en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

张艳,E-mail: 3390198019@qq.com

中图分类号:R733.7

文献标识码:A

文章编号:1007-4368(2024)10-1362-07

DOI:10.7655/NYDXBNSN220992

参考文献 1
RINSHO K.The 8p11 myeloproliferative syndrome:a review of recent literature[J].Rinsho Ketsueki,2019,60(9):1157-1165
参考文献 2
DANIEL A A,ATTILIO O,ROBERT H,et al.The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J].Blood,2016,127(20):2391-2405
参考文献 3
UMINO K,FUJIWARA S I,IKEDA T,et al.Clinical outcomes of myeloid/lymphoid neoplasms with fibroblast growth factor eceptor ⁃ 1(FGFR1)rearrangement[J].Hematology,2018,23(8):470-477
参考文献 4
LANDBERG N,DREIMANE A,RISSLER M,et al.Primary cells in BCR/FGFR1⁃positive 8p11 myeloproliferative syndrome are sensitive to dovitinib,ponatinib,and dasatinib[J].Eue J Haematol,2017,99(5):442-448
参考文献 5
KHODADOUST M S,LUO B,MEDEIROS B C,et al.Clinical activity of ponatinib in a patient with FGFR1⁃rearranged mixed-phenotype acute leukemia[J].Leukemia,2016,30(4):947-950
参考文献 6
WANG T,CHENG C Y,PENG L J,et al.Combination of arsenic trioxide and Dasatinib:a new strategy to treat Philadelphia chromosome-positive acute lymphoblastic leukaemia[J].J Cell Mol Med,2018,22(3):1614-1626
参考文献 7
中华医学会血液学分会,中国医师协会血液科医师分会.中国急性早幼粒细胞白血病诊疗指南(2018年版)[J].中华血液学杂志,2018,39(3):179-183
参考文献 8
MONTENEGRO-GARREAUD X,MIRANDA R N,REYNOLDS A,et al.Myeloproliferative neoplasms with(t 8;22)(p11.2;q11.2)/BCR⁃FGFR1:a meta⁃analysis of 20 cases shows cytogenetic progression with B⁃lymphoid blast phase[J].Hum Pathol,2017,65:147-156
参考文献 9
CHONG Y T,LIU Y,LU S M,et al.Critical individual roles of the BCR and FGFR1 kinase domains in BCR⁃FG⁃FR1⁃ driven stem cell leukemia/lymphoma syndrome[J].Int J Cancer,2020,146(8):2243-2254
参考文献 10
GU T L,GOSS V L,REEVES C,et al.Phosphotyrosine profiling identifies the KG ⁃1 cell line as a model for the study of FGFR1 fusions in acute myeloid leukemia[J].Blood,2006,108(13):4202-4204
参考文献 11
CORTES J,APPERLEY J,LOMAIA E,et al.Ponatinib dose⁃ranging study in chronic⁃phase chronic myeloid leukemia:a randomized,open⁃label phase 2 clinical trial[J].Blood,2021,138(21):2042-2050
参考文献 12
COUTURIER M A,THOMAS X,RAFFOUX E,et al.Blinatumomab+ponatinib for relapsed/refractory Philadelphia chromosome-positive acute lymphoblastic leukemia in adults[J].Leuk Lymphoma,2021,62(3):620-629
参考文献 13
CORTES J E,KIM D W,PINILLA⁃IBARZ J,et al.Pona-tinib efficacy and safety in Philadelphia chromosome⁃positive leukemia:final 5 ⁃ year results of the phase 2 PACE trial[J].Blood,2018,132(4):393-404
参考文献 14
FIONA H T,TRACY L P,STANLEY S S,et al.Ponatinib:a novel multi-tyrosine kinase inhibitor against human malignancies[J].Onco Targets Ther,2019,12:635-645
参考文献 15
REN M,QIN H,REN R,et al.Ponatinib suppresses the development of myeloid and lymphoid malignancies associated with FGFR1 abnormalities[J].Leukemia,2013,27(1):32-40
参考文献 16
MIGUEL A S,PIERRE F,MARTIN S T,et al.Management of acute promyelocytic leukemia:updated recommendations from an expert panel of the European LeukemiaNet[J].Blood,2019,133(15):1630-1643
参考文献 17
WU S F,RAO G,WANG R,et al.The neuroprotective effect of curcumin against ATO triggered neurotoxicity throughNrf2 and NF⁃κB signaling pathway in the brain of ducks[J].Ecotoxicol Environ Saf,2021,228:112965-112974
参考文献 18
HUANG C H,LEE Y C,CHIOU J T,et al.Arsenic trioxide-induced p38 MAPK and Akt mediated MCL1 downregulation causes apoptosis of BCR-ABL1 ⁃ positive leukemia cells[J].Toxicol Appl Pharmacol,2020,397:115013
参考文献 19
MARÍA C E,EVA C,ELENA D B,et al.2⁃Deoxy ⁃D-glucose cooperates with arsenic trioxide to induce apoptosis in leukemia cells:involvement of IGF ⁃ 1R-regulated Akt/mTOR,MEK/ERK and LKB⁃1/AMPK signaling pathways[J].Biochem Pharmacol,2012,84(12):1604-1616
参考文献 20
ROBERTS A W,ANDREW H W,DAVID C S.BCL2 and MCL1 inhibitors for hematologic malignancies[J].Blood,2021,138(13):1120-1136
参考文献 21
GAURAV S C,SAYER A H,ALEXANDRU A.Caspase⁃3 activation is a critical determinant of genotoxic stress-induced apoptosis[J].Methods Mol Biol,2015,1219:1-9
参考文献 22
XIN P,XU X,DENG C,et al.The role of JAK/STAT signaling pathway and its inhibitors in diseases[J].Int Im-munopharmacol,2020,80:106210
参考文献 23
ANNA O,CHRISTINA W,ARAUJO E D,et al.Direct targeting options for STAT3 and STAT5 in cancer[J].Cancers(Basel),2019,11(12):1930-1945
参考文献 24
INA K,KIMBERLEY J H IDA S G,et al.The PI3K⁃Akt-mTOR signaling pathway in human acute myeloid leukemia(AML)cells[J].Int J Mol Sci,2020,21(8):2907-2928
参考文献 25
GUO Y J,PAN W W,LIU S B,et al.ERK/MAPK signalling pathway and tumorigenesis[J].Exp Ther Med,2020,19(3):1997-2007
参考文献 26
ISHWARYA,SIDDHA K,AISHATH N,et al.Activation of the MAPK pathway mediates resistance to PI3K inhibitors in chronic lymphocytic leukemia[J].Blood,2021,138(1):44-56
目录contents

