en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

杨玲,E-mail: linda_yl@sina.com

中图分类号:R541.6

文献标识码:A

文章编号:1007-4368(2024)10-1435-06

DOI:10.7655/NYDXBNSN240260

参考文献 1
射血分数保留的心力衰竭诊断与治疗中国专家共识制定工作组.射血分数保留的心力衰竭诊断与治疗中国专家共识 2023[J].中国循环杂志,2023,38(4):375-393
参考文献 2
BORLAUG B A.The pathophysiology of heart failure with preserved ejection fraction[J].Nat Rev Cardiol,2014,11(9):507-515
参考文献 3
HANNA A,FRANGOGIANNIS N G.Inflammatory cytokines and chemokines as therapeutic targets in heart failure[J].Cardiovasc Drugs Ther,2020,34(6):849-863
参考文献 4
KAYE D M,NANAYAKKARA S,WANG B,et al.Characterization of cardiac sympathetic nervous system and inflammatory activation in HFpEF patients[J].JACC Basic Transl Sci,2022,7(2):116-127
参考文献 5
GUO Y Z,WEN J J,HE A,et al.iNOS contributes to heart failure with preserved ejection fraction through mitochondrial dysfunction and Akt S-nitrosylation[J].J Adv Res,2023,43:175-186
参考文献 6
DAOU D,GILLETTE T G,HILL J A.Inflammatory mechanisms in heart failure with preserved ejection fraction[J].Physiology,2023,38(5):217-230
参考文献 7
BASHIR Z,CHEN E W,TORI K,et al.Insight into different phenotypic presentations of heart failure with preserved ejection fraction[J].Prog Cardiovasc Dis,2023,79:80-88
参考文献 8
SHI Y Y,LU Y C,YOU J.Unfolded protein response in the activation-induced biological processes of CD8+ T cells[J].Pharmacol Res,2021,169:105654
参考文献 9
RUSH C J,BERRY C,OLDROYD K G,et al.Prevalence of coronary artery disease and coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction[J].JAMA Cardiol,2021,6(10):1130-1143
参考文献 10
SWIRSKI F K,NAHRENDORF M.Cardioimmunology:the immune system in cardiac homeostasis and disease[J].Nat Rev Immunol,2018,18(12):733-744
参考文献 11
LOFFREDO F S,STEINHAUSER M L,JAY S M,et al.Growth differentiation factor 11 is a circulating factor that reverses age⁃related cardiac hypertrophy[J].Cell,2013,153(4):828-839
参考文献 12
DEBERGE M,SHAH S J,WILSBACHER L,et al.Macrophages in heart failure with reduced versus preserved ejection fraction[J].Trends Mol Med,2019,25(4):328-340
参考文献 13
PANICO C,FELICETTA A,KUNDERFRANCO P,et al.Single⁃cell RNA sequencing reveals metabolic stress⁃dependent activation of cardiac macrophages in a model of dyslipidemia⁃induced diastolic dysfunction[J/OL].Circulation,2023(2023⁃12⁃21)[2024⁃3⁃10].DOI:10.1161/CIRCULATIONAHA.122.062984
参考文献 14
LIU H,HUANG Y M,ZHAO Y,et al.Inflammatory macrophage interleukin ⁃ 1β mediates high-fat diet-induced heart failure with preserved ejection fraction[J].JACC Basic Transl Sci,2023,8(2):174-185
参考文献 15
BANSAL S S,ISMAHIL M A,GOEL M,et al.Dysfunctional and proinflammatory regulatory T ⁃lymphocytes are essential for adverse cardiac remodeling in ischemic cardiomyopathy[J].Circulation,2019,139(2):206-221
参考文献 16
RAMOS G C,VAN DEN BERG A,NUNES⁃SILVA V,et al.Myocardial aging as a T⁃cell⁃mediated phenomenon[J].Proc Natl Acad Sci U S A,2017,114(12):E2420-E2429
参考文献 17
LAROUMANIE F,DOUIN ⁃ECHINARD V,POZZO J,et al.CD4 + T cells promote the transition from hypertrophy to heart failure during chronic pressure overload[J].Circulation,2014,129(21):2111-2124
参考文献 18
BRASSINGTON K,KANELLAKIS P,CAO A,et al.Crosstalk between cytotoxic CD8 + T cells and stressed cardio⁃myocytes triggers development of interstitial cardiac fibrosis in hypertensive mouse hearts[J].Front Immunol,2022,13:1040233
参考文献 19
SMOLGOVSKY S,BAYER A L,KAUR K,et al.Impaired T cell IRE1α/XBP1 signaling directs inflammation in experimental heart failure with preserved ejection fraction[J].J Clin Invest,2023,133(24):e171874
参考文献 20
PARK C O,KUPPER T S.The emerging role of resident memory T cells in protective immunity and inflammatory disease[J].Nat Med,2015,21(7):688-697
参考文献 21
LIAO S G,TANG Y,YUE X,et al.β⁃hydroxybutyrate mitigated heart failure with preserved ejection fraction by increasing Treg cells via Nox2/GSK⁃3β[J].J Inflamm Res,2021,14:4697-4706
参考文献 22
OVCHINNIKOV A,FILATOVA A,POTEKHINA A,et al.Blood immune cell alterations in patients with hypertensive left ventricular hypertrophy and heart failure with preserved ejection fraction[J].J Cardiovasc Dev Dis,2023,10(7):310
参考文献 23
YOSHITOMI H.Peripheral helper T cell responses in human diseases[J].Front Immunol,2022,13:946786
参考文献 24
LIANG X Y,BAI Z C,WANG F F,et al.Full⁃length transcriptome sequencing:an insight into the dog model of heart failure[J].Front Cardiovasc Med,2021,8:712797
参考文献 25
FUKUNAGA T,SOEJIMA H,IRIE A,et al.Relation between CD4+ T⁃cell activation and severity of chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy[J].Am J Cardiol,2007,100(3):483-488
参考文献 26
SAVA R I,PEPINE C J,MARCH K L.Immune dysregulation in HFpEF:a target for mesenchymal stem/stromal cell therapy[J].J Clin Med,2020,9(1):241
参考文献 27
