en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

杜欣娜,E-mail: xinna2008.good@163.com

中图分类号:R735.35

文献标识码:A

文章编号:1007-4368(2024)09-1217-10

DOI:10.7655/NYDXBNSN240076

参考文献 1
SUNG H,FERLAY J,SIEGEL R L,et al.Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2021,71(3):209-249
参考文献 2
王锡山.中美结直肠癌流行病学特征对比及防控策略分析[J].中华结直肠疾病电子杂志,2019,8(1):1-5
参考文献 3
张宇涛.结直肠癌的治疗进展[J].山西医药杂志,2020,49(5):535-536
参考文献 4
王正航,李彦豪,陈米芬,等.2019年结直肠癌领域治疗进展[J].中华结直肠疾病电子杂志,2020,9(1):7-12
参考文献 5
MCQUADE R M,STOJANOVSKA V,BORNSTEIN J C,et al.Colorectal cancer chemotherapy:the evolution of treatment and new approaches[J].Curr Med Chem,2017,24(15):1537-1557
参考文献 6
ROSATI G,APRILE G,COLOMBO A,et al.Colorectal cancer heterogeneity and the impact on precision medicine and therapy efficacy[J].Biomedicines,2022,10(5):1035
参考文献 7
SHINJI S,YAMADA T,MATSUDA A,et al.Recent advances in the treatment of colorectal cancer:a review[J].J Nippon Med Sch,2022,89(3):246-254
参考文献 8
MARISA L,REYNIÈS A D,DUVAL A,et al.Gene expression classification of colon cancer into molecular subtypes:characterization,validation,and prognostic value[J].PLoS Med,2013,10(5):e1001453
参考文献 9
SMITH J J,DEANE N G,WU F,et al.Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer[J].Gastroenterology,2010,138(3):958-968
参考文献 10
LIU J F,LICHTENBERG T,HOADLEY K A,et al.An integrated TCGA pan⁃cancer clinical data resource to drive high-quality survival outcome analytics[J].Cell,2018,173(2):400-416
参考文献 11
YU G C,WANG L G,HAN Y Y,et al.clusterProfiler:an R package for comparing biological themes among gene clusters[J].OMICS,2012,16(5):284-287
参考文献 12
FU J X,LI K R,ZHANG W B,et al.Large ⁃scale public data reuse to model immunotherapy response and resistance[J].Genome Med,2020,12(1):21
参考文献 13
BEJARANO L,JORDĀO M J C,JOYCE J A.Therapeutic targeting of the tumor microenvironment[J].Cancer Dis-cov,2021,11(4):933-959
参考文献 14
KHALAF K,HANA D,CHOU J T,et al.Aspects of the tumor microenvironment involved in immune resistance and drug resistance[J].Front Immunol,2021,12:656364
参考文献 15
CORN K C,WINDHAM M A,RAFAT M.Lipids in the tumor microenvironment:From cancer progression to treatment[J].Prog Lipid Res,2020,80:101055
参考文献 16
LEE J H,JUNG S,PARK W S,et al.Prognostic nomogram of hypoxia-related genes predicting overall survival of colorectal cancer-analysis of TCGA database[J].Sci Rep,2019,9(1):1803
参考文献 17
XIANG M J,GAO Y,ZHOU Y,et al.A novel nomogram based on cell cycle-related genes for predicting overall survival in early⁃onset colorectal cancer[J].BMC Cancer,2023,23(1):595
参考文献 18
LI L,SUN F Y,KONG F Y,et al.Characterization of a cu-proptosis ⁃ related signature to evaluate immune features and predict prognosis in colorectal cancer[J].Front On-col,2023,13:1083956
参考文献 19
KANANI A,VEEN T,SØREIDE K.Neoadjuvant immunotherapy in primary and metastatic colorectal cancer[J].Br J Surg,2021,108(12):1417-1425
参考文献 20
FAN A H,WANG B D,WANG X,et al.Immunotherapy in colorectal cancer:current achievements and future perspective[J].Int J Biol Sci,2021,17(14):3837-3849
参考文献 21
LEI X,HE Q L,LI Z Q,et al.Cancer stem cells in colorectal cancer and the association with chemotherapy resistance[J].Med Oncol,2021,38(4):43
参考文献 22
HU J L,WANG W,LAN X L,et al.CAFs secreted exo-somes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer[J].Mol Cancer,2019,18(1):91
参考文献 23
KOLACZKOWSKA E,KUBES P.Neutrophil recruitment and function in health and inflammation[J].Nat Rev Im-munol,2013,13(3):159-175
参考文献 24
JAILLON S,PONZETTA A,MITRI D D,et al.Neutrophil diversity and plasticity in tumour progression and therapy[J].Nat Rev Cancer,2020,20(9):485-503
参考文献 25
ZHANG Y T,GUOQIANG L,SUN M M,et al.Targeting and exploitation of tumor-associated neutrophils to enhance immunotherapy and drug delivery for cancer treatment[J].Cancer Biol Med,2020,17(1):32-43
参考文献 26
XIONG S M,DONG L L,CHENG L.Neutrophils in cancer carcinogenesis and metastasis[J].J Hematol Oncol,2021,14(1):173
参考文献 27
SHAUL M E,FRIDLENDER Z G.Tumour⁃associated neutrophils in patients with cancer[J].Nat Rev Clin Oncol,2019,16(10):601-620
参考文献 28
ALBRENGUES J,SHIELDS M A,NG D,et al.Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice[J].Science,2018,361(6409):eaao4227
参考文献 29
DEMKOW U.Neutrophil extracellular traps(NETs)in can⁃cer invasion,evasion and metastasis[J].Cancers,2021,13(17):4495
参考文献 30
KHAN U,CHOWDHURY S,BILLAH M M,et al.Neutrophil extracellular traps in colorectal cancer progression and metastasis[J].Int J Mol Sci,2021,22(14):7260
参考文献 31
ZHANG J R,HOU P,WANG X J,et al.TNFRSF11B suppresses memory CD4+ T cell infiltration in the colon cancer microenvironment:a multiomics integrative analysis[J].Front Immunol,2021,12:742358
参考文献 32
INNOCENTI F,YAZDANI A,RASHID N,et al.Tumor immunogenomic features determine outcomes in patients with metastatic colorectal cancer treated with standard⁃of-care combinations of bevacizumab and cetuximab[J].Clin Cancer Res,2022,28(8):1690-1700
目录contents