    摘要

    目的:探讨小分子酪氨酸激酶抑制剂普纳替尼联合三氧化二砷(arsenic trioxide,ATO)对人急性髓系白血病细胞 KG-1的作用及可能机制。方法:CCK-8法检测普纳替尼及ATO对KG-1细胞增殖的影响;流式细胞术 Annexin Ⅴ/PI双重染色法检测细胞凋亡;实时荧光定量PCR检测细胞凋亡相关基因的表达;Western blot检测凋亡相关蛋白、成纤维细胞生长因子受体1 (fibroblast growth factor receptor 1,FGFR1)蛋白及信号通路分子磷酸化水平的表达变化。结果:①ATO及普纳替尼对KG-1细胞的增殖抑制作用呈剂量依赖性,两药联合较单药作用具有更高的增殖抑制率、更少的集落形成及更多的细胞凋亡,差异均有统计学意义。②与DMSO组相比,ATO或普纳替尼均能显著下调Bcl-2表达,上调Bax及Caspase-3表达(P均<0.05);与单药作用相比,联合用药促进Bax及Caspase-3表达的作用更强(P均 < 0.01)。③普纳替尼显著抑制FGFR1基因及蛋白的表达(P均< 0.01),ATO的加入并未使FGFR1表达进一步下降。信号通路研究显示,ATO可以显著抑制m-TOR和MAPK、STAT5的磷酸化 (P均<0.001),但对PI3K/AKT、STAT3的磷酸化无明显影响。普纳替尼可以显著抑制FGFR1蛋白表达及STAT3、STAT5的磷酸化(P均<0.001),但对PI3K/AKT及MAPK的磷酸化无明显影响。两药联合后,STAT3的磷酸化水平较ATO或普纳替尼单药组进一步下调(P均<0.01)。结论:普纳替尼及ATO可能通过不同机制抑制KG-1细胞增殖及集落形成并诱导细胞凋亡;两药联合可进一步增强对KG-1细胞株的抑制效应。

    Abstract

    Objective:To explore the effects and possible mechanisms of the arsenic trioxide(ATO)and small molecule tyrosine kinase inhibitor ponatinb on KG-1 cells in vitro. Methods:Effects of ATO and ponatinib on proliferation of KG-1 cells were detected by CCK -8,and the apoptosis was assessed by Annexin V-FITC. Reverse transcription quantitative polymerase chain reaction(q-PCR) analysis was used to detect the expression of apoptosis-related genes. Western blott was performed to explore the expression levels of apoptosis-related proteins,fibroblast growth factor receptor 1(FGFR1)and phosphorylated signal molecules. Results:①Both ATO and ponatinib effectively inhibited cell proliferation by dose dependent manners. The combination of the two drugs exhibited higher proliferation inhibition rate,less colony formation and more cell apoptosis compared to the single drug treatment. ②Compared with the DMSO group,treatment with either ATO or ponatinib led to significant down-regulation of Bcl-2,up-regulation of Bax and Caspase-3 (P < 0.05). The combination of the two drugs up-regulated the expression of Bax and Caspase-3 more than single drug treatment(both P < 0.01). ③Punatinib significantly inhibited the expression of FGFR1 gene and protein(both P < 0.01),and the addition of ATO did not decrease FGFR1 expression further. Signaling pathway studies showed that ATO significantly inhibited the phosphorylation of MAPK,m-TOR,and STAT5,but had no significant effect on the phosphorylation of PI3K/AKT and STAT3. Ponatinib markedly inhibited the phosphorylation of STAT3/5,and FGFR1 expression(both P < 0.001),but had no significant effect on the phosphorylation of PI3K/AKT and MAPK. The phosphorylation level of STAT3 was further down-regulated by the combination of the two drugs compared with ATO or pratinib monotherapy(both P < 0.01). Conclusion:ATO and ponatinib may inhibit KG - 1 cell proliferation and colony formation and induce cell apoptosis through different mechanisms. The combination of the two drugs can further enhance the inhibitory effect on KG-1 cells.

