en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

李大可,E-mail: lidake2002@163.com

中图分类号:R730.2

文献标识码:A

文章编号:1007-4368(2024)10-1408-11

DOI:10.7655/NYDXBNSN240434

参考文献 1
MAGNON C,HALL S J,LIN J,et al.Autonomic nerve development contributes to prostate cancer progression[J].Science,2013,341(6142):1236361
参考文献 2
ALBO D,AKAY C L,MARSHALL C L,et al.Neurogenesis in colorectal cancer is a marker of aggressive tumor behavior and poor outcomes[J].Cancer,2011,117(21):4834-4845
参考文献 3
AYALA G E,WHEELER T M,SHINE H D,et al.In vitro dorsal root Ganglia and human prostate cell line interaction:redefining perineural invasion in prostate cancer[J].Prostate,2001,49(3):213-223
参考文献 4
AYALA G E,DAI H,POWELL M,et al.Cancer-related axonogenesis and neurogenesis in prostate cancer[J].Clin Cancer Res,2008,14(23):7593-7603
参考文献 5
LUCIDO C T,WYNJA E,MADEO M,et al.Innervation of cervical carcinoma is mediated by cancer-derived exo⁃somes[J].Gynecol Oncol,2019,154(1):228-235
参考文献 6
MADEO M,COLBERT P L,VERMEER D W,et al.Cancer exosomes induce tumor innervation[J].Nat Commun,2018,9(1):4284
参考文献 7
GUILLOT J,DOMINICI C,LUCCHESI A,et al.Sympathetic axonal sprouting induces changes in macrophage populations and protects against pancreatic cancer[J].Nat Commun,2022,13(1):1985
参考文献 8
MAUFFREY P,TCHITCHEK N,BARROCA V,et al.Progenitors from the central nervous system drive neurogenesis in cancer[J].Nature,2019,569(7758):672-678
参考文献 9
AMIT M,TAKAHASHI H,DRAGOMIR M P,et al.Loss of p53 drives neuron reprogramming in head and neck cancer[J].Nature,2020,578(7795):449-454
参考文献 10
LU R,FAN C W,SHANGGUAN W Q,et al.Neurons generated from carcinoma stem cells support cancer progression[J].Signal Transduct Target Ther,2017,2:16036
参考文献 11
RENZ B W,TAKAHASHI R,TANAKA T,et al.β2 adrenergic⁃neurotrophin feed forward loop promotes pancreatic cancer[J].Cancer Cell,2018,34(5):863-867
参考文献 12
BAE G E,KIM H S,WON K Y,et al.Lower sympathetic nervous system density and β⁃ adrenoreceptor expression are involved in gastric cancer progression[J].Anticancer Res,2019,39(1):231-236
参考文献 13
KAMIYA A,HAYAMA Y,KATO S,et al.Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression[J].Nat Neuro⁃sci,2019,22(8):1289-1305
参考文献 14
ZHANG L,WU L L,HUAN H B,et al.Sympathetic and parasympathetic innervation in hepatocellular carcinoma[J].Neoplasma,2017,64(6):840-846
参考文献 15
ZHOU H,SHI B J,JIA Y T,et al.Expression and significance of autonomic nerves and α9 nicotinic acetylcholine receptor in colorectal cancer[J].Mol Med Rep,2018,17(6):8423-8431
参考文献 16
CIUREA R N,ROGOVEANU I,PIRICI D,et al.B2 adrenergic receptors and morphological changes of the enteric nervous system in colorectal adenocarcinoma[J].World J Gastroenterol,2017,23(7):1250-1261
参考文献 17
ARRANZ L,SÁNCHEZ⁃AGUILERA A,MARTÍN⁃PÉREZ D,et al.Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms[J].Nature,2014,512(7512):78-81
参考文献 18
SILVA D,QUINTAS C,GONÇALVES J,et al.Contribution of adrenergic mechanisms for the stress-induced breast cancer carcinogenesis[J].J Cell Physiol,2022,237(4):2107-2127
参考文献 19
ZAHALKA A H,ARNAL ⁃ESTAPÉ A,MARYANOVICH M,et al.Adrenergic nerves activate an angio-metabolic switch in prostate cancer[J].Science,2017,358(6361):321-326
参考文献 20
HUANG S Y,VAN ARSDALL M,TEDJARATI S,et al.Contributions of stromal metalloproteinase⁃9 to angiogenesis and growth of human ovarian carcinoma in mice[J].J Natl Cancer Inst,2002,94(15):1134-1142
参考文献 21
THAKER P H,HAN L Y,KAMAT A A,et al.Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma[J].Nat Med,2006,12(8):939-944
参考文献 22
GLOBIG A M,ZHAO S,ROGINSKY J,et al.The β1 ⁃adrenergic receptor links sympathetic nerves to T cell exhaustion[J].Nature,2023,622(7982):383-392
参考文献 23
BUCSEK M J,QIAO G X,MACDONALD C R,et al.β⁃adrenergic signaling in mice housed at standard temperatures suppresses an effector phenotype in CD8 + T cells and undermines checkpoint inhibitor therapy[J].Cancer Res,2017,77(20):5639-5651
参考文献 24
HORVATHOVA L,TILLINGER A,PADOVA A,et al.Sympathectomized tumor⁃bearing mice survive longer but develop bigger melanomas[J].Endocr Regul,2016,50(4):207-214
参考文献 25
HILLER J G,COLE S W,CRONE E M,et al.Preoperative β ⁃ blockade with propranolol reduces biomarkers of metastasis in breast cancer:a phase Ⅱ randomized trial[J].Clin Cancer Res,2020,26(8):1803-1811
参考文献 26
PU J,ZHANG X R,LUO H W,et al.Adrenaline promotes epithelial⁃to⁃mesenchymal transition via HuR⁃TGFβ regulatory axis in pancreatic cancer cells and the implication in cancer prognosis[J].Biochem Biophys Res Commun,2017,493(3):1273-1279
参考文献 27
XIAO M B,JIN D D,JIAO Y J,et al.β2⁃AR regulates the expression of AKR1B1 in human pancreatic cancer cells and promotes their proliferation via the ERK1/2 pathway[J].Mol Biol Rep,2018,45(6):1863-1871
参考文献 28
ALLEN J K,ARMAIZ ⁃PENA G N,NAGARAJA A S,et al.Sustained adrenergic signaling promotes intratumoral innervation through BDNF induction[J].Cancer Res,2018,78(12):3233-3242
参考文献 29
AMIT M,NA’ARA S,GIL Z.Mechanisms of cancer dissemination along nerves[J].Nat Rev Cancer,2016,16(6):399-408
参考文献 30
CARTER R L,FOSTER C S,DINSDALE E A,et al.Perineural spread by squamous carcinomas of the head and neck:a morphological study using antiaxonal and antimy⁃elin monoclonal antibodies[J].J Clin Pathol,1983,36(3):269-275
参考文献 31
HARNDEN P,SHELLEY M D,CLEMENTS H,et al.The prognostic significance of perineural invasion in prostatic cancer biopsies:a systematic review[J].Cancer,2007,109(1):13-24
参考文献 32
CAMPBELL J P,KAROLAK M R,MA Y,et al.Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice[J].PLoS Biol,2012,10(7):e1001363
参考文献 33
KANG Y,NAGARAJA A S,ARMAIZ ⁃PENA G N,et al.Adrenergic stimulation of DUSP1 impairs chemotherapy response in ovarian cancer[J].Clin Cancer Res,2016,22(7):1713-1724
参考文献 34
CHEN H Y,ZHANG W,CHENG X,et al.β2⁃AR activation induces chemoresistance by modulating p53 acetylation through upregulating Sirt1 in cervical cancer cells[J].Cancer Sci,2017,108(7):1310-1317
参考文献 35
ZHAO C M,HAYAKAWA Y,KODAMA Y,et al.Denervation suppresses gastric tumorigenesis[J].Sci Transl Med,2014,6(250):250ra115
参考文献 36
RENZ B W,TANAKA T,SUNAGAWA M,et al.Cholinergic signaling via muscarinic receptors directly and indirectly suppresses pancreatic tumorigenesis and cancer stemness[J].Cancer Discov,2018,8(11):1458-1473
参考文献 37
HAYAKAWA Y,SAKITANI K,KONISHI M,et al.Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling[J].Cancer Cell,2017,31(1):21-34
参考文献 38
PENG Z S,HEATH J,DRACHENBERG C,et al.Cholinergic muscarinic receptor activation augments murine intestinal epithelial cell proliferation and tumorigenesis[J].BMC Cancer,2013,13:204
参考文献 39
MO R J,HAN Z D,LIANG Y K,et al.Expression of PDL1 in tumor⁃associated nerves correlates with reduced CD8+ tumor⁃associated lymphocytes and poor prognosis in prostate cancer[J].Int J Cancer,2019,144(12):3099-3110
参考文献 40
YANG M W,TAO L Y,JIANG Y S,et al.Perineural invasion reprograms the immune microenvironment through cholinergic signaling in pancreatic ductal adenocarcinoma[J].Cancer Res,2020,80(10):1991-2003
参考文献 41
YIN Q Q,XU L H,ZHANG M,et al.Muscarinic acetylcholine receptor M1 mediates prostate cancer cell migration and invasion through hedgehog signaling[J].Asian J Androl,2018,20(6):608-614
参考文献 42
WANG J,WEI J,PU T J,et al.Cholinergic signaling via muscarinic M1 receptor confers resistance to docetaxel in prostate cancer[J].Cell Rep Med,2024,5(2):101388
参考文献 43
ERIN N,BARKAN G A,CLAWSON G A.Vagus nerve regulates breast cancer metastasis to the adrenal gland[J].Anticancer Res,2013,33(9):3675-3682
参考文献 44
HAN S B,WANG D C,HUANG Y,et al.A reciprocal feedback between colon cancer cells and Schwann cells promotes the proliferation and metastasis of colon cancer[J].J Exp Clin Cancer Res,2022,41(1):348
参考文献 45
BANH R S,BIANCUR D E,YAMAMOTO K,et al.Neurons release serine to support mRNA translation in pancreatic cancer[J].Cell,2020,183(5):1202-1218.e25
参考文献 46
AU C W,SIU M K,LIAO X Y,et al.Tyrosine kinase B receptor and BDNF expression in ovarian cancers-Effect on cell migration,angiogenesis and clinical outcome[J].Cancer Lett,2009,281(2):151-161
参考文献 47
ITO Y,OKADA Y,SATO M,et al.Expression of glial cell line⁃derived neurotrophic factor family members and their receptors in pancreatic cancers[J].Surgery,2005,138(4):788-794
参考文献 48
CAVEL O,SHOMRON O,SHABTAY A,et al.Endoneu⁃rial macrophages induce perineural invasion of pancreatic cancer cells by secretion of GDNF and activation of RET tyrosine kinase receptor[J].Cancer Res,2012,72(22):5733-5743
参考文献 49
BALKWILL F.The significance of cancer cell expression of the chemokine receptor CXCR4[J].Semin Cancer Biol,2004,14(3):171-179
参考文献 50
ZHANG S W,QI L S,LI M,et al.Chemokine CXCL12 and its receptor CXCR4 expression are associated with perineural invasion of prostate cancer[J].J Exp Clin Cancer Res,2008,27(1):62
参考文献 51
HE S Z,HE S B,CHEN C H,et al.The chemokine(CCL2 ⁃ CCR2)signaling axis mediates perineural invasion[J].Mol Cancer Res,2015,13(2):380-390
参考文献 52
MARCHESI F,PIEMONTI L,FEDELE G,et al.The chemokine receptor CX3CR1 is involved in the neural tropism and malignant behavior of pancreatic ductal adenocarcinoma[J].Cancer Res,2008,68(21):9060-9069
参考文献 53
TASCILAR O,CAKMAK G K,TEKIN I O,et al.Neural cell adhesion molecule⁃180 expression as a prognostic criterion in colorectal carcinoma:feasible or not?[J].World J Gastroenterol,2007,13(41):5476-5480
参考文献 54
ZECCHINI S,BOMBARDELLI L,DECIO A,et al.The adhesion molecule NCAM promotes ovarian cancer progression via FGFR signalling[J].EMBO Mol Med,2011,3(8):480-494
参考文献 55
YIN K,WANG L J,XIA Y W,et al.Netrin ⁃ 1 promotes cell neural invasion in gastric cancer via its receptor neo⁃genin[J].J Cancer,2019,10(14):3197-3207
参考文献 56
JURCAK N R,RUCKI A A,MUTH S,et al.Axon guidance molecules promote perineural invasion and metastasis of orthotopic pancreatic tumors in mice[J].Gastroenterology,2019,157(3):838-850
参考文献 57
CAPPARUCCIA L,TAMAGNONE L.Semaphorin signaling in cancer cells and in cells of the tumor microenvironment-two sides of a coin[J].J Cell Sci,2009,122(Pt 11):1723-1736
参考文献 58
NISHI K,SUZUKI M,YAMAMOTO N,et al.Glutamine deprivation enhances acetyl⁃CoA carboxylase inhibitor⁃induced death of human pancreatic cancer cells[J].Anticancer Res,2018,38(12):6683-6689
参考文献 59
GÖHRIG A,DETJEN K M,HILFENHAUS G,et al.Axon guidance factor SLIT2 inhibits neural invasion and metastasis in pancreatic cancer[J].Cancer Res,2014,74(5):1529-1540
参考文献 60
HARBURG G C,HINCK L.Navigating breast cancer:axon guidance molecules as breast cancer tumor suppressors and oncogenes[J].J Mammary Gland Biol Neoplasia,2011,16(3):257-270
参考文献 61
ADRIAENSSENS E,VANHECKE E,SAULE P,et al.Nerve growth factor is a potential therapeutic target in breast cancer[J].Cancer Res,2008,68(2):346-351
参考文献 62
BAPAT A A,MUNOZ R M,VON HOFF D D,et al.Blocking nerve growth factor signaling reduces the neural invasion potential of pancreatic cancer cells[J].PLoS One,2016,11(10):e0165586
参考文献 63
HEFTI F.Pharmacology of nerve growth factor and discovery of tanezumab,an anti⁃nerve growth factor antibody and pain therapeutic[J].Pharmacol Res,2020,154:104240
参考文献 64
ZHANG J Z,YU J M,SUN X D,et al.Epidermal growth factor receptor tyrosine kinase inhibitors in the treatment of central nerve system metastases from non-small cell lung cancer[J].Cancer Lett,2014,351(1):6-12
参考文献 65
FALCINELLI M,AL⁃HITY G,BARON S,et al.Propranolol reduces IFN⁃γ driven PDL1 immunosuppression and improves anti-tumour immunity in ovarian cancer[J].Brain Behav Immun,2023,110:1-12
参考文献 66
KOH M,TAKAHASHI T,KUROKAWA Y,et al.Propranolol suppresses gastric cancer cell growth by regulating proliferation and apoptosis[J].Gastric Cancer,2021,24(5):1037-1049
参考文献 67
HOPSON M B,LEE S,ACCORDINO M,et al.Phase Ⅱ study of propranolol feasibility with neoadjuvant chemotherapy in patients with newly diagnosed breast cancer[J].Breast Cancer Res Treat,2021,188(2):427-432
参考文献 68
ZHOU S,LI J B,YU J,et al.Tumor microenvironment adrenergic nerves blockade liposomes for cancer therapy[J].J Control Release,2022,351:656-666
参考文献 69
UDUMYAN R,MONTGOMERY S,FANG F,et al.Beta-blocker drug use and survival among patients with pancreatic adenocarcinoma[J].Cancer Res,2017,77(13):3700-3707
参考文献 70
DIAZ E S,KARLAN B Y,LI A J.Impact of beta blockers on epithelial ovarian cancer survival[J].Gynecol Oncol,2012,127(2):375-378
参考文献 71
HE D D,MANZONI A,FLORENTIN D,et al.Biologic effect of neurogenesis in pancreatic cancer[J].Hum Pathol,2016,52:182-189
参考文献 72
KARSENTY G,ROCHA J,CHEVALIER S,et al.Botulinum toxin type A inhibits the growth of LNCaP human prostate cancer cells in vitro and in vivo[J].Prostate,2009,69(11):1143-1150
目录contents