ANGELIS E D,PECORARO M,RUSCIANO M R,et al.Cross ⁃talk between neurohormonal pathways and the immune system in heart failure:a review of the literature[J].Int J Mol Sci,2019,20(7):1698
参考文献 28
SABAT R,GRÜTZ G,WARSZAWSKA K,et al.Biology of interleukin⁃10[J].Cytokine Growth Factor Rev,2010,21(5):331-344
参考文献 29
HU W L,LI J Y,CHENG X.Regulatory T cells and cardiovascular diseases[J].Chin Med J,2023,136(23):2812-2823
参考文献 30
LU Y Z,XIA N,CHENG X.Regulatory T cells in chronic heart failure[J].Front Immunol,2021,12:732794
参考文献 31
WEIRATHER J,HOFMANN U D,BEYERSDORF N,et al.Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation[J].Circ Res,2014,115(1):55-67
参考文献 32
JARDIN B,EPSTEIN J A.Emerging mRNA therapies for cardiac fibrosis[J].Am J Physiol Cell Physiol,2024,326(1):C107-C111
参考文献 33
SANTOS⁃ZAS I,LEMARIÉ J,ZLATANOVA I,et al.Cytotoxic CD8 + T cells promote granzyme B-dependent adverse post-ischemic cardiac remodeling[J].Nat Commun,2021,12(1):1483
参考文献 34
ILATOVSKAYA D V,PITTS C,CLAYTON J,et al.CD8+ T ⁃cells negatively regulate inflammation post ⁃myocardial infarction[J].Am J Physiol Heart Circ Physiol,2019,317(3):H581-H596
参考文献 35
BHATTARAI U,HE X C,XU R,et al.IL⁃12α deficiency attenuates pressure overload-induced cardiac inflammation,hypertrophy,dysfunction,and heart failure progression[J].Front Immunol,2023,14:1105664
参考文献 36
LU W Z,LI Y,DAI Y,et al.Dominant myocardial fibrosis and complex immune microenvironment jointly shape the pathogenesis of arrhythmogenic right ventricular cardiomyopathy[J].Front Cardiovasc Med,2022,9:900810
参考文献 37
VANCHERI F,LONGO G,VANCHERI S,et al.Coronary microvascular dysfunction[J].J Clin Med,2020,9(9):2880
参考文献 38
SCHÄFER S,ZERNECKE A.CD8+ T cells in atherosclerosis[J].Cells,2020,10(1):37
参考文献 39
CHOWDHURY R R,D’ADDABBO J,HUANG X X,et al.Human coronary plaque T cells are clonal and cross⁃react to virus and self[J].Circ Res,2022,130(10):1510-1530
参考文献 40
COCHAIN C,KOCH M,CHAUDHARI S M,et al.CD8+ T cells regulate monopoiesis and circulating Ly6C-high monocyte levels in atherosclerosis in mice[J].Circ Res,2015,117(3):244-253
参考文献 41
CHENG X,LIAO Y H,GE H X,et al.TH1/TH2 functional imbalance after acute myocardial infarction:coronary arterial inflammation or myocardial inflammation[J].J Clin Immunol,2005,25(3):246-253
参考文献 42
BANSAL S S,ISMAHIL M A,GOEL M,et al.Activated T lymphocytes are essential drivers of pathological remodeling in ischemic heart failure[J].Circ Heart Fail,2017,10(3):e003688
参考文献 43
VARDA⁃BLOOM N,LEOR J,OHAD D G,et al.Cytotoxic T lymphocytes are activated following myocardial infarction and can recognize and kill healthy myocytes in vitro[J].J Mol Cell Cardiol,2000,32(12):2141-2149
参考文献 44
LU M,QIN X L,YAO J G,et al.Th17/Treg imbalance modulates rat myocardial fibrosis and heart failure by regulating LOX expression[J].Acta Physiol,2020,230(3):e13537
参考文献 45
ZHONG Z Q,ZHANG H L,XU T,et al.Identification and verification of immune⁃related biomarkers and immune infiltration in diabetic heart failure[J].Front Cardiovasc Med,2022,9:931066
参考文献 46
CAO X J,LI Y F,GUO Y Q,et al.Thymopentin improves cardiac function in older patients with chronic heart failure[J].Anatol J Cardiol,2017,17(1):24-30
参考文献 47
SEEGER T,HAFFEZ F,FISCHER A,et al.Immunose⁃nescence-associated microRNAs in age and heart failure[J].Eur J Heart Fail,2013,15(4):385-393
参考文献 48
COCHAIN C,VAFADARNEJAD E,ARAMPATZI P,et al.Single ⁃cell RNA ⁃seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis[J].Circ Res,2018,122(12):1661-1674
参考文献 49
GAO S G,WU Z J,ARNOLD B,et al.Single⁃cell RNA sequencing coupled to TCR profiling of large granular lymphocyte leukemia T cells[J].Nat Commun,2022,13(1):1982
参考文献 50
RAO M,WANG X L,GUO G R,et al.Resolving the intertwining of inflammation and fibrosis in human heart failure at single⁃cell level[J].Basic Res Cardiol,2021,116(1):55
参考文献 51
MARTINI E,KUNDERFRANCO P,PEANO C,et al.Single-cell sequencing of mouse heart immune infiltrate in pressure overload⁃driven heart failure reveals extent of immune activation[J].Circulation,2019,140(25):2089-2107
参考文献 52
DELGOBO M,WEIß E,ASHOUR D,et al.Myocardial milieu favors local differentiation of regulatory T cells[J].Circ Res,2023,132(5):565-582
参考文献 53
RURIK J G,TOMBÁCZ I,YADEGARI A,et al.CAR T cells produced in vivo to treat cardiac injury[J].Science,2022,375(6576):91-96
参考文献 54
HUANG Y T,ZHANG K,LIU M,et al.An herbal preparation ameliorates heart failure with preserved ejection fraction by alleviating microvascular endothelial inflammation and activating NO-cGMP ⁃ PKG pathway[J].Phytomedicine,2021,91:153633
参考文献 55
MAHMOOD S S,RIEDELL P A,FELDMAN S,et al.Biomarkers and cardiovascular outcomes in chimeric antigen receptor T⁃cell therapy recipients[J].Eur Heart J,2023,44(22):2029-2042
参考文献 56
AGHAJANIAN H,KIMURA T,RURIK J G,et al.Targeting cardiac fibrosis with engineered T cells[J].Nature,2019,573(7774):430-433
目录contents