    摘要

    目的:构建一种新的预测结直肠癌(colorectal cancer,CRC)预后和治疗的模型。方法:利用单因素分析以及最小绝对收缩和选择运算(least absolute shrinkage and selection operator,LASSO)-Cox回归分析训练队列GSE39582,构建CRC预后标签(prognostic signature of colorectal cancer,PSCRC),并利用外部队列CRC_TCGA和GSE17536验证PSCRC。评估PSCRC与临床指标、肿瘤免疫微环境和免疫细胞浸润的相关性,基因富集分析(gene set enrichment analysis,GSEA)PSCRC的潜在功能。整合PSCRC和临床分期等7个因素绘制预后列线图,并通过决策曲线分析(decision curve analysis,DCA)评估预后效果。最后,预测免疫治疗和化疗疗效。结果:本研究构建了PSCRC,2个外部队列证实其预后灵敏度和特异度较高。TNM分期均显著影响PSCRC风险评分(P均< 0.001);PSCRC与肿瘤微环境基质评分、免疫评分和ESTIMATE评分均显著正相关(P均< 0.001),与中性粒细胞浸润显著正相关(P均< 0.05),与活化记忆性CD4+ T细胞浸润显著负相关(P均< 0.01)。进一步地GSEA分析显示, PSCRC可能参与氧化磷酸化、血管新生、缺氧和炎症应答等过程。重要的是,新构建模型显示出较好的预后能力,C指数为 0.765,95% 置信区间为0.747~0.783(P < 0.001)。最后,在3个队列中治疗预测均显示低风险评分组免疫治疗响应率更高(P均 < 0.001);PSCRC与伊马替尼、达沙替尼、帕唑帕尼等化疗药半抑制浓度(half maximal inhibitory concentration,IC50)显著负相关 (P均< 0.001),与二甲双胍、索拉非尼等药物IC50显著正相关(P均< 0.001)。结论:本研究构建了PSCRC,为CRC预后提供了良好的模型,还为预测治疗提供了潜在标志物。

    Abstract

    Objective:To construct a new model for predicting the outcomes and therapeutic efficacy of colorectal cancer(CRC). Methods:Firstly,the univariate analysis and the least absolute shrinkage and selection operator(LASSO)-Cox regression analysis were used to train the GSE39582 dataset to construct a prognostic signature of colorectal cancer(PSCRC),and external datasets CRC_TCGA and GSE17536 were used to validate PSCRC. The correlations of PSCRC with clinical indicators,tumor immune microenvironment and immune cells infiltration were evaluated,and the molecular function of PSCRC was analyzed by gene set enrichment analysis(GSEA). Next,seven factors,such as PSCRC and clinical stage,were integrated to draw a prognostic nomogram, and the prognostic effect was evaluated by the decision curve analysis(DCA). Finally,the efficacy of immunotherapy and chemotherapy was predicted. Results:We constructed a PSCRC,which was validated by two external datasets,confirming its high prognostic sensitivity and specificity. TNM staging significantly affected the risk scores of PSCRC(all P < 0.001);PSCRC showed significantly positively correlations with tumor microenvironment matrix(TME)score,immune score,and ESTIMATE score(all P < 0.001),significantly positive correlations with infiltrations such as neutrophils(all P < 0.05),and significantly negative correlations with infiltrations like activated memory CD4 + T cells(all P < 0.01). In addition,the GSEA analysis indicated that PSCRC might participate in oxidative phosphorylation,angiogenesis,hypoxia and inflammatory response. Importantly,the newly constructed model showed a good prognostic ability,with a C-index of 0.765 and a 95% confidence interval(CI)of 0.747 to 0.783(P < 0.001). Finally,in the three datasets,the therapy prediction results revealed that the low-risk scoring group had a high response rate to immunotherapy (all P < 0.001);PSCRC was significantly negatively correlated with the half inhibitory concentration(IC50)of chemotherapy drugs such as imatinib,dasatinib,and pazopanib(all P < 0.001),and significantly positively correlated with the IC50 of metformin,sorafenib and other drugs(all P <0.001). Conclusion:We construct a PSCRC,which provides a robust model for CRC prognosis. and also offers a potential marker for predicting treatment.