    Keywords

    arsenic trioxideFGFR1KG-1 cellapoptosis

  • 8p11 骨髓增殖综合征(8p11 myeloproliferative syndrome,EMS)是一种罕见的、与定位于8号染色体短臂的成纤维细胞生长因子受体1(fibroblast growth factor receptor 1,FGFR1)基因易位相关的侵袭性血液肿瘤[1]。2016年被WHO归入伴嗜酸粒细胞增多和PDGFRA、PDGFRB、FGFR1基因重排的髓系和淋巴系肿瘤亚型中[2]。既往研究发现,EMS患者往往对常规化疗耐药,诊断 12 个月时约 46.2%的 EMS 患者发生白血病转化,超过50%的患者在1年内死亡[3]。鉴于EMS极差的预后,针对FGFR1的靶向抑制剂成为近年研究的热点,其中,小分子酪氨酸激酶抑制剂(tyrosine kinase inhibitor,TKI)普纳替尼 (ponatinib)能够抑制下游信号通路的激活,延长 EMS 模型小鼠的生存期[4]。Khodadoust 等[5] 报道显示,1例FGFR1重排阳性的杂合细胞白血病患者规律口服单药普纳替尼12周后达到形态学缓解,但细胞遗传学显示仍有29%阳性。三氧化二砷(arsenic trioxide,ATO)是我国最早用来治疗肿瘤的药物之一,也是目前治疗急性早幼粒细胞白血病的一线方案,鉴于其高效且无明显骨髓毒性,安全性及耐受性均较好,因此常与其他药物联合来治疗恶性肿瘤[6-7]。本研究通过体外实验探索ATO 联合第3 代 TKI 普纳替尼对携带 FGFR1OP2⁃FGFR1 融合基因的 KG⁃1 细胞株的抑制效应,以期为未来临床应用提供理论依据。

  • 1 材料和方法

  • 1.1 材料

  • 普纳替尼(Selleck公司,美国)溶于 DMSO,-80℃ 保存。IMDM培养基(Hyclone公司,美国),无支原体污染;胎牛血清(Gibco公司,美国);TRIzol(Invitrogen 公司,美国);实时荧光定量PCR 试剂、逆转录试剂盒(TaKaRa公司,日本);引物由上海英骏生物技术有限公司合成,具体序列见表1;CCK⁃8 试剂盒(合肥Biosharp生物技术公司);AnnexinⅤ⁃FITC/PI凋亡检测试剂盒(BD 公司,美国);β⁃actin 抗体(Santa Cruz公司,美国);PI3K、p⁃PI3K、AKT、p⁃AKT、mTOR、 p ⁃ mTOR、STAT3/5、p ⁃ STAT3/5、MAPK、p ⁃ MAPK、FGFR1、Bcl⁃2、Bax、Caspase⁃3 抗体(Abcam 公司,美国);HRP标记羊抗兔二抗(Jackson Immuno Research 公司,美国);ATO粉剂(北京双鹤制药股份有限公司)。

  • 表1 引物序列

  • Table1 Sequences of primers

  • 1.2 方法

  • 1.2.1 细胞培养

  • 人白血病 KG⁃1 细胞株购自美国 ATCC。采用含有 20%热灭活胎牛血清的 IMDM 培养基,置于 37℃、5% CO2培养箱中培养,每2~3 d更换1次细胞培养基。实验所用细胞均处于对数生长期。

  • 1.2.2 CCK⁃8法检测单药及联合用药对细胞增殖的影响

  • 取对数生长期的KG⁃1细胞接种于96孔板,每孔 100 μL,细胞数为 2×104 个,分为对照组(DMSO 组)、ATO单药组、普纳替尼单药组、两药联合组,其中单药组同时设置药物浓度梯度,ATO 浓度分别为:5、10、20、40、60、80、100 μg/mL;普纳替尼组浓度分别为:2.5、5.0、10.0、15.0、20.0、25.0、50.0 nmol/L。每组设 3 个复孔,在培养箱中培养48 h后,加入20 μL CCK⁃8溶液,在培养箱内继续孵育1 h,用酶标仪检测 450 nm处各孔的吸光度,计算细胞增殖抑制率及药物的半抑制浓度(inhibitory concentration 50,IC50),并以IC50作为后续细胞实验的给药剂量。

  • 1.2.3 RT⁃qPCR 检测凋亡相关基因及 FGFR1 基因表达

  • 实验分组同前,采用 TRIzol 法提取各组细胞总RNA,测定其浓度和纯度并逆转录为 cDNA,以 GAPDH 作为内参,检测各组凋亡相关基因 Bcl⁃2、 Bax 及 Caspase⁃3 相对表达水平。目的基因相对表达水平以 2-ΔΔCT表示,ΔΔCT =(CT 药物组目的基因-CT药物组内参基因)-(CT对照组目的基因-CT对照组内参基因)。