    摘要

    射血分数保留的心力衰竭(heart failure with preserved ejection fraction,HFpEF)是心血管领域急需解决的重大难题之一。系统性炎症、心肌纤维化及冠脉微循环功能障碍等被认为是HFpEF发生发展的核心病理生理机制。T细胞亚群作为适应性免疫应答的关键一环,可通过多种机制参与上述过程,进一步加重心肌结构、功能的损伤并最终导致HFpEF的发生发展。文章回顾了免疫与炎症在HFpEF中的作用,总结了不同T细胞亚群在HFpEF中的作用及特点,并尝试以T细胞亚群来探寻HFpEF的新型生物标志物及潜在的治疗靶点。

    Abstract

    Heart failure with preserved ejection fraction(HFpEF)is a significant challenge in the field of cardiovascular diseases. Inflammation,myocardial fibrosis,and coronary microcirculation dysfunction are the core pathophysiological mechanisms of HFpEF. As a key part of adaptive immune response,T cell subsets widely participate in the above process through various mechanisms,further aggravating the damage of myocardial structure and function,and ultimately leading to the development of HFpEF. This article provides a comprehensive review on the roles of immunity and inflammation in HFpEF,summarizes the characteristics and functions of different T cell subsets involved in HFpEF,and aims to explore novel biomarkers and potential therapeutic targets by targeting T cell subsets.

  • 射血分数保留的心力衰竭(heart failure with preserved ejection fraction,HFpEF)是一种复杂且具有异质性的临床综合征,约占心力衰竭(以下简称心衰)的50%。目前,其患病率不断上升,且尚缺乏较有效的治疗方式[1]。HFpEF患者多为高龄,常合并肥胖、高血压、糖尿病等代谢异常,而上述合并症可诱发机体的促炎反应[2];类似地,HFpEF患者循环促炎因子及T细胞数量增多,提示主动性免疫应答在其中发挥着重要作用[3]。与射血分数降低的心力衰竭(heart failure with reduced ejection fraction, HFrEF)不同,HFpEF的炎症反应多为代谢应激相关的“由外而内”的系统性炎症反应。与之对应,T细胞在外周细胞中扩增并发挥免疫炎症调控作用[4]。文章就 T 细胞亚群在 HFpEF 中的作用机制及潜在应用价值作一综述,以期为HFpEF的临床诊疗提供新思路。

  • 1 免疫炎症与HFpEF

  • HFpEF是一种累及多系统的临床综合征,全身炎症性反应及代谢紊乱是其发病的核心机制,而氧化应激(oxidative stress,OS)和内皮功能障碍被认为是其代谢风险的特征性病理改变[5]。具体来说,共病状态可通过诱发机体促炎状态、微血管内皮炎症反应及 OS 等促进心肌纤维化、冠脉微循环功能障碍及心室僵硬度增加,最终导致心功能恶化并诱发心衰[6]。机制上,一氧化氮(nitric oxide,NO)⁃ 环磷酸鸟苷(cyclic guanosine monophosphate,cGMP) ⁃蛋白激酶 G(protein kinase G,PKG)途径的生物利用度可改变冠状动脉循环和心肌细胞之间的旁分泌串扰信号转导[7],同时损伤线粒体功能及干扰清除异常蛋白的过程,使得心肌腺嘌呤核苷三磷酸 (adenine nucleoside triphosphate,ATP)的供需失衡[8]; 而cGMP和PKG信号转导对心肌胶原和肌联蛋白的稳态有调节作用,从而影响左心室的功能。此外,最近研究显示冠脉微血管炎症与冠脉微血管稀疏有关,由此导致的毛细血管密度降低可能损害冠脉血流储备(fractional flow reserve,FFR),从而导致左心室收缩和舒张功能障碍[9]

  • 2 免疫应答参与HFpEF的发生发展

  • 研究显示,免疫细胞在妊娠期浸润心脏,主要包括单核细胞、巨噬细胞、中性粒细胞、B 细胞及 T 细胞等[10]。尽管T细胞通常在感染或心肌损伤时被激活,但越来越多的证据表明其参与了机体的整个生命过程,如心脏发育、生理功能稳态和衰老相关的免疫反应等[11]。然而,在病理条件下,固有免疫应答和适应性免疫应答均被认为参与了HFpEF的发病。

  • 2.1 固有免疫应答

  • 固有免疫应答是人体防御的第一道屏障,巨噬细胞等固有免疫细胞被认为与 HFpEF 的发生发展相关。然而,巨噬细胞功能改变是HFpEF发病的原因还是结果,目前尚缺乏统一的结论[12]。随着研究的深入及技术的发展,Panico等[13] 利用单细胞RNA测序 (single cell RNA sequencing,scRNA⁃seq)技术,在高脂血症诱导的HFpEF模型中发现,脂质过载通过内质网应激途径介导巨噬细胞炎症基因激活,其分泌的多种炎性细胞因子可通过心肌肥厚、纤维化和自噬等途径影响心肌细胞功能。此外,巨噬细胞介导的炎症通过白介素(interleukin,IL)⁃ 1β和线粒体活性氧 (mitochondrial reactive oxygen species,mitoROS)引起高脂肪饮食相关的心脏舒张功能不全[14]