  • 结直肠癌(colorectal cancer,CRC)是指发生于结肠或直肠的癌变,以直肠、乙状结肠最为常见。国际癌症研究机构编制的2020年癌症发病率和死亡率评估数据显示,2020年全球范围内新发1 930万例癌症病例,死亡人数近1 000万例。其中,CRC发病数近 193 万(10%),排名仅次于乳腺癌和肺癌,位居第3位;死亡人数近92万(9.2%),仅次于肺癌,位居第 2位[1]。在我国,CRC是最常见的消化道恶性肿瘤之一,发病率和死亡率在所有癌症中分别位列第3和第 5位,且发病率仍在继续增长[2],尤其是城区男性发病率增长速度最快[3]

  • 由于 CRC 发病早期缺乏特异性的症状表现而容易被患者忽视,一旦出现血便、排便习惯改变等情形时,病情往往已经进展至严重阶段,此时癌细胞普遍随着血液系统或者淋巴循环而扩散至其他部位,形成转移灶,患者生存周期急剧缩短[4]。CRC 给医疗系统造成了沉重负担,严重威胁着人们的身体健康。

  • 目前临床上治疗 CRC 的方法包括手术、放化疗、靶向治疗和免疫治疗,可提高 CRC 患者 5 年生存率,但是肿瘤异质性依然影响着 CRC 的诊疗效果[5-7]。CRC疗效和预后预测不仅可以帮助临床医师制定合理的治疗方案,实现最优治疗效果,还可以帮助患者了解病情,更好配合医师诊疗。因此,构建 CRC 预后和疗效预测的标志物在临床上具有重要意义。

  • 1 材料和方法

  • 1.1 材料

  • 从癌症基因组图谱(The Cancer Genome Atlas, TCGA)数据库(https://portal.gdc.cancer.gov)下载并整理 CRC_TCGA(581 例样本)的临床和 RNA 测序 (RNA sequencing,RNA⁃seq)数据,提取 TPM(trans⁃ formation parameters model,TPM)格式的数据,用 log2(表达值+1)方法处理数据。从 GEO(Gene Ex⁃ pression Omnibus,GEO)(https://www.ncbi.nlm.nih. gov/gds)数据库下载 CRC 数据集 GSE39582(585 例样本)[8] 和GSE17536(177例样本)[9],经过id转换和标准化处理。

  • 1.2 方法

  • 1.2.1 单因素预后分析

  • 利用 R(4.2.1 版本)软件包“survival”进行批量拟合生存回归,分组策略:0~50 vs.50~100,预后类型为总生存期(overall survival,OS)[10]

  • 1.2.2 最小绝对收缩和选择运算(least absolute shrinkage and selection operator,LASSO)⁃Cox回归分析

  • 预后 LASSO 变量轨迹:使用 R 包“glmnet”对清洗后的GSE39582数据进行分析,得到变量系数值、 λ对数值、L1正则化值,并对数据进行可视化。

  • 预后 LASSO 系数筛选:使用“glmnet”包对清洗后的数据进行分析得到变量λ值、最大似然数,并对数据进行可视化。

  • 1.2.3 CRC预后标签(prognostic signature of colorec⁃ tal cancer,PSCRC)效果评估

  • 根据 PSCRC 风险评分百分位数(50%)将患者分为两组,使用 R 包“survival”的“survfit”函数分析两组患者预后差异。随后,利用 R 包“pROC”的 “ROC”函数在1年、3年和5年3个时间点进行受试者工作特征(receiver operating characteristic,ROC) 曲线分析,并使用“ci”函数评估曲线下面积(area under curve,AUC)和 95%置信区间,获得最终 AUC 结果。最后,分析 PSCRC 风险评分与患者随访时间、结局以及每个基因表达变化之间的关系。

  • 1.2.4 外部数据队列验证PSCRC

  • 根据公式计算两个外部队列 GSE17536 和 CRC_TCGA中PSCRC的风险评分,验证PSCRC的预后效果。

  • 1.2.5 PSCRC的表征

  • 分析TNM分期对PSCRC风险评分的影响。

  • 1.2.6 PSCRC 与肿瘤微环境(tumor microenviron⁃ ment,TME)和免疫细胞浸润相关性

  • 分别利用“ESTIMATE”和“CIBERSORT”计算各队列中每个样本的TME 评分和肿瘤免疫细胞浸润评分。再利用R包(2.1.6版本)“psych”的“corr.test” 函数计算PSCRC风险评分与TME各指标评分和免疫细胞浸润评分之间的皮尔森相关系数,并使用 “ggplot2”软件包进行可视化。