  • 1.2.4 Western blot检测凋亡相关蛋白、FGFR1蛋白及信号通路分子磷酸化水平

  • 分别收集以上4组细胞,用含1 mmol/L PMSF的 RIPA裂解液裂解细胞,抽提细胞总蛋白,测定蛋白浓度,每孔蛋白上样量为60 μg,用120 g/L的聚丙烯酰胺凝胶电泳2 h,湿转印至无水甲醇浸泡的PVDF 膜,50 g/L脱脂奶粉溶液室温封闭1 h后,加入相应的一抗孵育,4℃过夜,用HRP标记的二抗室温孵育 2 h,ECL发光液显色,进行图像采集并用Image J分析软件进行灰度扫描分析。

  • 1.2.5 流式细胞术检测细胞凋亡率

  • 用IMDM培养基调整细胞密度为 5×105 个/mL,接种于6孔板,实验分组同前。置培养箱中培养48 h 后,收集待测细胞并用 PBS 洗 1 次,结合缓冲液洗 1次,用100μL结合缓冲液重悬。每管加入5μL Annexin Ⅴ⁃FITC和5 μL PI,混匀后于室温避光孵育15 min,加入结合缓冲液后,用流式细胞仪检测细胞凋亡率。

  • 1.2.6 集落形成实验

  • 现制 1.2%和 0.7%琼脂糖,高压灭菌后置于 55℃水浴锅中。配制青霉素及链霉素双抗,2倍浓度的RPMI⁃1640培养基,20% FBS 培养基。将上述 1.2%琼脂糖与培养基 1∶1 混合,加入 6 孔板,每孔加入 1.5 mL。将细胞用 PBS 洗 2 遍,调整细胞浓度至 5×104 个/mL。铺上层胶,将 0.7%的琼脂糖与培养基 1∶1 混合,加入 100 μL 的细胞悬液,每孔加入 1.5 mL 体系。放入 37℃的 CO2培养箱培养,3 d 后加培养基,约3周后固定细胞,结晶紫染色,计数克隆形成。

  • 1.3 统计学方法

  • 采用 Graph Pad Prism5 软件进行统计学分析,数据以均数±标准差(x-±s)表示,不同药物干预效果的组间比较采用单因素方差分析,差异显著者进一步采用LSD法进行事后各组均值两两比较,P <0.05 为差异有统计学意义。

  • 2 结果

  • 2.1 ATO、普纳替尼单药对KG⁃1细胞的抑制效应

  • 经CCK⁃8检测发现,不同浓度ATO及普纳替尼对 KG⁃1 细胞作用 48 h 后,其增殖抑制作用呈剂量依赖性(图1A、B)。绘制细胞增殖抑制曲线,计算得到 ATO 及普纳替尼作用 48 h 的 IC50 值分别为 8.204 μg/mL 和 30.99 nmol/L,以 1/2 的 IC50为实验浓度行后续实验。将两药联合作用KG⁃1细胞48 h后,其增殖抑制率较单药作用进一步增加,差异有统计学意义(图1C)。

  • 2.2 ATO、普纳替尼单药及联合用药对 KG⁃1 细胞集落形成及凋亡的影响

  • 与 DMSO 组相比,ATO、普纳替尼作用于 KG⁃1 细胞后,集落形成减少,两药联合作用后,克隆形成较单药作用进一步减少(图1D、E),差异均有统计学意义;ATO、普纳替尼作用KG⁃1细胞 48 h后,细胞凋亡率分别为(11.00±1.50)%及(19.00±1.09)%,DMSO 组细胞凋亡率为(1.40±0.11)%,差异有统计学意义。两药联合作用后,凋亡率进一步增加,为 (28.80±1.50)%,明显高于ATO组和普纳替尼组(图1F),差异有统计学意义。

  • 2.3 ATO、普纳替尼单药及联合用药对 KG⁃1 细胞凋亡相关基因的影响

  • KG⁃1 细胞经 ATO、普纳替尼及联合用药作用 48 h 后,Bcl⁃2 基因表达水平均较 DMSO 组明显下降,差异均有统计学意义。但联合用药组与ATO组和普纳替尼组相比,Bcl⁃2基因表达差异无统计学意义(图2A)。3组药物作用后,Bax和Caspase⁃3基因表达均较DMSO组升高,且联合用药组与ATO组和普纳替尼组相比,Bax和Caspase⁃3基因表达上调更加显著,差异均有统计学意义(图2B、C)。

  • 采用Western blot法检测Bcl⁃2、Bax蛋白表达及 Caspase⁃3 蛋白的活化情况,结果显示,与 DMSO 组相比,ATO 组和普纳替尼组凋亡相关蛋白 Bcl⁃2 表达明显下降,而Bax及活化的Caspase⁃3蛋白表达明显上调,差异均有统计学意义。联合用药组与ATO 组相比,Bcl⁃2下调及Bax、Cleaved Caspase⁃3上调更加显著,差异明显。与普纳替尼组相比,联合用药可以促进Cleaved Caspase⁃3表达,差异有统计学意义 (图2D、E)。