  • 2.2 适应性免疫应答

  • T细胞介导的适应性免疫应答在不同分型的心衰中已有体现。例如,T细胞参与心肌梗死后的心肌炎症反应,并存在“双相模式”:早期T细胞的活化有利于心肌梗死或缺血性损伤小鼠心肌损伤的恢复,但也有证据表明T细胞的过度活化可加重心肌损伤并导致心衰[15];在年龄相关的心功能不全患者中,T细胞被证明与老年性心肌炎症及心脏老化相关[16];在高血压心衰动物模型中,抑制调节性T细胞 (regulatory T cell,Treg)的表达可延缓心室重构[17]。类似地,Brassington 等[18] 发现,通过抑制心肌细胞 CD8+ T 细胞激活,可限制高血压相关的心肌纤维化。此外,在血压和肥胖双重打击模型构建的HFpEF临床前模型中,临床前HFpEF的舒张功能障碍及心肌细胞肥大等病理性改变为T细胞依赖性,且T细胞肌醇必需酶 1α(inositol⁃requiring enzyme1α,IRE1α)/ X⁃box结合蛋白1(X⁃box⁃binding protein 1,XBP1)轴可逆性失调是T细胞参与HFpEF的特征之一[19]

  • 3 T细胞亚群在HFpEF中的作用

  • 3.1 CD4+ T细胞

  • 缺血事件发生后,受损的心肌细胞释放自身抗原蛋白。一旦抗原提呈细胞(antigen presenting cell, APC)识别出这些自身抗原,CD4 + T 细胞就可通过 MHC Ⅱ类分子协调抗原特异性免疫反应[20]。研究显示,β⁃羟基丁酸(β⁃hydroxybutyrate,BHB)可通过调节NADPH氧化酶2(NADPH oxidase2,NOX2)/糖原合成激酶 ⁃ 3β(glycogen synthase kinase ⁃ 3β, GSK3β)旁路增加心脏 Treg 细胞的表达从而阻止 HFpEF 的进展[21]。一项临床研究表明,左室心肌肥厚的患者向HFpEF进展,可能与T细胞的CD分子表达失衡及单核细胞计数增加有关[22]。此外,Larou⁃ manie等[17] 在接受横向主动脉收缩术(transverse aor⁃ tic constriction,TAC)的非缺血小鼠中观察到,CD4+ T 细胞增多会导致代偿性左心室肥大,最终导致心力衰竭,而MHC Ⅱ类分子敲除小鼠中CD4+ T细胞(而不是 CD8+ T细胞)的减少阻止了TAC诱导的心脏纤维化和心力衰竭,这表明在压力超负荷条件下,CD4+ T淋巴细胞是心肌肥厚向心力衰竭发展的关键因素之一。

  • 3.2 辅助性T细胞(helper T cell)

  • 辅助性T细胞可以辨识APC的MHC Ⅱ类分子提呈的抗原片段,其主要表面标志是 CD4,包括 Th1、Th2及Th17等[23]。Liang等[24] 转录组研究数据发现,与对照组相比,心衰患者中 Th1 和 Th17 细胞的比例增加,而 Th2 细胞的比例下降;类似地,Th1 细胞数量与血清脑钠肽(brain natriuretic peptide, BNP)和高敏 C 反应蛋白(high ⁃ sensitivity C ⁃ reactive protein,hs⁃CRP)水平呈正相关,并显示出较好的一致性[25]。机制上,心肌纤维化是心脏舒张功能障碍并向HFpEF发展的重要临床特征之一。研究显示,系统性炎症反应使得促炎巨噬细胞、Th1及Th17等进入心肌,加重心肌纤维化[26]。值得注意的是,血管紧张素Ⅱ(angiotensin Ⅱ,Ang Ⅱ)可通过影响巨噬细胞极化来调节Th1/Th2平衡,提示免疫功能与神经激素存在交互影响[27]。此外,Th2细胞分泌的IL⁃10发挥抗炎功能,以抑制APC的成熟和T细胞的刺激能力[28]

  • 3.3 Treg

  • Treg具有抑制持续免疫和维持自身免疫耐受的功能,表达转录因子Foxp3+ 是Treg的特征性表现之一[29]。临床研究发现,心衰患者的外周Treg数量减少,提示其效应器功能存在缺陷[30]。动物研究显示,在接受转移 Treg 的大鼠中,心肌基质金属蛋白酶(matrix metalloproteinase,MMP)⁃2 活性和间质纤维化降低,提示Treg可有效延缓心室重构并进一步改善心功能[31]。值得注意的是,利用靶向T细胞的脂质纳米颗粒(lipid nanoparticle,LNP)调节 Treg 迁移到活动性纤维化区域,并通过旁分泌的方式抑制炎症反应,可抑制心肌纤维化[32]。未来,进一步识别和开发一种刺激Treg并中和Th17细胞的选择性免疫调节疗法,可能会提供一种切实可靠的治疗策略,以限制T细胞亚群的致病功能,同时保留部分免疫调节功能[30]

  • 3.4 CD8+ T细胞

  • 既往研究较多关注CD8+ T细胞在缺血性心肌病中的作用[33-34],近来研究亦逐渐重视其在HFpEF发生中的机制。系统性炎症被认为是 HFpEF 发病重要的病理生理机制之一。研究显示,IL⁃12α可降低 CD4+ T和CD8+ T细胞的活化,从而减轻压力超载介导的心脏炎症以及肥厚所致的心功能不全[35]。心肌纤维化与免疫细胞浸润密切相关,T细胞是其免疫微环境的核心成员之一,CD8+ T细胞也被认为广泛参与心肌纤维化的病理过程[36]。此外,HFpEF也以显著的冠脉微循环障碍(coronary microvascular dysfunction,CMD)为特征,而局灶性和弥漫性心外膜冠状动脉粥样硬化可能参与了 CMD 的发病[37]。多项研究显示,CD8+ T细胞在冠状动脉粥样硬化中发挥关键作用[38-39]。例如,Cochain 等[40] 报道,在小鼠中,CD8+ T细胞通过调节单核细胞的产生和外周高表达Ly6C的单核细胞的数量来促进动脉粥样硬化。综上,CD8+ T细胞可通过多个病理生理机制参与HFpEF的发病(图1)。