  • 1.2.7 富集分析PSCRC

  • 利用 R 包“clusterProfiler”进行基因富集分析 (gene set enrichment analysis,GSEA)[11]P <0.05和错误发现率(false discovery rate,FDR)<0.25 表示差异有统计学意义,使用“ggplot2”软件包进行可视化。

  • 1.2.8 预后列线图绘制与评估

  • 使用 R包“survival”包进行比例风险假设检验,并进行 Cox 回归分析,使用“rms”包构建预后列线图,校准分析,并进行可视化。另外,通过“survival” 包拟合预后模型,使用“stdca.R”文件进行决策曲线分析(decision curve analysis,DCA)。

  • 1.2.9 免疫治疗和化疗预测

  • 首先,使用 TIDE(http://tide.dfci.harvard.edu)预测抗 PD1 和抗 CTLA4 免疫治疗响应[12]。根据 PSCRC风险分数将患者分为2组,计算高、低风险组间免疫治疗响应率的差异。然后,利用R包“pRRo⁃ phetic”预测 CGP(cancer genome project,CGP)数据库中化疗药物的敏感性。

  • 1.3 统计学方法

  • 利用Cox回归和Log⁃rank检验分析不同组间预后差异,采用χ2 检验进行计数资料组间比较,采用皮尔森检验进行相关性分析。P <0.05 为差异有统计学意义。

  • 2 结果

  • 2.1 预后相关基因

  • 为了构建PSCRC,利用单因素生存分析筛选了 GSE39582 队列,获得 OS 相关基因 2 663 个(所有 P <0.05),部分结果如图1A所示。

  • 2.2 LASSO⁃Cox筛选PSCRC

  • 在训练队列GSE39582中利用LASSO⁃Cox方法构建CRC OS标签,λ值设置为0.037,获得了由18个基因构成的PSCRC(图1B、C),其风险分数计算公式为:Risk score=0.34×(ZEB1-AS1)+0.08×(PTPN14)+ (-0.11)×(MYB)+ 0.05 ×(LINC00973)+ 0.03 × (GDI1)+0.04×(SLC2A3)+0.01×(SIX4)+(-0.08)× (ACAT2)+ 0.04 ×(KRT6A)+(-0.18)×(ZNF552)+ 0.06×(SEMA4C)+0.29×(KIF7)+0.09×(GABRG2)+ (-0.09)×(TNFRSF14)+ 0.09 ×(LINC00638)+ (-0.14)×(OIT3)+0.25×(HCN4)+0.73×(OFCC1)。低风险组 CRC 患者 OS 显著优于高风险组(P <0.001,图1D),ROC 曲线显示 PSCRC 是一种具有良好敏感性和特异性的预后标签(图1E)。其中, ZNF552、OIT3、MYB、TNFRSF14和ACAT2的表达是 CRC OS的保护性因素,其余基因的表达是CRC OS 的不良因素(图1F)。

  • 2.3 外部队列验证PSCRC

  • 为验证PSCRC的预后效果,收集了2个外部数据队列进行验证。GSE17536和CRC_TCGA队列分析均显示,低风险评分组的OS显著高于高风险评分组(P 均<0.001,图2A、B),预后敏感性和特异性均较好(图2C、D)。且ZNF552、OIT3、MYB、TNFRSF14 和ACAT2基因的表达是CRC OS的保护性因素,其余基因的表达是CRC OS的不良因素(图2E、F)。

  • 2.4 PSCRC表征

  • 为探讨PSCRC 是否可能成为一个新的CRC 临床特征,对PSCRC进行了表征,结果显示PSCRC风险分数分别受到 T 分期(P <0.001)、N 分期(P <0.001)、M 分期(P <0.001)和病理分期(P <0.001) 的显著影响(图3A~D)。

  • 2.5 PSCRC与TME相关性

  • TME 是近年来肿瘤发生发展与治疗研究领域的热点,TME 在肿瘤进展、耐药和免疫治疗响应等过程中发挥重要作用[13-15]。为了探讨 PSCRC 在 CRC中的功能,分析了PSCRC与TME指标以及免疫细胞浸润的相关性。结果显示,不同队列中PSCRC 风险评分分别与基质评分显著正相关(r=0.47,P <0.001;r=0.42,P <0.001;r=0.34,P <0.001,与免疫评分显著正相关(r=0.25,P <0.001;r=0.31,P <0.001; r=0.11,P <0.001),与 ESTIMATE 评分显著正相关 (r=0.40,P <0.001;r=0.34,P <0.001;r=0.25,P <0.001)(图3E~G)。此外,不同队列的PSCRC风险评分与中性粒细胞浸润呈显著正相关(P <0.01,P <0.00 1,P <0.05),与活化记忆性CD4+ T细胞浸润呈显著负相关(P <0.01,P <0.01,P <0.001,图3H)。