  • 2.4 ATO、普纳替尼及联合用药对KG⁃1细胞FGFR1 表达及信号通路蛋白磷酸化水平的影响

  • 普纳替尼作用后,FGFR1基因表达较DMSO组下降明显,联合应用ATO后,FGFR1基因较普纳替尼组未进一步下降(图3A)。ATO可以显著降低m⁃TOR和 MAPK、STAT5 磷酸化水平(图3B~E),但对 PI3K/ AKT、STAT3的磷酸化及FGFR1蛋白表达无明显影响。普纳替尼可以显著抑制 FGFR1 蛋白表达及 STAT3、STAT5的磷酸化,但对PI3K/AKT及MAPK的磷酸化无明显作用。两药联合后,STAT3的磷酸化水平较ATO或普纳替尼单药组进一步下降(图3)。

  • 图1 ATO及普纳替尼对KG⁃1细胞增殖、集落形成及凋亡的影响

  • Figure1 Effects of ATO and ponatinib on the proliferation,colony formation and apoptosis of KG⁃1 cells

  • 图2 ATO及普纳替尼对KG⁃1细胞凋亡基因、凋亡蛋白表达的影响

  • Figure2 Effects of ATO and ponatinib on the expression of apoptosis⁃related genes and proteins in KG⁃1 cells

  • 图3 ATO及普纳替尼对FGFR1表达和信号通路的影响

  • Figure3 Effects of ATO and ponatinib on the expression of FGFR1 and Western blot signaling pathways

  • 3 讨论

  • EMS的发病机制与FGFR1基因重排相关。FGFR1 基因编码的 FGFR1 蛋白是受体酪氨酸激酶家族成员之一,拥有胞外受体结合域、跨膜区和胞内酪氨酸激酶催化域,当FGFR1基因发生断裂重排时,保留胞内的酪氨酸激酶结构域,并与伙伴基因(如 ZNF198)相互易位形成新的融合基因,使FGFR1酪氨酸激酶发生非配体依赖性异常激活,进而激活下游信号通路如 JAK/STAT 等,使细胞发生致瘤性转化[8-9]。KG⁃1细胞株来源于1例急性髓系白血病患者,该细胞株被鉴定为携带FGFR1OP2⁃FGFR1融合基因,且保留了完整的FGFR1酪氨酸激酶结构域,为研究EMS提供了独一无二的细胞模型[10]

  • 普纳替尼是一种多酪氨酸激酶抑制剂,可以克服慢性粒细胞白血病(chronic myelocytic leukemia, CML)及ph阳性急性淋巴细胞白血病(ph+ acute lym⁃ phocytic leukemia,ph+ ALL)患者中ABL激酶区T315I 突变,且具有良好的安全性及耐受性,已被美国食品及药物管理局批准用于治疗对一代或二代TKI耐药或不耐受的CML或ph+ ALL患者[11-13]。由于普纳替尼独特的多靶点特征,进一步研究已经证明其能够靶向其他恶性肿瘤中的酪氨酸激酶,如 FGFR、 SRC、PDGFR和KIT等[14]

  • Ren等[15] 研究发现普纳替尼在<50 nmol/L时便能有效抑制包括KG⁃1在内的EMS模型细胞的增殖以及转染 CEP110⁃FGFR1 或 BCR⁃FGFR1 融合基因的人 CD34 细胞的克隆形成,抑制 FGFR1 蛋白表达及其下游信号通路PLCγ、STAT5和Src的表达,并促进凋亡增加。动物实验中,普纳替尼能显著延长携带不同 FGFR1 相关融合基因的部分 EMS 移植模型小鼠的生存时间。然而,该研究也发现,EMS 小鼠口服给药 6 h 后,普纳替尼血浆平均水平高达 561 nmol/L(体外细胞实验IC50的10~20倍)时,仅有40 %的EMS小鼠显示出更长的生存时间,这一结果提示,分子水平上单一肿瘤通路的抑制不足以阻止疾病进展,尤其长期单用口服靶向药导致耐药克隆增加,进一步影响了药物的疗效[15]。因此,需要寻找新的联合用药方案来优化EMS的治疗选择。

  • ATO是传统中药砒霜的主要成分,已成为急性早幼粒细胞白血病的一线治疗药物,具有不良反应小,耐受性好,无显著骨髓毒性等特点,且与其他化疗药物无交叉耐药[16]。既往研究证明,ATO能通过多种机制发挥抗肿瘤效应,如ATO能够抑制人骨髓细胞中NF⁃κB的活性,下调NF⁃κB依赖的凋亡蛋白 Bcl⁃2/Bcl⁃xl表达[17];通过下调p38⁃MAPK和AKT介导的 MCL1 表达促进 BCR/ABL 阳性的白血病细胞株 K56⁃2和MEG⁃01的凋亡[18]。ATO与其他抗肿瘤药物(2⁃DG)联合应用后可以通过调控AKT/mTOR、 MEK/ERK 和 LKB⁃1/AMPK 信号通路促进白血病细胞的凋亡[19]