  • 4 T 细胞亚群:HFpEF 潜在的生物标志物及治疗靶点

  • 4.1 生物标志物

  • 一直以来,不同T细胞亚群之间的比值在心衰患者中的价值及应用一直在研究中。例如,Th1/Th2 的比值异常被认为在心肌炎症及心肌纤维化中发挥重要作用[41-42]。类似地,促炎作用的Th17及保护作用的 Treg 的比值变化能较准确地反映心衰患者的预后[43-44]。值得注意的是,CD4+ T/CD8+ T的比值升高已被认为是糖尿病心肌病(diabetic cardiomyopa⁃ thy,DCM)诊断及预后的一项无创性标志物。DCM 中CD4+ T/CD8+ T比值的升高是由于CD4+ T细胞活化并处于主导地位[45]。矛盾的是,Cao 等[46] 的一项前瞻性研究结果显示,在96例因心衰住院的老年患者中,CD4+ T/CD8+ T比值下降,而免疫调节肽可通过调节T细胞亚群分布维持促炎/抗炎细胞因子的平衡,并使CD4+ T/CD8+ T比值恢复正常,从而提高心功能和患者的生活质量。此外,考虑到心衰患者多为高龄,细胞毒性T细胞及抑制性T细胞大多随着年龄的增长而下降,相关的免疫衰老特征不容忽视[47]

  • 值得注意的是,scRNA⁃seq作为新型测序技术,显著促进了新细胞或罕见细胞类型的鉴定[48-49]。例如,Rao等[50] 通过scRNA⁃seq及单T细胞受体测序后发现,心衰患者纤维化心肌内可见大量白细胞浸润,尤其是细胞毒性CD8+ T细胞和促炎性CD4+ T细胞;且CXCL8hiCCR2+ HLA⁃Drhi巨噬细胞亚群在重度心肌纤维化区域被发现,可能通过Duffy抗原趋化因子受体(Duffy antigen receptor for chemokines, DARC)与活化的内皮细胞相互作用,从而促进白细胞的募集和浸润。类似地,Martini等[51] 在压力过载的小鼠心衰模型中,利用scRNA⁃seq集中分析CD45+ T细胞获得了更高分辨的亚群鉴定,为进一步研究靶向调节T细胞亚群的特异性分子打下了初步的基础。此外,scRNA⁃seq联合转基因T细胞受体(trans⁃ genic T cell receptor,TCR⁃M)模型亦揭示了心肌梗死小鼠肌球蛋白特异性 Treg 抑制心肌梗死后的炎症反应及邻近T细胞活化,并与心功能改善有关[52]

  • 4.2 治疗

  • 截至目前,多个研究从不同角度研究了利用T细胞亚群的新型心衰治疗途径。例如,Rurik等[53] 通过在靶向T细胞LNP中传递修饰的信使RNA(messenger RNA,mRNA),在体内产生瞬时抗纤维化嵌合抗原受体(chimeric antigen receptor,CAR)T细胞,后者被认为有改善心肌纤维化的潜力。类似地,Huang等[54] 研究发现,标准化中药芪肾益气汤可抑制HFpEF期间的炎症反应和免疫细胞募集。例如,芪肾益气汤处理后,小鼠心肌中CD8+、CD4+ 及CD11b/c+ 单核细胞浸润明显减轻,且肿瘤坏死因子α(tumor necrosis factor α,TNF⁃α)、单核细胞趋化蛋白⁃1(monocyte chemotac⁃ tic protein⁃1,MCP⁃1)、核因子κB(nuclear factor κB, NF ⁃ κB)及 NOD 样受体蛋白 3(NOD ⁃like receptor protein 3,NLRP3)等炎症因子水平降低。当然,未来仍需进一步的大规模临床研究来证实上述研究结果的准确性。

  • 图1 T细胞亚群在射血分数保留的心力衰竭中的作用

  • Figure1 The role of T⁃cell subsets in heart failure with preserved ejection fraction

  • 5 小结

  • 越来越多的研究结果支持免疫与炎症在心衰,尤其是 HFpEF 中的关键作用。探讨 T 细胞亚群从生理稳态免疫反应向慢性病理性炎症阶段发展的过程,可为探究 HFpEF 的发病机制提供新的视角[55]。一般而言,生理条件下T细胞亚群有助于维持机体免疫环境的稳态,而上述免疫系统的平衡状态被打破则会导致自身免疫和/或炎症反应的异常,从而损伤心脏血管内壁及心肌组织[56]。具体来说, Th1/Th2、Th17/Treg以及CD4+ T/CD8+ T比值均有作为 HFpEF 预后标志物的潜力;以纳米材料为载体靶向递送T细胞亚群的方法有减轻心脏炎症、抑制心肌纤维化从而治疗HFpEF的潜力。然而,目前对于T细胞亚群在HFpEF中的具体发病机制、特异性分子通路以及不同亚群间的相互影响仍未完全清晰,未来仍需大量的进一步研究来佐证上述发现并明确更具体的治疗方法。

  • 参考文献

    • [1] 射血分数保留的心力衰竭诊断与治疗中国专家共识制定工作组.射血分数保留的心力衰竭诊断与治疗中国专家共识 2023[J].中国循环杂志,2023,38(4):375-393

    • [2] BORLAUG B A.The pathophysiology of heart failure with preserved ejection fraction[J].Nat Rev Cardiol,2014,11(9):507-515

    • [3] HANNA A,FRANGOGIANNIS N G.Inflammatory cytokines and chemokines as therapeutic targets in heart failure[J].Cardiovasc Drugs Ther,2020,34(6):849-863

    • [4] KAYE D M,NANAYAKKARA S,WANG B,et al.Characterization of cardiac sympathetic nervous system and inflammatory activation in HFpEF patients[J].JACC Basic Transl Sci,2022,7(2):116-127

    • [5] GUO Y Z,WEN J J,HE A,et al.iNOS contributes to heart failure with preserved ejection fraction through mitochondrial dysfunction and Akt S-nitrosylation[J].J Adv Res,2023,43:175-186

    • [6] DAOU D,GILLETTE T G,HILL J A.Inflammatory mechanisms in heart failure with preserved ejection fraction[J].Physiology,2023,38(5):217-230

    • [7] BASHIR Z,CHEN E W,TORI K,et al.Insight into different phenotypic presentations of heart failure with preserved ejection fraction[J].Prog Cardiovasc Dis,2023,79:80-88

    • [8] SHI Y Y,LU Y C,YOU J.Unfolded protein response in the activation-induced biological processes of CD8+ T cells[J].Pharmacol Res,2021,169:105654