  • 图1 LASSO⁃Cox回归分析构建PSCRC

  • Figure1 PSCRC constructed by thd LASSO⁃Cox regression analysis

  • 2.6 富集分析PSCRC

  • 为探讨PSCRC促进CRC进展的分子机制,开展 GSEA 富集分析,结果显示PSCRC 可能参与氧化磷酸化、血管新生、缺氧、HEDGEHOG 通路和炎症应答等信号通路(图4A~C)。

  • 2.7 预后列线图与预后效果评估

  • 为了构建CRC预后模型,整合了传统的临床预后指标和新构建的 PSCRC,绘制了预后列线图(图5A)和预后校准曲线(图5B),预后决策曲线DCA结果提示整合传统临床分期指标和PSCRC等7个要素的模型预后效用最佳(图5C)。为了评估新模型的预后效果,研究人员对比了文献报道的CRC预后模型,Lee 等[16] 构建的模型预后一致性指数为 0.703, 95%CI:0.683~0.724(P <0.001,图5D);Xiang 等[17] 构建的模型预后一致性指数为 0.641,95% CI: 0.618~0.663(P <0.001,图5E);Li 等[18] 构建的模型预后一致性指数为 0.640,95% CI:0.617~0.662 (P <0.001,图5F);本研究新构建模型的预后一致性指数为 0.765,95%CI:0.747~0.783(P <0.001,图5G)。

  • 2.8 治疗预测

  • 免疫治疗是一种很有前景的肿瘤治疗手段,但是面临着治疗响应率不高等挑战[19-20],而化疗也面临着不良反应大、耐药和敏感性不高等问题[21-22]。因此,开发预测疗效的标志物具有重要的临床意义。本研究分析了 PSCRC 在免疫治疗和化疗预测方面的作用,结果显示 PSCRC 低风险组免疫治疗响应率显著优于高风险组(P 均 <0.001,图6A~C)。化疗预测结果显示 PSCRC 风险分数与伊马替尼、达沙替尼、帕唑帕尼等药物 IC50呈显著负相关(P 均<0.001,图6D),与二甲双胍、索拉非尼等药物IC50成显著正相关(P均<0.001,图6E)。

  • 图2 PSCRC预后预测的验证

  • Figure2 Validation of PSCRC to predict clinical outcome

  • 3 讨论

  • CRC是一种常见的消化道肿瘤,严重威胁人们的生命健康[1]。化疗和免疫治疗的进步改善了患者的生存期,但是肿瘤异质性依然影响CRC的诊疗效果[6]。本研究旨在构建一种新的整合多因素的CRC 预后模型,并尝试预测化疗和免疫治疗疗效。

  • 研究人员下载并整理了GSE39582、GSE17536和 CRC_TCGA 3个CRC数据队列,以GSE39582作为训练集构建 PSCRC,以 CRC_TCGA 和 GSE17536 作为外部数据队列验证 PSCRC。单因素生存分析筛选训练集 GSE39582,获得了 2 663 个 OS 相关基因。 LASSO ⁃Cox 回归分析获得了由 18 个基因构成的 PSCRC及其风险分数计算公式,低风险组CRC患者 OS 显著优于高风险组,ROC 曲线证实 PSCRC 是一种具有良好敏感性和特异性的预后标签。该预测标签中,ZNF552、OIT3、MYB、TNFRSF14 和 ACAT2 的表达是 CRC OS 的保护性因素,其他基因的表达是 CRC OS 的不良因素。验证队列 CRC_TCGA 和 GSE17536均验证PSCRC是一种具有良好敏感性和特异性的预测标签。

  • 接下来,本研究对 PSCRC 进行了表征,分析了临床指标对PSCRC风险分数的影响以及PSCRC与 TME 的相关性。结果显示 TNM 分期均显著影响 PSCRC 的风险分数,且分期越高,PSCRC 风险分数越高。进一步地,PSCRC的风险分数分别与TME基质评分、免疫评分和ESTIMATE评分显著正相关,提示 PSCRC 可能通过调节 TME 参与 CRC 进展。 PSCRC风险评分与中性粒细胞浸润呈显著正相关,与活化记忆性 CD4+ T 细胞浸润呈显著负相关。中性粒细胞是免疫细胞家族中对传染源和组织损伤做出反应的重要成员,占人类循环白细胞的 50%~70%[23]。中性粒细胞可以浸润到肿瘤中参与肿瘤进展[24]。肿瘤相关中性粒细胞(tumor⁃associated neu⁃ trophil,TAN)具有促肿瘤表型,可参与肿瘤起始、转移和免疫抑制[25-26]。多数情况下,实体瘤中TAN的高浸润水平意味着患者的临床结果不佳[27]。TAN 可以向 TME 释放中性粒细胞胞外陷阱(neutrophil extracellular trap,NET),唤醒休眠的癌症细胞,导致肿瘤复发及其无限制的生长和扩散[28],还可以调节TME,加剧肿瘤的侵袭和转移[29-30]。对于活化记忆性CD4+ T 细胞,文献报道CRC不良预后标志物TN⁃ FRSF11B可抑制活化记忆性 CD4+ T 细胞浸润[31],且活化记忆性CD4+ T 细胞浸润与CRC预后延长有关[32]。因此,PSCRC很可能通过促进TAN浸润,抑制活化记忆性CD4+ T 细胞浸润,促进CRC进展,不利于患者预后。此外,GSEA 富集分析结果显示 PSCRC 参与氧化磷酸化、血管新生、缺氧、HEDGE⁃ HOG通路和炎症应答等信号通路,再次提示PSCRC 具有调节CRC TME的潜在能力。