    摘要

    越来越多的研究显示,自主神经系统在各种癌症的发展中扮演着至关重要的角色。肿瘤细胞通过分泌包括神经营养因子、趋化因子、神经细胞黏附分子、轴突导向分子在内的多种神经活性分子改变肿瘤微环境,并将其周围的自主神经招募到肿瘤,或者重编程交感神经、促进神经祖细胞迁移到瘤内分化为交感神经从而增加自主神经支配。此外,肿瘤还可通过外泌体作用于神经纤维,促进周围神经浸润。肿瘤微环境中各种物质之间的相互作用为周围神经浸润的发生创造了合适的环境。在这个过程中,交感神经促进癌症进展并通过提高化疗耐药性为抗肿瘤治疗带来挑战,而副交感神经不仅具有促肿瘤作用,还表现出抗肿瘤特性。因此文章主要综述了癌症和自主神经之间的相互作用,以及神经活性分子在癌症进展中的作用,并提出了潜在的神经系统相关的抗肿瘤治疗策略。

    Abstract

    More and more studies have shown that the autonomic nervous system plays a crucial role in the development of various cancers. Cancer cells secrete various neuroactive molecules,including neurotrophic factors,chemokines,neural cell adhesion molecules,and axon guidance molecules,to alter the tumor microenvironment and recruit surrounding autonomic nerves to the tumor tossies. Alternatively,cancer cells reprogram sympathetic nerves or promote the migration of neural progenitor cells into the tumor tissues to differentiate into sympathetic nerves,thus increasing autonomic innervation. Moreover,cancer cells act on nerve fibers through exosomes,promoting peripheral nerve infiltration. The interactions among various substances in the tumor microenvironment create a suitable environment for the occurrence of perineural infiltration. During this process,the sympathetic nervous system promotes cancer progression and poses challenges to antitumor therapy by enhancing chemotherapy resistance. In contrast,the parasympathetic nervous system exhibits both tumor-promoting and antitumor properties. Therefore,this review primarily summarizes the interactions between cancer and the autonomic nervous system,as well as the role of neuroactive molecules in cancer progression, and proposes potential nervous system-related antitumor treatment strategies.

  • 自主神经系统是外周神经系统的重要组成部分,通过将机体的各种信息传递到脊髓的各个中枢进行整合,来支配和调节除骨骼肌以外的机体各器官、平滑肌以及腺体的活动和分泌。它主要包括交感神经、副交感神经和肠神经。前两者在体内负责接收及传输信息,常常与血管并行来为神经提供营养,并在面对体内外应激时,调节血压、代谢等以维持机体的稳态,通过与肿瘤及其周围微环境中各种细胞的相互作用,影响各种恶性肿瘤的发生和发展。相比之下,肠神经是独立的,通过局部反射活动发挥作用。本文主要综述交感神经和副交感神经在癌症中的作用。

  • 虽然人们已经对各种肿瘤中存在的神经有了一定的认识,但癌症神经生物学仍是一个新兴领域,人们对其了解仍处于初步阶段。越来越多的研究表明,癌症预后与肿瘤内的自主神经密切相关。人们最早在前列腺癌中发现自主神经纤维显著增加,证实了肿瘤内及其周围神经纤维密集存在,是导致患者肿瘤进展、局部复发等不良临床结果的重要因素[1]。此外,对结直肠癌等肿瘤患者样本的研究也表明,肿瘤内神经密度增加是癌症患者总生存期的独立预后因素[2]。这为肿瘤学领域提供了新的视角,强调了深入了解自主神经系统在肿瘤发生和发展中的作用与机制的重要性,并提示了靶向自主神经系统的药物在癌症治疗中具有潜力,为开发新的治疗策略,进而为改善癌症患者的预后提供了理论基础。