    • [9] RUSH C J,BERRY C,OLDROYD K G,et al.Prevalence of coronary artery disease and coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction[J].JAMA Cardiol,2021,6(10):1130-1143

    • [10] SWIRSKI F K,NAHRENDORF M.Cardioimmunology:the immune system in cardiac homeostasis and disease[J].Nat Rev Immunol,2018,18(12):733-744

    • [11] LOFFREDO F S,STEINHAUSER M L,JAY S M,et al.Growth differentiation factor 11 is a circulating factor that reverses age⁃related cardiac hypertrophy[J].Cell,2013,153(4):828-839

    • [12] DEBERGE M,SHAH S J,WILSBACHER L,et al.Macrophages in heart failure with reduced versus preserved ejection fraction[J].Trends Mol Med,2019,25(4):328-340

    • [13] PANICO C,FELICETTA A,KUNDERFRANCO P,et al.Single⁃cell RNA sequencing reveals metabolic stress⁃dependent activation of cardiac macrophages in a model of dyslipidemia⁃induced diastolic dysfunction[J/OL].Circulation,2023(2023⁃12⁃21)[2024⁃3⁃10].DOI:10.1161/CIRCULATIONAHA.122.062984

    • [14] LIU H,HUANG Y M,ZHAO Y,et al.Inflammatory macrophage interleukin ⁃ 1β mediates high-fat diet-induced heart failure with preserved ejection fraction[J].JACC Basic Transl Sci,2023,8(2):174-185

    • [15] BANSAL S S,ISMAHIL M A,GOEL M,et al.Dysfunctional and proinflammatory regulatory T ⁃lymphocytes are essential for adverse cardiac remodeling in ischemic cardiomyopathy[J].Circulation,2019,139(2):206-221

    • [16] RAMOS G C,VAN DEN BERG A,NUNES⁃SILVA V,et al.Myocardial aging as a T⁃cell⁃mediated phenomenon[J].Proc Natl Acad Sci U S A,2017,114(12):E2420-E2429

    • [17] LAROUMANIE F,DOUIN ⁃ECHINARD V,POZZO J,et al.CD4 + T cells promote the transition from hypertrophy to heart failure during chronic pressure overload[J].Circulation,2014,129(21):2111-2124

    • [18] BRASSINGTON K,KANELLAKIS P,CAO A,et al.Crosstalk between cytotoxic CD8 + T cells and stressed cardio⁃myocytes triggers development of interstitial cardiac fibrosis in hypertensive mouse hearts[J].Front Immunol,2022,13:1040233

    • [19] SMOLGOVSKY S,BAYER A L,KAUR K,et al.Impaired T cell IRE1α/XBP1 signaling directs inflammation in experimental heart failure with preserved ejection fraction[J].J Clin Invest,2023,133(24):e171874

    • [20] PARK C O,KUPPER T S.The emerging role of resident memory T cells in protective immunity and inflammatory disease[J].Nat Med,2015,21(7):688-697

    • [21] LIAO S G,TANG Y,YUE X,et al.β⁃hydroxybutyrate mitigated heart failure with preserved ejection fraction by increasing Treg cells via Nox2/GSK⁃3β[J].J Inflamm Res,2021,14:4697-4706

    • [22] OVCHINNIKOV A,FILATOVA A,POTEKHINA A,et al.Blood immune cell alterations in patients with hypertensive left ventricular hypertrophy and heart failure with preserved ejection fraction[J].J Cardiovasc Dev Dis,2023,10(7):310

    • [23] YOSHITOMI H.Peripheral helper T cell responses in human diseases[J].Front Immunol,2022,13:946786

    • [24] LIANG X Y,BAI Z C,WANG F F,et al.Full⁃length transcriptome sequencing:an insight into the dog model of heart failure[J].Front Cardiovasc Med,2021,8:712797

    • [25] FUKUNAGA T,SOEJIMA H,IRIE A,et al.Relation between CD4+ T⁃cell activation and severity of chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy[J].Am J Cardiol,2007,100(3):483-488

    • [26] SAVA R I,PEPINE C J,MARCH K L.Immune dysregulation in HFpEF:a target for mesenchymal stem/stromal cell therapy[J].J Clin Med,2020,9(1):241

    • [27] ANGELIS E D,PECORARO M,RUSCIANO M R,et al.Cross ⁃talk between neurohormonal pathways and the immune system in heart failure:a review of the literature[J].Int J Mol Sci,2019,20(7):1698

    • [28] SABAT R,GRÜTZ G,WARSZAWSKA K,et al.Biology of interleukin⁃10[J].Cytokine Growth Factor Rev,2010,21(5):331-344

    • [29] HU W L,LI J Y,CHENG X.Regulatory T cells and cardiovascular diseases[J].Chin Med J,2023,136(23):2812-2823

    • [30] LU Y Z,XIA N,CHENG X.Regulatory T cells in chronic heart failure[J].Front Immunol,2021,12:732794

    • [31] WEIRATHER J,HOFMANN U D,BEYERSDORF N,et al.Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation[J].Circ Res,2014,115(1):55-67

    • [32] JARDIN B,EPSTEIN J A.Emerging mRNA therapies for cardiac fibrosis[J].Am J Physiol Cell Physiol,2024,326(1):C107-C111

    • [33] SANTOS⁃ZAS I,LEMARIÉ J,ZLATANOVA I,et al.Cytotoxic CD8 + T cells promote granzyme B-dependent adverse post-ischemic cardiac remodeling[J].Nat Commun,2021,12(1):1483

    • [34] ILATOVSKAYA D V,PITTS C,CLAYTON J,et al.CD8+ T ⁃cells negatively regulate inflammation post ⁃myocardial infarction[J].Am J Physiol Heart Circ Physiol,2019,317(3):H581-H596

    • [35] BHATTARAI U,HE X C,XU R,et al.IL⁃12α deficiency attenuates pressure overload-induced cardiac inflammation,hypertrophy,dysfunction,and heart failure progression[J].Front Immunol,2023,14:1105664

