WIDNIC M,et al.Halloysite⁃alkaline phosphatase system,a potential bioactive component of scaffold for bone tissue engineering[J].Colloids Surf B Biointerfaces,2019,173:1-8

    • [26] MIDHA S,JAIN K G,BHASKAR N,et al.Tissue⁃specific mesenchymal stem cell ⁃dependent osteogenesis in highly porous chitosan-based bone analogs[J].Stem Cells Transl Med,2021,10(2):303-319

    • [27] HASSAN W S,EL⁃HENAWEE M M,GOUDA A A.Spectrophotometric determination of some histamine H1⁃antagonists drugs in their pharmaceutical preparations[J].Spectrochim Acta A Mol Biomol Spectrosc,2008,69(1):245-255

    • [28] ZHOU B,PENG K,WANG G,et al.Silencing proteasome 26S Subunit ATPase 2(PSMC2)protects the osteogenic differentiation in vitro and osteogenesis in vivo[J].Calcif Tissue Int,2021,109(1):44-54

    • [29] 郭宇,王凌,刘仪,等.Wnt/β⁃catenin信号通路在骨代谢疾病中的研究进展[J].南京医科大学学报(自然科学版),2021,41(3):460-464