  • 1 肿瘤对自主神经的影响

  • 尽管已知在某些癌症中去神经有助于延缓癌症进展,然而对神经⁃癌症之间的相互作用仍知之甚少。最初人们将小鼠背根神经节(dorsal root gangli⁃ on,DRG)和前列腺癌细胞共培养,观察到DRG形成的突起向靠近肿瘤细胞的方向生长[3]。通过对整个前列腺癌的二维和三维重建也证实了癌症相关的轴突发生。另有研究发现前列腺癌细胞系DU⁃145 与DRG共培养时,前列腺癌细胞中的轴突引导因子 4F(semaphorin 4F,S4F)高表达,促进轴突生长[4]。类似的结果也在神经细胞PC12 中得到验证,宫颈癌[5]、口腔鳞状细胞癌[6] 等肿瘤细胞的培养基中纯化的外泌体与PC12共培养后,可显著增加PC12细胞神经轴突的生长。Guillot 等[7] 通过透明化技术也进一步证实了胰腺癌的交感神经增多并非依赖于新神经的发生,而是依赖正常支配胰腺外分泌的毛细血管的交感神经轴突末梢的生长。这些发现证明肿瘤细胞可以诱导肿瘤中自主神经的轴突末梢生长。

  • 此外,在前列腺癌研究中发现,肿瘤细胞可以诱导大脑中表达神经干细胞标志物双皮质素的神经祖细胞,通过血流从大脑脑室下区的神经源性区域迁移到肿瘤部位,进而分化为肾上腺素能神经,影响肿瘤的转移与复发[8]。在头颈部口腔鳞状细胞癌的研究中发现,P53缺失的癌细胞分泌的外泌体中miRNA含量下降,导致周围感觉神经细胞分化为肾上腺素能神经,促进了肿瘤对交感神经的侵袭作用,加快肿瘤的进展[9]。此外,胃癌和结直肠癌患者的一部分肿瘤干细胞(cancer stem cell,CSC)能够通过单克隆产生神经元,包括交感神经和副交感神经,这些神经元与癌细胞相互作用,促进了肿瘤的进展。微管相关蛋白2敲低的CSC显著降低自主神经的生成速度,进而抑制裸鼠体内的肿瘤生长[10]。因此,肿瘤细胞还可通过诱导神经祖细胞、感觉神经细胞以及 CSC等多种细胞分化为自主神经,促进肿瘤进展。

  • 2 自主神经在癌症发生发展中的作用

  • 2.1 交感神经

  • 交感神经系统通过节后神经节将信号从神经节传导至支配的各个器官。在肿瘤中,交感神经通过神经末梢释放神经递质(主要为肾上腺素,部分为去甲肾上腺素)被肿瘤细胞表面的α和β肾上腺素能受体接收,从而发挥调控作用。通过对临床癌组织样本的酪氨酸羟化酶(tyrosine hydroxylase,TH)免疫组化发现,交感神经纤维广泛分布于前列腺癌[1]、胰腺癌[11]、胃癌[12] 等恶性肿瘤的肿瘤微环境中,并与临床结局密切相关。进一步研究发现,在前列腺癌[1]、乳腺癌[13]、肝癌[14]、头颈鳞状细胞癌[9] 等多种肿瘤中,交感神经的增加促进了肿瘤的发生发展,与高复发和高病死率密切相关。然而,也有相关研究认为结直肠癌中高密度的交感神经能抑制癌症进展[15],对癌症患者的预后有益[16]。因此,交感神经对肿瘤调控作用具有多样性。如图1 和表1 所示,主要体现在以下几个方面。

  • 2.1.1 对肿瘤发生的影响

  • 骨髓增生性肿瘤(myeloproliferative neoplasms, MPN)是由造血干细胞(hematopoietic stem cell, HSC)突变引起的疾病,其中大多数 MPN 患者的 HSC最常见JAK2基因突变。当神经损伤时,交感神经支配的骨髓巢蛋白阳性的间充质干细胞在体内耗竭或产生趋化因子 C ⁃X ⁃C 基元配体 12(chemo⁃ kine C⁃X⁃C motif ligand 12,CXCL12),可促进 JAK2 突变细胞的扩增从而促 MPN 的发生。然而,神经保护或β3受体激动剂治疗可显著恢复骨髓巢蛋白阳性的间充质干细胞的交感神经调节,从而阻止 MPN的发生[17]。在胰腺导管癌中,慢性应激通过激活交感神经,升高肾上腺素和去甲肾上腺素水平,刺激β2 肾上腺素能受体的高表达,导致胰腺腺泡导管化生,促进KRAS突变诱导的胰腺导管癌的发生[11]。同样在乳腺癌中,压力应激诱导的肾上腺素能信号传导增加,则通过多种途径诱导乳腺上皮细胞的上皮⁃间充质转化(epithelial⁃mesenchymal tran⁃ sition,EMT),从而促进乳腺癌的发生[18]

  • 图1 自主神经与肿瘤相互作用的机制

  • Figure1 The mechanism of the interaction between autonomic nervous system and tumors

  • 2.1.2 对肿瘤血管新生的影响

  • 在前列腺癌中,6⁃羟基多巴胺(oxidopamine hy⁃ drochloride,6⁃OHDA)化学消融交感神经或通过手术切除小鼠前列腺中递送交感神经的胃下神经,可显著抑制前列腺癌小鼠模型的肿瘤进展[1]。β⁃肾上腺素能信号传导对激活血管生成至关重要,其可抑制内皮细胞的氧化磷酸化从而促进血管新生[19]。在乳腺癌中,交感神经分泌的肾上腺素可激活血管内皮生长因子(vascular endothelial growth factor, VEGF)/成纤维细胞生长因子(fibroblast growth fac⁃ tor,FGF)⁃2以及白介素(interleukin,IL)⁃6等促进血管新生相关蛋白的表达[18]。在卵巢癌中,也观察到 VEGF的上调[20],除此之外,交感神经的β肾上腺素能激活还可以通过cAMP⁃PKA信号通路增强小鼠体内的血管生成,促进卵巢癌的生长[21]。对肝癌患者样本的研究表明,TH 的高表达与血管转移密切相关,患者的总生存时间明显缩短,提示TH可能是肝癌的潜在靶点[14]。因此,交感神经在多种肿瘤中可促进血管新生,促进肿瘤进展。

  • 2.1.3 对肿瘤免疫微环境的影响

  • 交感神经对肿瘤的免疫微环境,尤其对CD4+ 和 CD8+ T细胞具有重要的调控作用。研究表明,在胰腺导管癌中,交感神经的β1肾上腺素能受体激活可能与 CD8+ T 细胞的耗竭密切相关[22]。在黑色素瘤中,β肾上腺素受体阻滞剂普萘洛尔已被证实在小鼠肿瘤模型中能减少 CD8+ T 细胞的程序性死亡受体1(programmed death 1,PD⁃1)的表达,增加干扰素(interferon,IFN)⁃γ的表达,从而抑制由冷刺激激活的肿瘤细胞生长[23]。此外,6⁃OHDA 消融交感神经能延缓黑色素瘤进展并显著延长小鼠的生存期,尽管黑色素瘤的体积并没有减小[24]。在乳腺癌中,靶向去除交感神经支配已被证明抑制肿瘤生长,并降低了CD4+ 和CD8+ T细胞相关免疫检查点分子的表达[13]。值得注意的是,一项Ⅱ期随机对照试验评估了术前使用β受体阻滞剂普萘洛尔对乳腺癌患者的影响,结果显示,术前使用普萘洛尔可降低乳腺癌早期原发肿瘤中间充质相关基因的表达,同时增加了肿瘤中 CD8+ T 细胞和巨噬细胞的浸润[25]。在胰腺导管癌中,观察到交感神经可调控巨噬细胞。交感神经轴突通过抑制局部病变部位的CD163+ 巨噬细胞亚群来延缓胰腺肿瘤的进展[7]。在卵巢癌中,交感神经上调基质金属蛋白酶(matrix metallo⁃ proteinases,MMP)⁃2、MMP⁃9 促进肿瘤巨噬细胞浸润进而促进肿瘤侵袭[20]。因此,交感神经主要通过调控T细胞、巨噬细胞,以及影响一些免疫检查点分子的表达来影响肿瘤的免疫微环境。

  • 2.1.4 对肿瘤增殖、迁移以及耐药的影响

  • 在胰腺导管癌中,肾上腺素通过诱导RNA结合蛋白HuR的细胞质易位,激活转化生长因子(trans⁃ forming growth factor,TGF)⁃β,有助于癌细胞迁移[26]。另一项研究表明,β2肾上腺素能受体通过ERK1/2通路增加醛酮还原酶 1 成员 B1(aldehydeketone reduc⁃ tase1 member B1,AKR1B1)在肿瘤细胞的表达,促进胰腺导管癌细胞的增殖[27]。在卵巢癌中,交感神经分泌去甲肾上腺素激活了肿瘤细胞的β肾上腺素能受体,使肿瘤细胞以ADRB3/cAMP/Epac/JNK依赖性方式产生脑源性神经营养因子(brain derived neu⁃ rotrophic factor,BDNF),作用于酪氨酸激酶 B(tyro⁃ sine kinase B,TrkB)受体,促进神经生长,正反馈促进卵巢癌细胞生长,与卵巢癌患者的不良预后密切相关[28]。此外,周围神经浸润(peripheral nerve infiltration,PNI)在肿瘤转移中发挥着关键作用。 PNI指的是癌细胞向神经周围迁移、侵入神经内并沿着神经延伸到达远处器官形成转移灶[29]。最初在头颈部肿瘤中发现[30],随着研究深入,逐渐在胰腺癌、前列腺癌、胆管癌和胃癌等中得到确认,PNI 被认为是除直接侵犯、淋巴转移、血行转移、种植转移之外癌症扩散的第5种途径。由于神经几乎遍布全身,神经内部及神经周围的肿瘤细胞难以切除,因此癌症自主神经周围浸润与较低的生存率、较差的生活质量相关,是多种癌症患者预后的独立预测指标[31]。此外,交感神经还可通过信号转导形式促进肿瘤转移。在乳腺癌中,交感神经激活的小鼠模型证明了β2肾上腺素能信号激活导致骨髓基质细胞表达核因子⁃κB 受体激活剂(receptor activator of NF⁃κB ligand,RANKL)的配体,促进了乳腺癌骨转移,导致骨病变发生[32]。在肿瘤耐药方面,交感神经也发挥着重要作用。卵巢癌的体内和体外研究均证实,儿茶酚胺作用于β肾上腺素受体,激活 cAMP⁃PLC⁃PKC⁃CREB 信号转导增加MAPK磷酸酶 DUSP1的表达,显著抑制紫杉醇和顺铂处理的卵巢癌细胞的凋亡[33]。在宫颈癌中,交感神经分泌的神经递质儿茶酚胺诱导β2肾上腺素能受体激活介导的信号转导,上调Sirt1的表达,抑制阿霉素诱导的P53 乙酰化和转录活性,为抗肿瘤治疗带来挑战[34]