    • [36] LU W Z,LI Y,DAI Y,et al.Dominant myocardial fibrosis and complex immune microenvironment jointly shape the pathogenesis of arrhythmogenic right ventricular cardiomyopathy[J].Front Cardiovasc Med,2022,9:900810

    • [37] VANCHERI F,LONGO G,VANCHERI S,et al.Coronary microvascular dysfunction[J].J Clin Med,2020,9(9):2880

    • [38] SCHÄFER S,ZERNECKE A.CD8+ T cells in atherosclerosis[J].Cells,2020,10(1):37

    • [39] CHOWDHURY R R,D’ADDABBO J,HUANG X X,et al.Human coronary plaque T cells are clonal and cross⁃react to virus and self[J].Circ Res,2022,130(10):1510-1530

    • [40] COCHAIN C,KOCH M,CHAUDHARI S M,et al.CD8+ T cells regulate monopoiesis and circulating Ly6C-high monocyte levels in atherosclerosis in mice[J].Circ Res,2015,117(3):244-253

    • [41] CHENG X,LIAO Y H,GE H X,et al.TH1/TH2 functional imbalance after acute myocardial infarction:coronary arterial inflammation or myocardial inflammation[J].J Clin Immunol,2005,25(3):246-253

    • [42] BANSAL S S,ISMAHIL M A,GOEL M,et al.Activated T lymphocytes are essential drivers of pathological remodeling in ischemic heart failure[J].Circ Heart Fail,2017,10(3):e003688

    • [43] VARDA⁃BLOOM N,LEOR J,OHAD D G,et al.Cytotoxic T lymphocytes are activated following myocardial infarction and can recognize and kill healthy myocytes in vitro[J].J Mol Cell Cardiol,2000,32(12):2141-2149

    • [44] LU M,QIN X L,YAO J G,et al.Th17/Treg imbalance modulates rat myocardial fibrosis and heart failure by regulating LOX expression[J].Acta Physiol,2020,230(3):e13537

    • [45] ZHONG Z Q,ZHANG H L,XU T,et al.Identification and verification of immune⁃related biomarkers and immune infiltration in diabetic heart failure[J].Front Cardiovasc Med,2022,9:931066

    • [46] CAO X J,LI Y F,GUO Y Q,et al.Thymopentin improves cardiac function in older patients with chronic heart failure[J].Anatol J Cardiol,2017,17(1):24-30

    • [47] SEEGER T,HAFFEZ F,FISCHER A,et al.Immunose⁃nescence-associated microRNAs in age and heart failure[J].Eur J Heart Fail,2013,15(4):385-393

    • [48] COCHAIN C,VAFADARNEJAD E,ARAMPATZI P,et al.Single ⁃cell RNA ⁃seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis[J].Circ Res,2018,122(12):1661-1674

    • [49] GAO S G,WU Z J,ARNOLD B,et al.Single⁃cell RNA sequencing coupled to TCR profiling of large granular lymphocyte leukemia T cells[J].Nat Commun,2022,13(1):1982

    • [50] RAO M,WANG X L,GUO G R,et al.Resolving the intertwining of inflammation and fibrosis in human heart failure at single⁃cell level[J].Basic Res Cardiol,2021,116(1):55

    • [51] MARTINI E,KUNDERFRANCO P,PEANO C,et al.Single-cell sequencing of mouse heart immune infiltrate in pressure overload⁃driven heart failure reveals extent of immune activation[J].Circulation,2019,140(25):2089-2107

    • [52] DELGOBO M,WEIß E,ASHOUR D,et al.Myocardial milieu favors local differentiation of regulatory T cells[J].Circ Res,2023,132(5):565-582

    • [53] RURIK J G,TOMBÁCZ I,YADEGARI A,et al.CAR T cells produced in vivo to treat cardiac injury[J].Science,2022,375(6576):91-96

    • [54] HUANG Y T,ZHANG K,LIU M,et al.An herbal preparation ameliorates heart failure with preserved ejection fraction by alleviating microvascular endothelial inflammation and activating NO-cGMP ⁃ PKG pathway[J].Phytomedicine,2021,91:153633

    • [55] MAHMOOD S S,RIEDELL P A,FELDMAN S,et al.Biomarkers and cardiovascular outcomes in chimeric antigen receptor T⁃cell therapy recipients[J].Eur Heart J,2023,44(22):2029-2042

    • [56] AGHAJANIAN H,KIMURA T,RURIK J G,et al.Targeting cardiac fibrosis with engineered T cells[J].Nature,2019,573(7774):430-433

  • 参考文献

    • [1] 射血分数保留的心力衰竭诊断与治疗中国专家共识制定工作组.射血分数保留的心力衰竭诊断与治疗中国专家共识 2023[J].中国循环杂志,2023,38(4):375-393

    • [2] BORLAUG B A.The pathophysiology of heart failure with preserved ejection fraction[J].Nat Rev Cardiol,2014,11(9):507-515

    • [3] HANNA A,FRANGOGIANNIS N G.Inflammatory cytokines and chemokines as therapeutic targets in heart failure[J].Cardiovasc Drugs Ther,2020,34(6):849-863

    • [4] KAYE D M,NANAYAKKARA S,WANG B,et al.Characterization of cardiac sympathetic nervous system and inflammatory activation in HFpEF patients[J].JACC Basic Transl Sci,2022,7(2):116-127

    • [5] GUO Y Z,WEN J J,HE A,et al.iNOS contributes to heart failure with preserved ejection fraction through mitochondrial dysfunction and Akt S-nitrosylation[J].J Adv Res,2023,43:175-186

    • [6] DAOU D,GILLETTE T G,HILL J A.Inflammatory mechanisms in heart failure with preserved ejection fraction[J].Physiology,2023,38(5):217-230

    • [7] BASHIR Z,CHEN E W,TORI K,et al.Insight into different phenotypic presentations of heart failure with preserved ejection fraction[J].Prog Cardiovasc Dis,2023,79:80-88

    • [8] SHI Y Y,LU Y C,YOU J.Unfolded protein response in the activation-induced biological processes of CD8+ T cells[J].Pharmacol Res,2021,169:105654