  • 图3 PSCRC与临床特征和TME的相关性分析

  • Figure3 The associations of PSCRC with clinical features and TME index

  • 图4 GSEA分析PSCRC

  • Figure4 The GSEA analysis of PSCRC

  • 为了构建CRC预后模型,本研究整合传统的临床预后指标TNM分期、患者年龄、性别和新构建的 PSCRC,绘制了预后列线图和预后校准曲线。预后 DCA 结果显示整合传统临床指标和 PSCRC 等 7 个要素的模型预后效用最佳。为了评估新模型的预后效果,对比了文献报道的3个CRC预后模型[16-18],其DCA评估结果显示新模型的一致性指数最高,有助于提升预后效果。新模型纳入了传统的临床指标与基因表达数据,其中传统的指标均可从临床获得,基因表达数据可以通过 RNA 测序或者反转录⁃ 聚合酶链式反应技术获得,成本不高且技术难度不大,便于开展预后评估。

  • 最后利用PSCRC 风险评分预测了CRC 免疫治疗疗效和化疗药物敏感性,结果显示PSCRC低风险组免疫治疗响应率显著优于高风险组,PSCRC风险分数与伊马替尼、达沙替尼、帕唑帕尼等药物 IC50 显著负相关,与二甲双胍、索拉非尼等药物 IC50显著正相关,提示 PSCRC 是一个具有潜力的治疗预测标志物。

  • 总之,本研究不仅构建了一个预后更佳的模型,还为治疗预测提供了一个具有前景的潜在标志物。但本研究仍存在一定不足,需要在后续研究中得以完善:①纳入更多外部数据队列验证PSCRC的效能,优化模型的计算方法;②收集临床治疗数据,验证PSCRC的治疗预测作用。

  • 图5 预后列线图绘制与预后效果评估

  • Figure5 Mapping and evaluation of the prognostic nomogram

  • 图6 PSCRC的疗效预测

  • Figure6 Prediction of the efficacy based on PSCRC

  • 参考文献

    • [1] SUNG H,FERLAY J,SIEGEL R L,et al.Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2021,71(3):209-249

    • [2] 王锡山.中美结直肠癌流行病学特征对比及防控策略分析[J].中华结直肠疾病电子杂志,2019,8(1):1-5

    • [3] 张宇涛.结直肠癌的治疗进展[J].山西医药杂志,2020,49(5):535-536

    • [4] 王正航,李彦豪,陈米芬,等.2019年结直肠癌领域治疗进展[J].中华结直肠疾病电子杂志,2020,9(1):7-12

    • [5] MCQUADE R M,STOJANOVSKA V,BORNSTEIN J C,et al.Colorectal cancer chemotherapy:the evolution of treatment and new approaches[J].Curr Med Chem,2017,24(15):1537-1557

    • [6] ROSATI G,APRILE G,COLOMBO A,et al.Colorectal cancer heterogeneity and the impact on precision medicine and therapy efficacy[J].Biomedicines,2022,10(5):1035

    • [7] SHINJI S,YAMADA T,MATSUDA A,et al.Recent advances in the treatment of colorectal cancer:a review[J].J Nippon Med Sch,2022,89(3):246-254

    • [8] MARISA L,REYNIÈS A D,DUVAL A,et al.Gene expression classification of colon cancer into molecular subtypes:characterization,validation,and prognostic value[J].PLoS Med,2013,10(5):e1001453

    • [9] SMITH J J,DEANE N G,WU F,et al.Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer[J].Gastroenterology,2010,138(3):958-968

    • [10] LIU J F,LICHTENBERG T,HOADLEY K A,et al.An integrated TCGA pan⁃cancer clinical data resource to drive high-quality survival outcome analytics[J].Cell,2018,173(2):400-416

    • [11] YU G C,WANG L G,HAN Y Y,et al.clusterProfiler:an R package for comparing biological themes among gene clusters[J].OMICS,2012,16(5):284-287

    • [12] FU J X,LI K R,ZHANG W B,et al.Large ⁃scale public data reuse to model immunotherapy response and resistance[J].Genome Med,2020,12(1):21