  • 2.2 副交感神经

  • 除了交感神经外,由迷走神经调控的副交感神经在多种肿瘤中同样具有重要作用。副交感神经主要通过释放乙酰胆碱(acetylcholine,Ach)作用于靶器官的烟碱型乙酰胆碱受体(nicotinic acetylcho⁃ line receptor,nAChR)和毒蕈碱型乙酰胆碱受体 (muscarinic acetylcholine receptor,mAChR)从而发挥作用。研究显示,在前列腺癌标本中,副交感神经胆碱能纤维也同样发生浸润,用全身性毒蕈碱激动剂氨甲酰甲胆碱处理显著增加了前列腺癌细胞向盆腔淋巴结的侵袭,相反,使用抑制剂东莨菪碱或吡仑西平,则可以明显抑制这种转移[1],提示副交感神经可能在前列腺癌的转移中具有重要作用。随着研究深入,副交感神被证实在乳腺癌[13]、肝癌[14]、胃癌[35]、结直肠癌[15] 的进展中同样具有重要作用。副交感神经对肿瘤的影响如图1和表1所示,主要体现在以下几个方面。

  • 2.2.1 对肿瘤发生的影响

  • 在胰腺导管癌中,切除迷走神经会加速胰腺导管癌的发展,而全身性毒蕈碱激动剂氨甲酰甲胆碱抑制了迷走神经切断引起的肿瘤进展,提示副交感神经抑制可促进胰腺导管癌的发生[36]。在胃癌中,迷走神经切断术或局部注射A型肉毒梭菌毒素治疗显著降低了胃癌的发生,且与Wnt信号转导的抑制和干细胞扩增有关[35]。这也在另一个研究中得到证实:阻断Ach 毒蕈碱受体⁃3(muscarine recep⁃ tor 3,M3R)依赖性的方式抑制胃上皮增殖和胃癌发生[37]。在结直肠癌中,有研究报道,毒蕈碱激动剂氨甲酰甲胆碱可能通过上调MMP基因的表达,促进肠上皮细胞增殖,增加结肠黏膜厚度并促进肿瘤形成[38]。此外,迷走神经的分支为胰腺导管癌提供副交感神经输入,切除神经则加速了胰腺导管癌的发生,而氨甲酰甲胆碱治疗抑制了肿瘤发生,延长了小鼠的总生存期[36]。因此,副交感神经在不同肿瘤发生中的作用不尽相同。

  • 2.2.2 对肿瘤免疫微环境影响

  • 前列腺癌肿瘤微环境的副交感神经上高表达细胞程序性死亡配体 1(programmed cell death 1 ligand 1,PD⁃L1),与CD8+ T细胞的减少相关,通过抑制患者免疫功能导致患者的预后不良[39]。在胰腺导管癌中,乙酰胆碱以剂量依赖性方式直接抑制 CD8 + T 细胞产生 IFN ⁃γ,并且有利于 Th2 而不是 Th1分化,改变免疫微环境,促进肿瘤生长[40]。然而,在乳腺癌中,副交感神经却有着相反的作用。副交感神经支配降低了CD8+ T细胞中免疫检查点分子PD⁃1 的表达,抑制了乳腺癌的进展,副交感神经密度的降低与不良的临床预后有关[13]。因此,副交感神经在免疫微环境中的调控作用还需要进一步研究。

  • 2.2.3 对肿瘤增殖、迁移以及耐药的影响

  • 在前列腺癌组织中,毒蕈碱乙酰胆碱受体 M1 (mushroom acetylcholine receptor M1,CHRM1)表达显著升高,CHRM1激活主要通过调节GLI家族锌指蛋白 1(GLI family zinc finger protein 1,GLI1)和 PTCH1来促进Hedgehog信号激活,参与调控前列腺癌细胞的迁移和侵袭[41]。而CHRM1的激活还可以增加前列腺癌细胞对多西他赛的耐药性[42]。在胰腺导管癌中,副交感神经通过释放乙酰胆碱,激活胰腺癌干细胞中的CHRM1,抑制胰腺导管癌细胞中的下游 MAPK/EGFR 和 PI3K/AKT 通路,并抑制 CD44+ 的CSC,延缓胰腺导管癌的进展[36]。在胃癌中,副交感神经分泌的神经递质乙酰胆碱可以上调毒蕈碱型胆碱受体 M3(mushroom acetylcholine receptor M3,CHRM3)的表达,诱导Wnt信号转导,上调神经生长因子的表达,显著增加神经突起的生长,并促进胃癌进展[37]。晚期胃癌去神经还可以通过M3胆碱能受体抑制胃癌的Wnt信号通路和干细胞扩增,增强化疗疗效,延长生存期[35]。乳腺癌小鼠模型中,迷走神经切断术增加了乳腺癌细胞的肾上腺转移,表明迷走神经通过抑制肿瘤细胞转移在防御癌症方面发挥着重要作用[43]。副交感神经纤维主要分布在远离结直肠癌细胞的基质中,部分围绕着血管,与无淋巴结浸润的患者相比,淋巴结浸润的患者标本中,副交感神经的表达增加,α9⁃烟碱型乙酰胆碱受体(alpha9⁃nicotinic acetylcholine receptor, α9⁃nAChR)在结直肠癌中也高表达,与癌症分期较高、年龄较大相关,表明副交感神经可能通过α9⁃nAChR促进结直肠癌的进展[15]。对肝癌患者样本的研究表明副交感神经标志物囊泡乙酰胆碱转运体(vesicular acetylcholine transporter,VAChT)的高表达会加快肝癌进展,与较差的临床结局相关[14]。因此,副交感神经在多种肿瘤细胞的增殖、转移以及耐药中同样发挥着重要作用。

  • 表1 自主神经与肿瘤

  • Table1 Autonomic nerves and tumors

  • (续表1)

  • -:Not mentioned in the article.

  • 3 神经活性分子

  • 3.1 神经营养因子

  • 神经营养因子是神经元生存和发育中至关重要的蛋白质,其中神经生长因子(nerve growth fac⁃ tor,NGF)是最重要的成员,它有两种受体:高亲和力受体酪氨酸激酶 A(tyrosime kinase A,TrkA)和低亲和力受体p75NTR。在肿瘤微环境中,NGF过度分泌促进了癌细胞和神经细胞的增殖与迁移[44]。胰腺癌细胞在营养匮乏时分泌NGF,驱使神经元细胞轴突释放丝氨酸,从而为胰腺癌细胞提供营养支持[45]。神经营养因子及其受体参与了肿瘤细胞和神经细胞之间的信号传导。在儿茶酚胺的作用下,肿瘤细胞可以分泌另一个重要的神经营养因子 BDNF,进而通过TrkB受体增加神经支配,不仅在神经元存活、分化和轴突延伸过程中起着非常关键的作用,而且目前已经证实,BDNF/TrkB 通过激活其下游 PI3K/ AkT、RAS/MAPK 等信号通路在促进癌细胞迁移和侵袭、抑制癌细胞凋亡方面发挥作用[46],与卵巢癌、胰腺癌等癌症患者预后较差相关。胶质细胞源性神经营养因子(glia cell line⁃derived neurotrophic fac⁃ tor,GDNF)也是神经营养因子家族的一员,与胰腺癌预后密切相关[47]。研究发现,肿瘤微环境中的巨噬细胞可以分泌GDNF,诱导GDNF⁃GFRα1⁃RET信号转导激活ERK,增强癌细胞的侵袭能力[48]

  • 3.2 趋化因子

  • 趋化因子是一类由细胞分泌的小型细胞因子或信号蛋白,近年来,越来越多的研究揭示趋化因子及其受体在肿瘤转移、复发和血管生成中发挥重要作用。其中CXCL12及其受体趋化因子C⁃X⁃C基元受体4(chemokine C⁃X⁃C motif receptor 4,CXCR4)是目前报道的最为普遍、且促进肿瘤转移最为明确的趋化因子及其受体[49]。在前列腺癌中,研究表明肿瘤细胞和神经高表达CXCL12和CXCR4,共同促进前列腺癌的PNI。此外,CXCL12还能增强前列腺癌细胞中NGF的表达,使其与前列腺癌周围的神经细胞表面的受体结合,激活信号转导通路,增强肿瘤向神经的迁移的能力[50]。然而,最近研究表明前列腺癌的PNI与另一个信号转导轴趋化因子C⁃C基元配体2(chemokine C⁃C motif ligand 2,CCL2)及其受体趋化因子C⁃C基元受体2(chemokine C⁃C motif receptor 2,CCR2)密切相关。前列腺癌高表达 CCR2,激活 MAPK/AKT 通路,向表达 CCL2 的 DRG 侵袭[51]。在胰腺癌中,发现其高表达另一种趋化因子受体 CX3CR1,而神经母细胞瘤细胞 SK⁃N⁃BE 高表达趋化因子 CX3CL1,使得癌细胞更易黏附在 SK⁃N⁃BE 细胞上而促进肿瘤转移,是预测患者早期肿瘤复发的独立危险因素之一[52]