  • 基于以上研究背景,本研究将普纳替尼及ATO 单药作用KG⁃1细胞,二者均能在较低浓度情况下抑制KG⁃1细胞增殖和克隆形成,并促进其凋亡。进一步PCR检测表明,普纳替尼和ATO均能不同程度地下调凋亡抑制基因 Bcl⁃2 的表达,同时上调 Bax 及 Caspase⁃3的表达。普纳替尼对FGFR1基因表达有显著抑制作用。Bcl⁃2是参与细胞凋亡的关键调节因子,可以降低肿瘤细胞对化疗药物的敏感性,而 Bax则是Bcl⁃2家族成员之一,能抵抗Bcl⁃2活性,从而起到促进凋亡作用[20];Caspase⁃3 是级联反应中的关键蛋白酶,在调控和执行凋亡的过程中,与 Bcl⁃2/Bax共同发挥关键作用[21]。本研究结果提示, ATO 与普纳替尼联合对凋亡相关蛋白的调节作用可能是诱导KG⁃1细胞凋亡增加的机制之一。

  • 既往研究结果显示,白血病细胞中普遍存在 JAK/STAT信号通路的持续激活,该途径的异常活化可引起细胞表型改变和恶性转化,其中,STAT3/5蛋白是研究热点[22-23]。PI3K/AKT/m⁃TOR 信号通路是细胞内重要的存活信号通路,它可以直接或间接调控细胞增殖、分化、凋亡,并与血液肿瘤的发生发展有关[24]。MAPK 是调控细胞增殖和凋亡信号转导的关键酶,是真核细胞介导细胞外信号到细胞内反应的重要信号转导系统,可以调节细胞的增殖、分化和凋亡等多种生理过程。研究表明,MAPK在多种人类肿瘤中过度表达活化[25-26]。本研究显示, ATO 可以显著抑制 KG ⁃1 细胞中 m ⁃TOR、MAPK、 STAT5 信号分子的磷酸化,但对 PI3K、STAT3 磷酸化的影响较小,且对 FGFR1蛋白表达无明显影响。普纳替尼可以直接抑制FGFR1蛋白表达,并显著抑制STAT3和STAT5的磷酸化,但不影响MAPK的磷酸化。两种药物联合后,调节细胞增殖及凋亡的信号通路MAPK、PI3K/mTOR及JAK/STAT均受到一定程度的抑制,使得联合用药后细胞凋亡较单独用药时进一步增加,而集落形成进一步减少。

  • 综上所述,ATO 与普纳替尼对 KG⁃1 白血病细胞株存在不同的作用机制,两药联合作用于 KG⁃1 细胞,较单药显示出更强的增殖抑制效应,可以为未来 EMS 治疗及普纳替尼耐药提供新的治疗思路。

  • 参考文献

    • [1] RINSHO K.The 8p11 myeloproliferative syndrome:a review of recent literature[J].Rinsho Ketsueki,2019,60(9):1157-1165

    • [2] DANIEL A A,ATTILIO O,ROBERT H,et al.The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J].Blood,2016,127(20):2391-2405

    • [3] UMINO K,FUJIWARA S I,IKEDA T,et al.Clinical outcomes of myeloid/lymphoid neoplasms with fibroblast growth factor eceptor ⁃ 1(FGFR1)rearrangement[J].Hematology,2018,23(8):470-477

    • [4] LANDBERG N,DREIMANE A,RISSLER M,et al.Primary cells in BCR/FGFR1⁃positive 8p11 myeloproliferative syndrome are sensitive to dovitinib,ponatinib,and dasatinib[J].Eue J Haematol,2017,99(5):442-448

    • [5] KHODADOUST M S,LUO B,MEDEIROS B C,et al.Clinical activity of ponatinib in a patient with FGFR1⁃rearranged mixed-phenotype acute leukemia[J].Leukemia,2016,30(4):947-950

    • [6] WANG T,CHENG C Y,PENG L J,et al.Combination of arsenic trioxide and Dasatinib:a new strategy to treat Philadelphia chromosome-positive acute lymphoblastic leukaemia[J].J Cell Mol Med,2018,22(3):1614-1626

    • [7] 中华医学会血液学分会,中国医师协会血液科医师分会.中国急性早幼粒细胞白血病诊疗指南(2018年版)[J].中华血液学杂志,2018,39(3):179-183

    • [8] MONTENEGRO-GARREAUD X,MIRANDA R N,REYNOLDS A,et al.Myeloproliferative neoplasms with(t 8;22)(p11.2;q11.2)/BCR⁃FGFR1:a meta⁃analysis of 20 cases shows cytogenetic progression with B⁃lymphoid blast phase[J].Hum Pathol,2017,65:147-156

    • [9] CHONG Y T,LIU Y,LU S M,et al.Critical individual roles of the BCR and FGFR1 kinase domains in BCR⁃FG⁃FR1⁃ driven stem cell leukemia/lymphoma syndrome[J].Int J Cancer,2020,146(8):2243-2254

    • [10] GU T L,GOSS V L,REEVES C,et al.Phosphotyrosine profiling identifies the KG ⁃1 cell line as a model for the study of FGFR1 fusions in acute myeloid leukemia[J].Blood,2006,108(13):4202-4204