    • [13] BEJARANO L,JORDĀO M J C,JOYCE J A.Therapeutic targeting of the tumor microenvironment[J].Cancer Dis-cov,2021,11(4):933-959

    • [14] KHALAF K,HANA D,CHOU J T,et al.Aspects of the tumor microenvironment involved in immune resistance and drug resistance[J].Front Immunol,2021,12:656364

    • [15] CORN K C,WINDHAM M A,RAFAT M.Lipids in the tumor microenvironment:From cancer progression to treatment[J].Prog Lipid Res,2020,80:101055

    • [16] LEE J H,JUNG S,PARK W S,et al.Prognostic nomogram of hypoxia-related genes predicting overall survival of colorectal cancer-analysis of TCGA database[J].Sci Rep,2019,9(1):1803

    • [17] XIANG M J,GAO Y,ZHOU Y,et al.A novel nomogram based on cell cycle-related genes for predicting overall survival in early⁃onset colorectal cancer[J].BMC Cancer,2023,23(1):595

    • [18] LI L,SUN F Y,KONG F Y,et al.Characterization of a cu-proptosis ⁃ related signature to evaluate immune features and predict prognosis in colorectal cancer[J].Front On-col,2023,13:1083956

    • [19] KANANI A,VEEN T,SØREIDE K.Neoadjuvant immunotherapy in primary and metastatic colorectal cancer[J].Br J Surg,2021,108(12):1417-1425

    • [20] FAN A H,WANG B D,WANG X,et al.Immunotherapy in colorectal cancer:current achievements and future perspective[J].Int J Biol Sci,2021,17(14):3837-3849

    • [21] LEI X,HE Q L,LI Z Q,et al.Cancer stem cells in colorectal cancer and the association with chemotherapy resistance[J].Med Oncol,2021,38(4):43

    • [22] HU J L,WANG W,LAN X L,et al.CAFs secreted exo-somes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer[J].Mol Cancer,2019,18(1):91

    • [23] KOLACZKOWSKA E,KUBES P.Neutrophil recruitment and function in health and inflammation[J].Nat Rev Im-munol,2013,13(3):159-175

    • [24] JAILLON S,PONZETTA A,MITRI D D,et al.Neutrophil diversity and plasticity in tumour progression and therapy[J].Nat Rev Cancer,2020,20(9):485-503

    • [25] ZHANG Y T,GUOQIANG L,SUN M M,et al.Targeting and exploitation of tumor-associated neutrophils to enhance immunotherapy and drug delivery for cancer treatment[J].Cancer Biol Med,2020,17(1):32-43

    • [26] XIONG S M,DONG L L,CHENG L.Neutrophils in cancer carcinogenesis and metastasis[J].J Hematol Oncol,2021,14(1):173

    • [27] SHAUL M E,FRIDLENDER Z G.Tumour⁃associated neutrophils in patients with cancer[J].Nat Rev Clin Oncol,2019,16(10):601-620

    • [28] ALBRENGUES J,SHIELDS M A,NG D,et al.Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice[J].Science,2018,361(6409):eaao4227

    • [29] DEMKOW U.Neutrophil extracellular traps(NETs)in can⁃cer invasion,evasion and metastasis[J].Cancers,2021,13(17):4495

    • [30] KHAN U,CHOWDHURY S,BILLAH M M,et al.Neutrophil extracellular traps in colorectal cancer progression and metastasis[J].Int J Mol Sci,2021,22(14):7260

    • [31] ZHANG J R,HOU P,WANG X J,et al.TNFRSF11B suppresses memory CD4+ T cell infiltration in the colon cancer microenvironment:a multiomics integrative analysis[J].Front Immunol,2021,12:742358

    • [32] INNOCENTI F,YAZDANI A,RASHID N,et al.Tumor immunogenomic features determine outcomes in patients with metastatic colorectal cancer treated with standard⁃of-care combinations of bevacizumab and cetuximab[J].Clin Cancer Res,2022,28(8):1690-1700

  • 参考文献

    • [1] SUNG H,FERLAY J,SIEGEL R L,et al.Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2021,71(3):209-249

    • [2] 王锡山.中美结直肠癌流行病学特征对比及防控策略分析[J].中华结直肠疾病电子杂志,2019,8(1):1-5

    • [3] 张宇涛.结直肠癌的治疗进展[J].山西医药杂志,2020,49(5):535-536

    • [4] 王正航,李彦豪,陈米芬,等.2019年结直肠癌领域治疗进展[J].中华结直肠疾病电子杂志,2020,9(1):7-12

    • [5] MCQUADE R M,STOJANOVSKA V,BORNSTEIN J C,et al.Colorectal cancer chemotherapy:the evolution of treatment and new approaches[J].Curr Med Chem,2017,24(15):1537-1557

    • [6] ROSATI G,APRILE G,COLOMBO A,et al.Colorectal cancer heterogeneity and the impact on precision medicine and therapy efficacy[J].Biomedicines,2022,10(5):1035

    • [7] SHINJI S,YAMADA T,MATSUDA A,et al.Recent advances in the treatment of colorectal cancer:a review[J].J Nippon Med Sch,2022,89(3):246-254