  • 3.3 神经细胞黏附分子

  • 神经细胞黏附分子(neural cell adhesion mole⁃ cule,NCAM)被报道在神经生长和信号传导方面发挥着重要作用,其主要分为三大亚型:NCAM120、 NCAM140和NCAM180。研究发现NCAM180在正常结肠及良性结肠上皮中存在,它有助于维持和增强结肠细胞上皮的完整性,减少肿瘤细胞的侵袭和转移。然而,在侵袭性结肠癌中,NCAM180表达完全消失[53]。这些结果提示NCAM180在癌症中可能充当肿瘤抑制因子,预示着良好的预后。然而,NCAM在正常的卵巢上皮中完全不表达,而在上皮性卵巢癌中的表达显著增加。进一步研究发现,NACM通过刺激 FGFR信号通路来促进卵巢癌细胞的迁移和侵袭[54]。因此,NCAM在癌症中的作用及其机制还需要进一步研究。

  • 3.4 轴突导向分子

  • 轴突导向分子家族主要包括 Ephrin、信号素 (semaphore,SEMA)、SLIT 和神经生长诱导因子,它们通过与相应的受体结合,启动下游的一些信号转导通路,从而调控轴突的生长。Netrin⁃1(NTN1)是神经生长诱导因子的一个亚型,最早在神经系统的发育过程中被发现,最近研究发现其在各种恶性肿瘤中表达上调,并对肿瘤进展起着至关重要的作用,特别是介导癌症PNI[55]。与 NTN1 类似,SEMA3D在胰腺癌中上调,通过结合并激活周围神经中的受体 PLXND1,促进癌症 PNI 和肿瘤转移[56]。此外, SEMA3A、SEMA3B、SEMA3C、SEMA3E、SEMA4D、 SEMA6D被报道在多种肿瘤中也发挥着重要的调节作用[57]。轴突生长诱导因子 G1(Netrin G1)是一种谷氨酸能突触前蛋白,位于突触前神经元,与突触后细胞上的受体NGL⁃1相互作用促进轴突生长,通过介导谷氨酸代谢促进胰腺导管癌的生长[58]。在头颈鳞状细胞癌和黑色素瘤的外泌体中发现Ephrin 的1个亚型Ephrin B1,它本身具有促血管生成的特性,增强了肿瘤的神经支配[6]。然而,轴突导向分子 SLIT2及其受体ROBO在胰腺导管癌中充当肿瘤抑制因子,抑制胰腺癌的PNI,与较差的预后相关[59]。在乳腺癌中,SLIT/ROBO 信号不仅在抑制PNI 中起重要作用,还可以通过抑制肿瘤细胞的脱落来阻止肿瘤转移[60]。因此,轴突导向分子在癌症中发挥多种作用,一方面它可以促进肿瘤细胞的PNI,加快癌症进展;另一方面,在某些癌症中可能抑制肿瘤微环境中的轴突生长,诱导细胞凋亡,达到抑制肿瘤发展的目的。它在促癌和抑癌之间的平衡直接影响着患者的结局。因此,有必要进一步研究癌症和轴突导向分子之间的相互作用,以寻找潜在的治疗靶点。

  • 4 抑制神经的相关抗肿瘤治疗

  • 4.1 NGF抗体和TH抑制剂

  • Adriaenssens 等[61] 早在 2008 年就已经发现抗 NGF抗体或NGF的小干扰RNA可以降低肿瘤细胞增殖,抑制乳腺癌的血管生成和肿瘤转移。近期在胰腺癌中的研究又进一步证实了抗NGF的作用:胰腺癌和自主神经之间存在着自分泌和旁分泌的NGF信号通路,敲低NGF可显著减少胰腺癌细胞的增殖及其向神经节的迁移,提示抗NGF可能是降低胰腺癌发展的一种潜在方法[62]。此外,最近研究认为抗NGF抗体他尼组单抗作为一种潜在的新型非成瘾性的药物,或许可以代替非甾体类抗炎药和阿片类药物应用于控制肿瘤化疗引起的疼痛以及髋关节、膝关节炎引起的疼痛[63]。因此抗NGF可能是一种潜在的治疗肿瘤及相关并发症的较有潜力的方法。

  • TH则是交感神经的标志物,作为参与神经营养因子信号传导的关键酶之一,BDNF 结合其受体 TrkB 后激活 TH,参与神经元突触重塑。早在 2014 年,研究报道TH抑制剂可以通过血⁃脑屏障,显著抑制非小细胞肺癌脑转移[64]。因此,TH抑制剂可能在胶质瘤等疾病中有较好的发展潜力。

  • 4.2 β受体阻滞剂

  • 交感神经β肾上腺素能受体的激活已被证明能加速癌症的进展。越来越多的研究表明,β受体阻滞剂具有抑制多种癌症进展的作用。这些药物能选择性地与交感神经节后纤维上的β肾上腺素受体结合,是临床上阻断肾上腺素功能最常用的药物之一。普萘洛尔是一种非选择性的β1与β2受体阻滞剂,它可以通过降低γ干扰素驱动的 PD⁃L1 免疫抑制,显著提高机体的抗肿瘤免疫,减少卵巢癌的转移[65]。此外,在胃癌中,研究发现β受体阻滞剂也可以通过抑制磷酸化CREB⁃ATF和MEK⁃ERK信号通路及降低 MMP⁃2、MMP⁃9 和 VEGF 的表达,诱导 G1 期肿瘤细胞周期停滞和凋亡来抑制胃癌细胞的增殖和迁移[66]。一项Ⅱ期随机对照试验在乳腺癌患者中证明,术前1周口服普萘洛尔可以有效降低乳腺癌转移标志物的表达,延缓癌症进展[67],且与氯喹联合治疗时可以显著降低肿瘤细胞活力并增加肿瘤细胞凋亡[25]。此外,在前列腺癌、胰腺癌和黑色素瘤中,使用普萘洛尔的脂质体治疗显示出相当大的治疗潜力,与较低的病死率和复发风险显著相关[68]。普萘洛尔联合新辅助化疗的Ⅱ期临床研究证实了肾上腺素能神经阻滞可以增强化疗药物抗肿瘤的疗效,在癌症治疗中具有重要意义。各种回顾性研究的结果也表明,在癌症诊断之前使用β受体阻滞剂,对各种癌症患者具有保护作用。如对胰腺癌[69]、卵巢癌[70] 患者的回顾性研究结果一致表明,β受体阻滞剂的使用与无进展生存期和总生存期改善密切有关,是一个独立的阳性预后因素。因此,β受体阻滞剂在多种肿瘤中都有预防和保护作用,阻断β受体可能是多种癌症有前途的预防或治疗策略之一。

  • 4.3 神经毒素

  • 针对肿瘤中的神经,人们开发了基于逆转录病毒介导的神经细胞工程技术,该技术可以选择性地调节肿瘤局部的自主神经纤维组成,通过肿瘤内注射逆转录病毒载体,以肿瘤组织特异性方式逆行递送至支配肿瘤的神经纤维,在乳腺癌中,该技术已表现出比β受体阻滞剂更强的肿瘤抑制效果[13]。与药物治疗相比,该技术能够针对特定神经的去神经支配,从而避免引起全身的不良反应。然而,这项技术仍然存在一定局限性,目前只在乳腺癌中证明其抑制作用,在其他癌症中的作用仍需进一步探索。此外,该技术需要进行瘤内给药,对一些肿瘤而言,原位注射非常困难,且存在损害其他神经的风险。因此,未来需要更多的基础实验和临床证据来证明它的临床适用性。肉毒梭菌毒素因其可以特异性地抑制副交感神经递质乙酰胆碱的释放,在临床上已被批准用于治疗慢性偏头痛、脑卒中、脊髓损伤等疾病。近期在肿瘤中的研究发现,肉毒梭菌毒素对明确存在PNI的恶性肿瘤也有治疗作用。在胰腺癌瘤内注射肉毒梭菌毒素则显著缩小了肿瘤体积[71]。在前列腺癌细胞培养基中,添加肉毒梭菌毒素也显著抑制了前列腺癌细胞增殖并促进其凋亡[72]。因此,神经毒素也是一种可通过抑制肿瘤内神经支配达到延缓肿瘤进展的潜在治疗方式。

  • 5 小结与展望

  • 癌症神经生物学是癌症研究中一个新兴的领域,尽管目前的研究提高了人们对癌症和自主神经相互作用在肿瘤发生发展中的认识,但是由于研究神经与肿瘤的相互关系存在困难,尤其是两者相互作用的体外建模较为困难,加上神经的复杂性,自主神经和肿瘤的相互作用仍不明确,还需要进一步研究,以期为肿瘤治疗提供新的策略。

  • 参考文献

    • [1] MAGNON C,HALL S J,LIN J,et al.Autonomic nerve development contributes to prostate cancer progression[J].Science,2013,341(6142):1236361

    • [2] ALBO D,AKAY C L,MARSHALL C L,et al.Neurogenesis in colorectal cancer is a marker of aggressive tumor behavior and poor outcomes[J].Cancer,2011,117(21):4834-4845

    • [3] AYALA G E,WHEELER T M,SHINE H D,et al.In vitro dorsal root Ganglia and human prostate cell line interaction:redefining perineural invasion in prostate cancer[J].Prostate,2001,49(3):213-223

    • [4] AYALA G E,DAI H,POWELL M,et al.Cancer-related axonogenesis and neurogenesis in prostate cancer[J].Clin Cancer Res,2008,14(23):7593-7603

    • [5] LUCIDO C T,WYNJA E,MADEO M,et al.Innervation of cervical carcinoma is mediated by cancer-derived exo⁃somes[J].Gynecol Oncol,2019,154(1):228-235

    • [6] MADEO M,COLBERT P L,VERMEER D W,et al.Cancer exosomes induce tumor innervation[J].Nat Commun,2018,9(1):4284

    • [7] GUILLOT J,DOMINICI C,LUCCHESI A,et al.Sympathetic axonal sprouting induces changes in macrophage populations and protects against pancreatic cancer[J].Nat Commun,2022,13(1):1985