    • [11] CORTES J,APPERLEY J,LOMAIA E,et al.Ponatinib dose⁃ranging study in chronic⁃phase chronic myeloid leukemia:a randomized,open⁃label phase 2 clinical trial[J].Blood,2021,138(21):2042-2050

    • [12] COUTURIER M A,THOMAS X,RAFFOUX E,et al.Blinatumomab+ponatinib for relapsed/refractory Philadelphia chromosome-positive acute lymphoblastic leukemia in adults[J].Leuk Lymphoma,2021,62(3):620-629

    • [13] CORTES J E,KIM D W,PINILLA⁃IBARZ J,et al.Pona-tinib efficacy and safety in Philadelphia chromosome⁃positive leukemia:final 5 ⁃ year results of the phase 2 PACE trial[J].Blood,2018,132(4):393-404

    • [14] FIONA H T,TRACY L P,STANLEY S S,et al.Ponatinib:a novel multi-tyrosine kinase inhibitor against human malignancies[J].Onco Targets Ther,2019,12:635-645

    • [15] REN M,QIN H,REN R,et al.Ponatinib suppresses the development of myeloid and lymphoid malignancies associated with FGFR1 abnormalities[J].Leukemia,2013,27(1):32-40

    • [16] MIGUEL A S,PIERRE F,MARTIN S T,et al.Management of acute promyelocytic leukemia:updated recommendations from an expert panel of the European LeukemiaNet[J].Blood,2019,133(15):1630-1643

    • [17] WU S F,RAO G,WANG R,et al.The neuroprotective effect of curcumin against ATO triggered neurotoxicity throughNrf2 and NF⁃κB signaling pathway in the brain of ducks[J].Ecotoxicol Environ Saf,2021,228:112965-112974

    • [18] HUANG C H,LEE Y C,CHIOU J T,et al.Arsenic trioxide-induced p38 MAPK and Akt mediated MCL1 downregulation causes apoptosis of BCR-ABL1 ⁃ positive leukemia cells[J].Toxicol Appl Pharmacol,2020,397:115013

    • [19] MARÍA C E,EVA C,ELENA D B,et al.2⁃Deoxy ⁃D-glucose cooperates with arsenic trioxide to induce apoptosis in leukemia cells:involvement of IGF ⁃ 1R-regulated Akt/mTOR,MEK/ERK and LKB⁃1/AMPK signaling pathways[J].Biochem Pharmacol,2012,84(12):1604-1616

    • [20] ROBERTS A W,ANDREW H W,DAVID C S.BCL2 and MCL1 inhibitors for hematologic malignancies[J].Blood,2021,138(13):1120-1136

    • [21] GAURAV S C,SAYER A H,ALEXANDRU A.Caspase⁃3 activation is a critical determinant of genotoxic stress-induced apoptosis[J].Methods Mol Biol,2015,1219:1-9

    • [22] XIN P,XU X,DENG C,et al.The role of JAK/STAT signaling pathway and its inhibitors in diseases[J].Int Im-munopharmacol,2020,80:106210

    • [23] ANNA O,CHRISTINA W,ARAUJO E D,et al.Direct targeting options for STAT3 and STAT5 in cancer[J].Cancers(Basel),2019,11(12):1930-1945

    • [24] INA K,KIMBERLEY J H IDA S G,et al.The PI3K⁃Akt-mTOR signaling pathway in human acute myeloid leukemia(AML)cells[J].Int J Mol Sci,2020,21(8):2907-2928

    • [25] GUO Y J,PAN W W,LIU S B,et al.ERK/MAPK signalling pathway and tumorigenesis[J].Exp Ther Med,2020,19(3):1997-2007

    • [26] ISHWARYA,SIDDHA K,AISHATH N,et al.Activation of the MAPK pathway mediates resistance to PI3K inhibitors in chronic lymphocytic leukemia[J].Blood,2021,138(1):44-56

  • 参考文献

    • [1] RINSHO K.The 8p11 myeloproliferative syndrome:a review of recent literature[J].Rinsho Ketsueki,2019,60(9):1157-1165

    • [2] DANIEL A A,ATTILIO O,ROBERT H,et al.The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J].Blood,2016,127(20):2391-2405

    • [3] UMINO K,FUJIWARA S I,IKEDA T,et al.Clinical outcomes of myeloid/lymphoid neoplasms with fibroblast growth factor eceptor ⁃ 1(FGFR1)rearrangement[J].Hematology,2018,23(8):470-477

    • [4] LANDBERG N,DREIMANE A,RISSLER M,et al.Primary cells in BCR/FGFR1⁃positive 8p11 myeloproliferative syndrome are sensitive to dovitinib,ponatinib,and dasatinib[J].Eue J Haematol,2017,99(5):442-448

    • [5] KHODADOUST M S,LUO B,MEDEIROS B C,et al.Clinical activity of ponatinib in a patient with FGFR1⁃rearranged mixed-phenotype acute leukemia[J].Leukemia,2016,30(4):947-950