    • [8] MARISA L,REYNIÈS A D,DUVAL A,et al.Gene expression classification of colon cancer into molecular subtypes:characterization,validation,and prognostic value[J].PLoS Med,2013,10(5):e1001453

    • [9] SMITH J J,DEANE N G,WU F,et al.Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer[J].Gastroenterology,2010,138(3):958-968

    • [10] LIU J F,LICHTENBERG T,HOADLEY K A,et al.An integrated TCGA pan⁃cancer clinical data resource to drive high-quality survival outcome analytics[J].Cell,2018,173(2):400-416

    • [11] YU G C,WANG L G,HAN Y Y,et al.clusterProfiler:an R package for comparing biological themes among gene clusters[J].OMICS,2012,16(5):284-287

    • [12] FU J X,LI K R,ZHANG W B,et al.Large ⁃scale public data reuse to model immunotherapy response and resistance[J].Genome Med,2020,12(1):21

    • [13] BEJARANO L,JORDĀO M J C,JOYCE J A.Therapeutic targeting of the tumor microenvironment[J].Cancer Dis-cov,2021,11(4):933-959

    • [14] KHALAF K,HANA D,CHOU J T,et al.Aspects of the tumor microenvironment involved in immune resistance and drug resistance[J].Front Immunol,2021,12:656364

    • [15] CORN K C,WINDHAM M A,RAFAT M.Lipids in the tumor microenvironment:From cancer progression to treatment[J].Prog Lipid Res,2020,80:101055

    • [16] LEE J H,JUNG S,PARK W S,et al.Prognostic nomogram of hypoxia-related genes predicting overall survival of colorectal cancer-analysis of TCGA database[J].Sci Rep,2019,9(1):1803

    • [17] XIANG M J,GAO Y,ZHOU Y,et al.A novel nomogram based on cell cycle-related genes for predicting overall survival in early⁃onset colorectal cancer[J].BMC Cancer,2023,23(1):595

    • [18] LI L,SUN F Y,KONG F Y,et al.Characterization of a cu-proptosis ⁃ related signature to evaluate immune features and predict prognosis in colorectal cancer[J].Front On-col,2023,13:1083956

    • [19] KANANI A,VEEN T,SØREIDE K.Neoadjuvant immunotherapy in primary and metastatic colorectal cancer[J].Br J Surg,2021,108(12):1417-1425

    • [20] FAN A H,WANG B D,WANG X,et al.Immunotherapy in colorectal cancer:current achievements and future perspective[J].Int J Biol Sci,2021,17(14):3837-3849

    • [21] LEI X,HE Q L,LI Z Q,et al.Cancer stem cells in colorectal cancer and the association with chemotherapy resistance[J].Med Oncol,2021,38(4):43

    • [22] HU J L,WANG W,LAN X L,et al.CAFs secreted exo-somes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer[J].Mol Cancer,2019,18(1):91

    • [23] KOLACZKOWSKA E,KUBES P.Neutrophil recruitment and function in health and inflammation[J].Nat Rev Im-munol,2013,13(3):159-175

    • [24] JAILLON S,PONZETTA A,MITRI D D,et al.Neutrophil diversity and plasticity in tumour progression and therapy[J].Nat Rev Cancer,2020,20(9):485-503

    • [25] ZHANG Y T,GUOQIANG L,SUN M M,et al.Targeting and exploitation of tumor-associated neutrophils to enhance immunotherapy and drug delivery for cancer treatment[J].Cancer Biol Med,2020,17(1):32-43

    • [26] XIONG S M,DONG L L,CHENG L.Neutrophils in cancer carcinogenesis and metastasis[J].J Hematol Oncol,2021,14(1):173

    • [27] SHAUL M E,FRIDLENDER Z G.Tumour⁃associated neutrophils in patients with cancer[J].Nat Rev Clin Oncol,2019,16(10):601-620

    • [28] ALBRENGUES J,SHIELDS M A,NG D,et al.Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice[J].Science,2018,361(6409):eaao4227

    • [29] DEMKOW U.Neutrophil extracellular traps(NETs)in can⁃cer invasion,evasion and metastasis[J].Cancers,2021,13(17):4495

    • [30] KHAN U,CHOWDHURY S,BILLAH M M,et al.Neutrophil extracellular traps in colorectal cancer progression and metastasis[J].Int J Mol Sci,2021,22(14):7260

    • [31] ZHANG J R,HOU P,WANG X J,et al.TNFRSF11B suppresses memory CD4+ T cell infiltration in the colon cancer microenvironment:a multiomics integrative analysis[J].Front Immunol,2021,12:742358

    • [32] INNOCENTI F,YAZDANI A,RASHID N,et al.Tumor immunogenomic features determine outcomes in patients with metastatic colorectal cancer treated with standard⁃of-care combinations of bevacizumab and cetuximab[J].Clin Cancer Res,2022,28(8):1690-1700