    • [8] MAUFFREY P,TCHITCHEK N,BARROCA V,et al.Progenitors from the central nervous system drive neurogenesis in cancer[J].Nature,2019,569(7758):672-678

    • [9] AMIT M,TAKAHASHI H,DRAGOMIR M P,et al.Loss of p53 drives neuron reprogramming in head and neck cancer[J].Nature,2020,578(7795):449-454

    • [10] LU R,FAN C W,SHANGGUAN W Q,et al.Neurons generated from carcinoma stem cells support cancer progression[J].Signal Transduct Target Ther,2017,2:16036

    • [11] RENZ B W,TAKAHASHI R,TANAKA T,et al.β2 adrenergic⁃neurotrophin feed forward loop promotes pancreatic cancer[J].Cancer Cell,2018,34(5):863-867

    • [12] BAE G E,KIM H S,WON K Y,et al.Lower sympathetic nervous system density and β⁃ adrenoreceptor expression are involved in gastric cancer progression[J].Anticancer Res,2019,39(1):231-236

    • [13] KAMIYA A,HAYAMA Y,KATO S,et al.Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression[J].Nat Neuro⁃sci,2019,22(8):1289-1305

    • [14] ZHANG L,WU L L,HUAN H B,et al.Sympathetic and parasympathetic innervation in hepatocellular carcinoma[J].Neoplasma,2017,64(6):840-846

    • [15] ZHOU H,SHI B J,JIA Y T,et al.Expression and significance of autonomic nerves and α9 nicotinic acetylcholine receptor in colorectal cancer[J].Mol Med Rep,2018,17(6):8423-8431

    • [16] CIUREA R N,ROGOVEANU I,PIRICI D,et al.B2 adrenergic receptors and morphological changes of the enteric nervous system in colorectal adenocarcinoma[J].World J Gastroenterol,2017,23(7):1250-1261

    • [17] ARRANZ L,SÁNCHEZ⁃AGUILERA A,MARTÍN⁃PÉREZ D,et al.Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms[J].Nature,2014,512(7512):78-81

    • [18] SILVA D,QUINTAS C,GONÇALVES J,et al.Contribution of adrenergic mechanisms for the stress-induced breast cancer carcinogenesis[J].J Cell Physiol,2022,237(4):2107-2127

    • [19] ZAHALKA A H,ARNAL ⁃ESTAPÉ A,MARYANOVICH M,et al.Adrenergic nerves activate an angio-metabolic switch in prostate cancer[J].Science,2017,358(6361):321-326

    • [20] HUANG S Y,VAN ARSDALL M,TEDJARATI S,et al.Contributions of stromal metalloproteinase⁃9 to angiogenesis and growth of human ovarian carcinoma in mice[J].J Natl Cancer Inst,2002,94(15):1134-1142

    • [21] THAKER P H,HAN L Y,KAMAT A A,et al.Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma[J].Nat Med,2006,12(8):939-944

    • [22] GLOBIG A M,ZHAO S,ROGINSKY J,et al.The β1 ⁃adrenergic receptor links sympathetic nerves to T cell exhaustion[J].Nature,2023,622(7982):383-392

    • [23] BUCSEK M J,QIAO G X,MACDONALD C R,et al.β⁃adrenergic signaling in mice housed at standard temperatures suppresses an effector phenotype in CD8 + T cells and undermines checkpoint inhibitor therapy[J].Cancer Res,2017,77(20):5639-5651

    • [24] HORVATHOVA L,TILLINGER A,PADOVA A,et al.Sympathectomized tumor⁃bearing mice survive longer but develop bigger melanomas[J].Endocr Regul,2016,50(4):207-214

    • [25] HILLER J G,COLE S W,CRONE E M,et al.Preoperative β ⁃ blockade with propranolol reduces biomarkers of metastasis in breast cancer:a phase Ⅱ randomized trial[J].Clin Cancer Res,2020,26(8):1803-1811

    • [26] PU J,ZHANG X R,LUO H W,et al.Adrenaline promotes epithelial⁃to⁃mesenchymal transition via HuR⁃TGFβ regulatory axis in pancreatic cancer cells and the implication in cancer prognosis[J].Biochem Biophys Res Commun,2017,493(3):1273-1279

    • [27] XIAO M B,JIN D D,JIAO Y J,et al.β2⁃AR regulates the expression of AKR1B1 in human pancreatic cancer cells and promotes their proliferation via the ERK1/2 pathway[J].Mol Biol Rep,2018,45(6):1863-1871

    • [28] ALLEN J K,ARMAIZ ⁃PENA G N,NAGARAJA A S,et al.Sustained adrenergic signaling promotes intratumoral innervation through BDNF induction[J].Cancer Res,2018,78(12):3233-3242

    • [29] AMIT M,NA’ARA S,GIL Z.Mechanisms of cancer dissemination along nerves[J].Nat Rev Cancer,2016,16(6):399-408

    • [30] CARTER R L,FOSTER C S,DINSDALE E A,et al.Perineural spread by squamous carcinomas of the head and neck:a morphological study using antiaxonal and antimy⁃elin monoclonal antibodies[J].J Clin Pathol,1983,36(3):269-275

    • [31] HARNDEN P,SHELLEY M D,CLEMENTS H,et al.The prognostic significance of perineural invasion in prostatic cancer biopsies:a systematic review[J].Cancer,2007,109(1):13-24

    • [32] CAMPBELL J P,KAROLAK M R,MA Y,et al.Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice[J].PLoS Biol,2012,10(7):e1001363

    • [33] KANG Y,NAGARAJA A S,ARMAIZ ⁃PENA G N,et al.Adrenergic stimulation of DUSP1 impairs chemotherapy response in ovarian cancer[J].Clin Cancer Res,2016,22(7):1713-1724

    • [34] CHEN H Y,ZHANG W,CHENG X,et al.β2⁃AR activation induces chemoresistance by modulating p53 acetylation through upregulating Sirt1 in cervical cancer cells[J].Cancer Sci,2017,108(7):1310-1317

    • [35] ZHAO C M,HAYAKAWA Y,KODAMA Y,et al.Denervation suppresses gastric tumorigenesis[J].Sci Transl Med,2014,6(250):250ra115

    • [36] RENZ B W,TANAKA T,SUNAGAWA M,et al.Cholinergic signaling via muscarinic receptors directly and indirectly suppresses pancreatic tumorigenesis and cancer stemness[J].Cancer Discov,2018,8(11):1458-1473

    • [37] HAYAKAWA Y,SAKITANI K,KONISHI M,et al.Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling[J].Cancer Cell,2017,31(1):21-34

    • [38] PENG Z S,HEATH J,DRACHENBERG C,et al.Cholinergic muscarinic receptor activation augments murine intestinal epithelial cell proliferation and tumorigenesis[J].BMC Cancer,2013,13:204

    • [39] MO R J,HAN Z D,LIANG Y K,et al.Expression of PDL1 in tumor⁃associated nerves correlates with reduced CD8+ tumor⁃associated lymphocytes and poor prognosis in prostate cancer[J].Int J Cancer,2019,144(12):3099-3110

    • [40] YANG M W,TAO L Y,JIANG Y S,et al.Perineural invasion reprograms the immune microenvironment through cholinergic signaling in pancreatic ductal adenocarcinoma[J].Cancer Res,2020,80(10):1991-2003

    • [41] YIN Q Q,XU L H,ZHANG M,et al.Muscarinic acetylcholine receptor M1 mediates prostate cancer cell migration and invasion through hedgehog signaling[J].Asian J Androl,2018,20(6):608-614

    • [42] WANG J,WEI J,PU T J,et al.Cholinergic signaling via muscarinic M1 receptor confers resistance to docetaxel in prostate cancer[J].Cell Rep Med,2024,5(2):101388

    • [43] ERIN N,BARKAN G A,CLAWSON G A.Vagus nerve regulates breast cancer metastasis to the adrenal gland[J].Anticancer Res,2013,33(9):3675-3682

    • [44] HAN S B,WANG D C,HUANG Y,et al.A reciprocal feedback between colon cancer cells and Schwann cells promotes the proliferation and metastasis of colon cancer[J].J Exp Clin Cancer Res,2022,41(1):348

    • [45] BANH R S,BIANCUR D E,YAMAMOTO K,et al.Neurons release serine to support mRNA translation in pancreatic cancer[J].Cell,2020,183(5):1202-1218.e25

    • [46] AU C W,SIU M K,LIAO X Y,et al.Tyrosine kinase B receptor and BDNF expression in ovarian cancers-Effect on cell migration,angiogenesis and clinical outcome[J].Cancer Lett,2009,281(2):151-161

    • [47] ITO Y,OKADA Y,SATO M,et al.Expression of glial cell line⁃derived neurotrophic factor family members and their receptors in pancreatic cancers[J].Surgery,2005,138(4):788-794

    • [48] CAVEL O,SHOMRON O,SHABTAY A,et al.Endoneu⁃rial macrophages induce perineural invasion of pancreatic cancer cells by secretion of GDNF and activation of RET tyrosine kinase receptor[J].Cancer Res,2012,72(22):5733-5743

    • [49] BALKWILL F.The significance of cancer cell expression of the chemokine receptor CXCR4[J].Semin Cancer Biol,2004,14(3):171-179

    • [50] ZHANG S W,QI L S,LI M,et al.Chemokine CXCL12 and its receptor CXCR4 expression are associated with perineural invasion of prostate cancer[J].J Exp Clin Cancer Res,2008,27(1):62

    • [51] HE S Z,HE S B,CHEN C H,et al.The chemokine(CCL2 ⁃ CCR2)signaling axis mediates perineural invasion[J].Mol Cancer Res,2015,13(2):380-390

    • [52] MARCHESI F,PIEMONTI L,FEDELE G,et al.The chemokine receptor CX3CR1 is involved in the neural tropism and malignant behavior of pancreatic ductal adenocarcinoma[J].Cancer Res,2008,68(21):9060-9069

    • [53] TASCILAR O,CAKMAK G K,TEKIN I O,et al.Neural cell adhesion molecule⁃180 expression as a prognostic criterion in colorectal carcinoma:feasible or not?[J].World J Gastroenterol,2007,13(41):5476-5480