    • [6] WANG T,CHENG C Y,PENG L J,et al.Combination of arsenic trioxide and Dasatinib:a new strategy to treat Philadelphia chromosome-positive acute lymphoblastic leukaemia[J].J Cell Mol Med,2018,22(3):1614-1626

    • [7] 中华医学会血液学分会,中国医师协会血液科医师分会.中国急性早幼粒细胞白血病诊疗指南(2018年版)[J].中华血液学杂志,2018,39(3):179-183

    • [8] MONTENEGRO-GARREAUD X,MIRANDA R N,REYNOLDS A,et al.Myeloproliferative neoplasms with(t 8;22)(p11.2;q11.2)/BCR⁃FGFR1:a meta⁃analysis of 20 cases shows cytogenetic progression with B⁃lymphoid blast phase[J].Hum Pathol,2017,65:147-156

    • [9] CHONG Y T,LIU Y,LU S M,et al.Critical individual roles of the BCR and FGFR1 kinase domains in BCR⁃FG⁃FR1⁃ driven stem cell leukemia/lymphoma syndrome[J].Int J Cancer,2020,146(8):2243-2254

    • [10] GU T L,GOSS V L,REEVES C,et al.Phosphotyrosine profiling identifies the KG ⁃1 cell line as a model for the study of FGFR1 fusions in acute myeloid leukemia[J].Blood,2006,108(13):4202-4204

    • [11] CORTES J,APPERLEY J,LOMAIA E,et al.Ponatinib dose⁃ranging study in chronic⁃phase chronic myeloid leukemia:a randomized,open⁃label phase 2 clinical trial[J].Blood,2021,138(21):2042-2050

    • [12] COUTURIER M A,THOMAS X,RAFFOUX E,et al.Blinatumomab+ponatinib for relapsed/refractory Philadelphia chromosome-positive acute lymphoblastic leukemia in adults[J].Leuk Lymphoma,2021,62(3):620-629

    • [13] CORTES J E,KIM D W,PINILLA⁃IBARZ J,et al.Pona-tinib efficacy and safety in Philadelphia chromosome⁃positive leukemia:final 5 ⁃ year results of the phase 2 PACE trial[J].Blood,2018,132(4):393-404

    • [14] FIONA H T,TRACY L P,STANLEY S S,et al.Ponatinib:a novel multi-tyrosine kinase inhibitor against human malignancies[J].Onco Targets Ther,2019,12:635-645

    • [15] REN M,QIN H,REN R,et al.Ponatinib suppresses the development of myeloid and lymphoid malignancies associated with FGFR1 abnormalities[J].Leukemia,2013,27(1):32-40

    • [16] MIGUEL A S,PIERRE F,MARTIN S T,et al.Management of acute promyelocytic leukemia:updated recommendations from an expert panel of the European LeukemiaNet[J].Blood,2019,133(15):1630-1643

    • [17] WU S F,RAO G,WANG R,et al.The neuroprotective effect of curcumin against ATO triggered neurotoxicity throughNrf2 and NF⁃κB signaling pathway in the brain of ducks[J].Ecotoxicol Environ Saf,2021,228:112965-112974

    • [18] HUANG C H,LEE Y C,CHIOU J T,et al.Arsenic trioxide-induced p38 MAPK and Akt mediated MCL1 downregulation causes apoptosis of BCR-ABL1 ⁃ positive leukemia cells[J].Toxicol Appl Pharmacol,2020,397:115013

    • [19] MARÍA C E,EVA C,ELENA D B,et al.2⁃Deoxy ⁃D-glucose cooperates with arsenic trioxide to induce apoptosis in leukemia cells:involvement of IGF ⁃ 1R-regulated Akt/mTOR,MEK/ERK and LKB⁃1/AMPK signaling pathways[J].Biochem Pharmacol,2012,84(12):1604-1616

    • [20] ROBERTS A W,ANDREW H W,DAVID C S.BCL2 and MCL1 inhibitors for hematologic malignancies[J].Blood,2021,138(13):1120-1136

    • [21] GAURAV S C,SAYER A H,ALEXANDRU A.Caspase⁃3 activation is a critical determinant of genotoxic stress-induced apoptosis[J].Methods Mol Biol,2015,1219:1-9

    • [22] XIN P,XU X,DENG C,et al.The role of JAK/STAT signaling pathway and its inhibitors in diseases[J].Int Im-munopharmacol,2020,80:106210

    • [23] ANNA O,CHRISTINA W,ARAUJO E D,et al.Direct targeting options for STAT3 and STAT5 in cancer[J].Cancers(Basel),2019,11(12):1930-1945

    • [24] INA K,KIMBERLEY J H IDA S G,et al.The PI3K⁃Akt-mTOR signaling pathway in human acute myeloid leukemia(AML)cells[J].Int J Mol Sci,2020,21(8):2907-2928

    • [25] GUO Y J,PAN W W,LIU S B,et al.ERK/MAPK signalling pathway and tumorigenesis[J].Exp Ther Med,2020,19(3):1997-2007

    • [26] ISHWARYA,SIDDHA K,AISHATH N,et al.Activation of the MAPK pathway mediates resistance to PI3K inhibitors in chronic lymphocytic leukemia[J].Blood,2021,138(1):44-56