    • [54] ZECCHINI S,BOMBARDELLI L,DECIO A,et al.The adhesion molecule NCAM promotes ovarian cancer progression via FGFR signalling[J].EMBO Mol Med,2011,3(8):480-494

    • [55] YIN K,WANG L J,XIA Y W,et al.Netrin ⁃ 1 promotes cell neural invasion in gastric cancer via its receptor neo⁃genin[J].J Cancer,2019,10(14):3197-3207

    • [56] JURCAK N R,RUCKI A A,MUTH S,et al.Axon guidance molecules promote perineural invasion and metastasis of orthotopic pancreatic tumors in mice[J].Gastroenterology,2019,157(3):838-850

    • [57] CAPPARUCCIA L,TAMAGNONE L.Semaphorin signaling in cancer cells and in cells of the tumor microenvironment-two sides of a coin[J].J Cell Sci,2009,122(Pt 11):1723-1736

    • [58] NISHI K,SUZUKI M,YAMAMOTO N,et al.Glutamine deprivation enhances acetyl⁃CoA carboxylase inhibitor⁃induced death of human pancreatic cancer cells[J].Anticancer Res,2018,38(12):6683-6689

    • [59] GÖHRIG A,DETJEN K M,HILFENHAUS G,et al.Axon guidance factor SLIT2 inhibits neural invasion and metastasis in pancreatic cancer[J].Cancer Res,2014,74(5):1529-1540

    • [60] HARBURG G C,HINCK L.Navigating breast cancer:axon guidance molecules as breast cancer tumor suppressors and oncogenes[J].J Mammary Gland Biol Neoplasia,2011,16(3):257-270

    • [61] ADRIAENSSENS E,VANHECKE E,SAULE P,et al.Nerve growth factor is a potential therapeutic target in breast cancer[J].Cancer Res,2008,68(2):346-351

    • [62] BAPAT A A,MUNOZ R M,VON HOFF D D,et al.Blocking nerve growth factor signaling reduces the neural invasion potential of pancreatic cancer cells[J].PLoS One,2016,11(10):e0165586

    • [63] HEFTI F.Pharmacology of nerve growth factor and discovery of tanezumab,an anti⁃nerve growth factor antibody and pain therapeutic[J].Pharmacol Res,2020,154:104240

    • [64] ZHANG J Z,YU J M,SUN X D,et al.Epidermal growth factor receptor tyrosine kinase inhibitors in the treatment of central nerve system metastases from non-small cell lung cancer[J].Cancer Lett,2014,351(1):6-12

    • [65] FALCINELLI M,AL⁃HITY G,BARON S,et al.Propranolol reduces IFN⁃γ driven PDL1 immunosuppression and improves anti-tumour immunity in ovarian cancer[J].Brain Behav Immun,2023,110:1-12

    • [66] KOH M,TAKAHASHI T,KUROKAWA Y,et al.Propranolol suppresses gastric cancer cell growth by regulating proliferation and apoptosis[J].Gastric Cancer,2021,24(5):1037-1049

    • [67] HOPSON M B,LEE S,ACCORDINO M,et al.Phase Ⅱ study of propranolol feasibility with neoadjuvant chemotherapy in patients with newly diagnosed breast cancer[J].Breast Cancer Res Treat,2021,188(2):427-432

    • [68] ZHOU S,LI J B,YU J,et al.Tumor microenvironment adrenergic nerves blockade liposomes for cancer therapy[J].J Control Release,2022,351:656-666

    • [69] UDUMYAN R,MONTGOMERY S,FANG F,et al.Beta-blocker drug use and survival among patients with pancreatic adenocarcinoma[J].Cancer Res,2017,77(13):3700-3707

    • [70] DIAZ E S,KARLAN B Y,LI A J.Impact of beta blockers on epithelial ovarian cancer survival[J].Gynecol Oncol,2012,127(2):375-378

    • [71] HE D D,MANZONI A,FLORENTIN D,et al.Biologic effect of neurogenesis in pancreatic cancer[J].Hum Pathol,2016,52:182-189

    • [72] KARSENTY G,ROCHA J,CHEVALIER S,et al.Botulinum toxin type A inhibits the growth of LNCaP human prostate cancer cells in vitro and in vivo[J].Prostate,2009,69(11):1143-1150

  • 参考文献

    • [1] MAGNON C,HALL S J,LIN J,et al.Autonomic nerve development contributes to prostate cancer progression[J].Science,2013,341(6142):1236361

    • [2] ALBO D,AKAY C L,MARSHALL C L,et al.Neurogenesis in colorectal cancer is a marker of aggressive tumor behavior and poor outcomes[J].Cancer,2011,117(21):4834-4845

    • [3] AYALA G E,WHEELER T M,SHINE H D,et al.In vitro dorsal root Ganglia and human prostate cell line interaction:redefining perineural invasion in prostate cancer[J].Prostate,2001,49(3):213-223

    • [4] AYALA G E,DAI H,POWELL M,et al.Cancer-related axonogenesis and neurogenesis in prostate cancer[J].Clin Cancer Res,2008,14(23):7593-7603

    • [5] LUCIDO C T,WYNJA E,MADEO M,et al.Innervation of cervical carcinoma is mediated by cancer-derived exo⁃somes[J].Gynecol Oncol,2019,154(1):228-235

    • [6] MADEO M,COLBERT P L,VERMEER D W,et al.Cancer exosomes induce tumor innervation[J].Nat Commun,2018,9(1):4284

    • [7] GUILLOT J,DOMINICI C,LUCCHESI A,et al.Sympathetic axonal sprouting induces changes in macrophage populations and protects against pancreatic cancer[J].Nat Commun,2022,13(1):1985

    • [8] MAUFFREY P,TCHITCHEK N,BARROCA V,et al.Progenitors from the central nervous system drive neurogenesis in cancer[J].Nature,2019,569(7758):672-678

    • [9] AMIT M,TAKAHASHI H,DRAGOMIR M P,et al.Loss of p53 drives neuron reprogramming in head and neck cancer[J].Nature,2020,578(7795):449-454

    • [10] LU R,FAN C W,SHANGGUAN W Q,et al.Neurons generated from carcinoma stem cells support cancer progression[J].Signal Transduct Target Ther,2017,2:16036

    • [11] RENZ B W,TAKAHASHI R,TANAKA T,et al.β2 adrenergic⁃neurotrophin feed forward loop promotes pancreatic cancer[J].Cancer Cell,2018,34(5):863-867

    • [12] BAE G E,KIM H S,WON K Y,et al.Lower sympathetic nervous system density and β⁃ adrenoreceptor expression are involved in gastric cancer progression[J].Anticancer Res,2019,39(1):231-236

    • [13] KAMIYA A,HAYAMA Y,KATO S,et al.Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression[J].Nat Neuro⁃sci,2019,22(8):1289-1305

    • [14] ZHANG L,WU L L,HUAN H B,et al.Sympathetic and parasympathetic innervation in hepatocellular carcinoma[J].Neoplasma,2017,64(6):840-846

    • [15] ZHOU H,SHI B J,JIA Y T,et al.Expression and significance of autonomic nerves and α9 nicotinic acetylcholine receptor in colorectal cancer[J].Mol Med Rep,2018,17(6):8423-8431

    • [16] CIUREA R N,ROGOVEANU I,PIRICI D,et al.B2 adrenergic receptors and morphological changes of the enteric nervous system in colorectal adenocarcinoma[J].World J Gastroenterol,2017,23(7):1250-1261

    • [17] ARRANZ L,SÁNCHEZ⁃AGUILERA A,MARTÍN⁃PÉREZ D,et al.Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms[J].Nature,2014,512(7512):78-81

    • [18] SILVA D,QUINTAS C,GONÇALVES J,et al.Contribution of adrenergic mechanisms for the stress-induced breast cancer carcinogenesis[J].J Cell Physiol,2022,237(4):2107-2127

    • [19] ZAHALKA A H,ARNAL ⁃ESTAPÉ A,MARYANOVICH M,et al.Adrenergic nerves activate an angio-metabolic switch in prostate cancer[J].Science,2017,358(6361):321-326

    • [20] HUANG S Y,VAN ARSDALL M,TEDJARATI S,et al.Contributions of stromal metalloproteinase⁃9 to angiogenesis and growth of human ovarian carcinoma in mice[J].J Natl Cancer Inst,2002,94(15):1134-1142

    • [21] THAKER P H,HAN L Y,KAMAT A A,et al.Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma[J].Nat Med,2006,12(8):939-944

    • [22] GLOBIG A M,ZHAO S,ROGINSKY J,et al.The β1 ⁃adrenergic receptor links sympathetic nerves to T cell exhaustion[J].Nature,2023,622(7982):383-392

    • [23] BUCSEK M J,QIAO G X,MACDONALD C R,et al.β⁃adrenergic signaling in mice housed at standard temperatures suppresses an effector phenotype in CD8 + T cells and undermines checkpoint inhibitor therapy[J].Cancer Res,2017,77(20):5639-5651

    • [24] HORVATHOVA L,TILLINGER A,PADOVA A,et al.Sympathectomized tumor⁃bearing mice survive longer but develop bigger melanomas[J].Endocr Regul,2016,50(4):207-214

    • [25] HILLER J G,COLE S W,CRONE E M,et al.Preoperative β ⁃ blockade with propranolol reduces biomarkers of metastasis in breast cancer:a phase Ⅱ randomized trial[J].Clin Cancer Res,2020,26(8):1803-1811

    • [26] PU J,ZHANG X R,LUO H W,et al.Adrenaline promotes epithelial⁃to⁃mesenchymal transition via HuR⁃TGFβ regulatory axis in pancreatic cancer cells and the implication in cancer prognosis[J].Biochem Biophys Res Commun,2017,493(3):1273-1279

    • [27] XIAO M B,JIN D D,JIAO Y J,et al.β2⁃AR regulates the expression of AKR1B1 in human pancreatic cancer cells and promotes their proliferation via the ERK1/2 pathway[J].Mol Biol Rep,2018,45(6):1863-1871

    • [28] ALLEN J K,ARMAIZ ⁃PENA G N,NAGARAJA A S,et al.Sustained adrenergic signaling promotes intratumoral innervation through BDNF induction[J].Cancer Res,2018,78(12):3233-3242

    • [29] AMIT M,NA’ARA S,GIL Z.Mechanisms of cancer dissemination along nerves[J].Nat Rev Cancer,2016,16(6):399-408

    • [30] CARTER R L,FOSTER C S,DINSDALE E A,et al.Perineural spread by squamous carcinomas of the head and neck:a morphological study using antiaxonal and antimy⁃elin monoclonal antibodies[J].J Clin Pathol,1983,36(3):269-275

    • [31] HARNDEN P,SHELLEY M D,CLEMENTS H,et al.The prognostic significance of perineural invasion in prostatic cancer biopsies:a systematic review[J].Cancer,2007,109(1):13-24

    • [32] CAMPBELL J P,KAROLAK M R,MA Y,et al.Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice[J].PLoS Biol,2012,10(7):e1001363

    • [33] KANG Y,NAGARAJA A S,ARMAIZ ⁃PENA G N,et al.Adrenergic stimulation of DUSP1 impairs chemotherapy response in ovarian cancer[J].Clin Cancer Res,2016,22(7):1713-1724

    • [34] CHEN H Y,ZHANG W,CHENG X,et al.β2⁃AR activation induces chemoresistance by modulating p53 acetylation through upregulating Sirt1 in cervical cancer cells[J].Cancer Sci,2017,108(7):1310-1317

    • [35] ZHAO C M,HAYAKAWA Y,KODAMA Y,et al.Denervation suppresses gastric tumorigenesis[J].Sci Transl Med,2014,6(250):250ra115

    • [36] RENZ B W,TANAKA T,SUNAGAWA M,et al.Cholinergic signaling via muscarinic receptors directly and indirectly suppresses pancreatic tumorigenesis and cancer stemness[J].Cancer Discov,2018,8(11):1458-1473

    • [37] HAYAKAWA Y,SAKITANI K,KONISHI M,et al.Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling[J].Cancer Cell,2017,31(1):21-34

    • [38] PENG Z S,HEATH J,DRACHENBERG C,et al.Cholinergic muscarinic receptor activation augments murine intestinal epithelial cell proliferation and tumorigenesis[J].BMC Cancer,2013,13:204

    • [39] MO R J,HAN Z D,LIANG Y K,et al.Expression of PDL1 in tumor⁃associated nerves correlates with reduced CD8+ tumor⁃associated lymphocytes and poor prognosis in prostate cancer[J].Int J Cancer,2019,144(12):3099-3110

    • [40] YANG M W,TAO L Y,JIANG Y S,et al.Perineural invasion reprograms the immune microenvironment through cholinergic signaling in pancreatic ductal adenocarcinoma[J].Cancer Res,2020,80(10):1991-2003

    • [41] YIN Q Q,XU L H,ZHANG M,et al.Muscarinic acetylcholine receptor M1 mediates prostate cancer cell migration and invasion through hedgehog signaling[J].Asian J Androl,2018,20(6):608-614

    • [42] WANG J,WEI J,PU T J,et al.Cholinergic signaling via muscarinic M1 receptor confers resistance to docetaxel in prostate cancer[J].Cell Rep Med,2024,5(2):101388

    • [43] ERIN N,BARKAN G A,CLAWSON G A.Vagus nerve regulates breast cancer metastasis to the adrenal gland[J].Anticancer Res,2013,33(9):3675-3682

    • [44] HAN S B,WANG D C,HUANG Y,et al.A reciprocal feedback between colon cancer cells and Schwann cells promotes the proliferation and metastasis of colon cancer[J].J Exp Clin Cancer Res,2022,41(1):348

    • [45] BANH R S,BIANCUR D E,YAMAMOTO K,et al.Neurons release serine to support mRNA translation in pancreatic cancer[J].Cell,2020,183(5):1202-1218.e25

    • [46] AU C W,SIU M K,LIAO X Y,et al.Tyrosine kinase B receptor and BDNF expression in ovarian cancers-Effect on cell migration,angiogenesis and clinical outcome[J].Cancer Lett,2009,281(2):151-161

    • [47] ITO Y,OKADA Y,SATO M,et al.Expression of glial cell line⁃derived neurotrophic factor family members and their receptors in pancreatic cancers[J].Surgery,2005,138(4):788-794

    • [48] CAVEL O,SHOMRON O,SHABTAY A,et al.Endoneu⁃rial macrophages induce perineural invasion of pancreatic cancer cells by secretion of GDNF and activation of RET tyrosine kinase receptor[J].Cancer Res,2012,72(22):5733-5743

    • [49] BALKWILL F.The significance of cancer cell expression of the chemokine receptor CXCR4[J].Semin Cancer Biol,2004,14(3):171-179

    • [50] ZHANG S W,QI L S,LI M,et al.Chemokine CXCL12 and its receptor CXCR4 expression are associated with perineural invasion of prostate cancer[J].J Exp Clin Cancer Res,2008,27(1):62

    • [51] HE S Z,HE S B,CHEN C H,et al.The chemokine(CCL2 ⁃ CCR2)signaling axis mediates perineural invasion[J].Mol Cancer Res,2015,13(2):380-390

    • [52] MARCHESI F,PIEMONTI L,FEDELE G,et al.The chemokine receptor CX3CR1 is involved in the neural tropism and malignant behavior of pancreatic ductal adenocarcinoma[J].Cancer Res,2008,68(21):9060-9069

    • [53] TASCILAR O,CAKMAK G K,TEKIN I O,et al.Neural cell adhesion molecule⁃180 expression as a prognostic criterion in colorectal carcinoma:feasible or not?[J].World J Gastroenterol,2007,13(41):5476-5480

    • [54] ZECCHINI S,BOMBARDELLI L,DECIO A,et al.The adhesion molecule NCAM promotes ovarian cancer progression via FGFR signalling[J].EMBO Mol Med,2011,3(8):480-494

    • [55] YIN K,WANG L J,XIA Y W,et al.Netrin ⁃ 1 promotes cell neural invasion in gastric cancer via its receptor neo⁃genin[J].J Cancer,2019,10(14):3197-3207

    • [56] JURCAK N R,RUCKI A A,MUTH S,et al.Axon guidance molecules promote perineural invasion and metastasis of orthotopic pancreatic tumors in mice[J].Gastroenterology,2019,157(3):838-850

    • [57] CAPPARUCCIA L,TAMAGNONE L.Semaphorin signaling in cancer cells and in cells of the tumor microenvironment-two sides of a coin[J].J Cell Sci,2009,122(Pt 11):1723-1736

    • [58] NISHI K,SUZUKI M,YAMAMOTO N,et al.Glutamine deprivation enhances acetyl⁃CoA carboxylase inhibitor⁃induced death of human pancreatic cancer cells[J].Anticancer Res,2018,38(12):6683-6689

    • [59] GÖHRIG A,DETJEN K M,HILFENHAUS G,et al.Axon guidance factor SLIT2 inhibits neural invasion and metastasis in pancreatic cancer[J].Cancer Res,2014,74(5):1529-1540

    • [60] HARBURG G C,HINCK L.Navigating breast cancer:axon guidance molecules as breast cancer tumor suppressors and oncogenes[J].J Mammary Gland Biol Neoplasia,2011,16(3):257-270

    • [61] ADRIAENSSENS E,VANHECKE E,SAULE P,et al.Nerve growth factor is a potential therapeutic target in breast cancer[J].Cancer Res,2008,68(2):346-351

    • [62] BAPAT A A,MUNOZ R M,VON HOFF D D,et al.Blocking nerve growth factor signaling reduces the neural invasion potential of pancreatic cancer cells[J].PLoS One,2016,11(10):e0165586

    • [63] HEFTI F.Pharmacology of nerve growth factor and discovery of tanezumab,an anti⁃nerve growth factor antibody and pain therapeutic[J].Pharmacol Res,2020,154:104240

    • [64] ZHANG J Z,YU J M,SUN X D,et al.Epidermal growth factor receptor tyrosine kinase inhibitors in the treatment of central nerve system metastases from non-small cell lung cancer[J].Cancer Lett,2014,351(1):6-12

    • [65] FALCINELLI M,AL⁃HITY G,BARON S,et al.Propranolol reduces IFN⁃γ driven PDL1 immunosuppression and improves anti-tumour immunity in ovarian cancer[J].Brain Behav Immun,2023,110:1-12

    • [66] KOH M,TAKAHASHI T,KUROKAWA Y,et al.Propranolol suppresses gastric cancer cell growth by regulating proliferation and apoptosis[J].Gastric Cancer,2021,24(5):1037-1049

    • [67] HOPSON M B,LEE S,ACCORDINO M,et al.Phase Ⅱ study of propranolol feasibility with neoadjuvant chemotherapy in patients with newly diagnosed breast cancer[J].Breast Cancer Res Treat,2021,188(2):427-432

    • [68] ZHOU S,LI J B,YU J,et al.Tumor microenvironment adrenergic nerves blockade liposomes for cancer therapy[J].J Control Release,2022,351:656-666

    • [69] UDUMYAN R,MONTGOMERY S,FANG F,et al.Beta-blocker drug use and survival among patients with pancreatic adenocarcinoma[J].Cancer Res,2017,77(13):3700-3707

    • [70] DIAZ E S,KARLAN B Y,LI A J.Impact of beta blockers on epithelial ovarian cancer survival[J].Gynecol Oncol,2012,127(2):375-378

    • [71] HE D D,MANZONI A,FLORENTIN D,et al.Biologic effect of neurogenesis in pancreatic cancer[J].Hum Pathol,2016,52:182-189

    • [72] KARSENTY G,ROCHA J,CHEVALIER S,et al.Botulinum toxin type A inhibits the growth of LNCaP human prostate cancer cells in vitro and in vivo[J].Prostate,2009,69(11):1143-1150