    • [9] RUSH C J,BERRY C,OLDROYD K G,et al.Prevalence of coronary artery disease and coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction[J].JAMA Cardiol,2021,6(10):1130-1143

    • [10] SWIRSKI F K,NAHRENDORF M.Cardioimmunology:the immune system in cardiac homeostasis and disease[J].Nat Rev Immunol,2018,18(12):733-744

    • [11] LOFFREDO F S,STEINHAUSER M L,JAY S M,et al.Growth differentiation factor 11 is a circulating factor that reverses age⁃related cardiac hypertrophy[J].Cell,2013,153(4):828-839

    • [12] DEBERGE M,SHAH S J,WILSBACHER L,et al.Macrophages in heart failure with reduced versus preserved ejection fraction[J].Trends Mol Med,2019,25(4):328-340

    • [13] PANICO C,FELICETTA A,KUNDERFRANCO P,et al.Single⁃cell RNA sequencing reveals metabolic stress⁃dependent activation of cardiac macrophages in a model of dyslipidemia⁃induced diastolic dysfunction[J/OL].Circulation,2023(2023⁃12⁃21)[2024⁃3⁃10].DOI:10.1161/CIRCULATIONAHA.122.062984

    • [14] LIU H,HUANG Y M,ZHAO Y,et al.Inflammatory macrophage interleukin ⁃ 1β mediates high-fat diet-induced heart failure with preserved ejection fraction[J].JACC Basic Transl Sci,2023,8(2):174-185

    • [15] BANSAL S S,ISMAHIL M A,GOEL M,et al.Dysfunctional and proinflammatory regulatory T ⁃lymphocytes are essential for adverse cardiac remodeling in ischemic cardiomyopathy[J].Circulation,2019,139(2):206-221

    • [16] RAMOS G C,VAN DEN BERG A,NUNES⁃SILVA V,et al.Myocardial aging as a T⁃cell⁃mediated phenomenon[J].Proc Natl Acad Sci U S A,2017,114(12):E2420-E2429

    • [17] LAROUMANIE F,DOUIN ⁃ECHINARD V,POZZO J,et al.CD4 + T cells promote the transition from hypertrophy to heart failure during chronic pressure overload[J].Circulation,2014,129(21):2111-2124

    • [18] BRASSINGTON K,KANELLAKIS P,CAO A,et al.Crosstalk between cytotoxic CD8 + T cells and stressed cardio⁃myocytes triggers development of interstitial cardiac fibrosis in hypertensive mouse hearts[J].Front Immunol,2022,13:1040233

    • [19] SMOLGOVSKY S,BAYER A L,KAUR K,et al.Impaired T cell IRE1α/XBP1 signaling directs inflammation in experimental heart failure with preserved ejection fraction[J].J Clin Invest,2023,133(24):e171874

    • [20] PARK C O,KUPPER T S.The emerging role of resident memory T cells in protective immunity and inflammatory disease[J].Nat Med,2015,21(7):688-697

    • [21] LIAO S G,TANG Y,YUE X,et al.β⁃hydroxybutyrate mitigated heart failure with preserved ejection fraction by increasing Treg cells via Nox2/GSK⁃3β[J].J Inflamm Res,2021,14:4697-4706

    • [22] OVCHINNIKOV A,FILATOVA A,POTEKHINA A,et al.Blood immune cell alterations in patients with hypertensive left ventricular hypertrophy and heart failure with preserved ejection fraction[J].J Cardiovasc Dev Dis,2023,10(7):310

    • [23] YOSHITOMI H.Peripheral helper T cell responses in human diseases[J].Front Immunol,2022,13:946786

    • [24] LIANG X Y,BAI Z C,WANG F F,et al.Full⁃length transcriptome sequencing:an insight into the dog model of heart failure[J].Front Cardiovasc Med,2021,8:712797

    • [25] FUKUNAGA T,SOEJIMA H,IRIE A,et al.Relation between CD4+ T⁃cell activation and severity of chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy[J].Am J Cardiol,2007,100(3):483-488

    • [26] SAVA R I,PEPINE C J,MARCH K L.Immune dysregulation in HFpEF:a target for mesenchymal stem/stromal cell therapy[J].J Clin Med,2020,9(1):241

    • [27] ANGELIS E D,PECORARO M,RUSCIANO M R,et al.Cross ⁃talk between neurohormonal pathways and the immune system in heart failure:a review of the literature[J].Int J Mol Sci,2019,20(7):1698

    • [28] SABAT R,GRÜTZ G,WARSZAWSKA K,et al.Biology of interleukin⁃10[J].Cytokine Growth Factor Rev,2010,21(5):331-344

    • [29] HU W L,LI J Y,CHENG X.Regulatory T cells and cardiovascular diseases[J].Chin Med J,2023,136(23):2812-2823

    • [30] LU Y Z,XIA N,CHENG X.Regulatory T cells in chronic heart failure[J].Front Immunol,2021,12:732794

    • [31] WEIRATHER J,HOFMANN U D,BEYERSDORF N,et al.Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation[J].Circ Res,2014,115(1):55-67

    • [32] JARDIN B,EPSTEIN J A.Emerging mRNA therapies for cardiac fibrosis[J].Am J Physiol Cell Physiol,2024,326(1):C107-C111

    • [33] SANTOS⁃ZAS I,LEMARIÉ J,ZLATANOVA I,et al.Cytotoxic CD8 + T cells promote granzyme B-dependent adverse post-ischemic cardiac remodeling[J].Nat Commun,2021,12(1):1483

    • [34] ILATOVSKAYA D V,PITTS C,CLAYTON J,et al.CD8+ T ⁃cells negatively regulate inflammation post ⁃myocardial infarction[J].Am J Physiol Heart Circ Physiol,2019,317(3):H581-H596

    • [35] BHATTARAI U,HE X C,XU R,et al.IL⁃12α deficiency attenuates pressure overload-induced cardiac inflammation,hypertrophy,dysfunction,and heart failure progression[J].Front Immunol,2023,14:1105664

    • [36] LU W Z,LI Y,DAI Y,et al.Dominant myocardial fibrosis and complex immune microenvironment jointly shape the pathogenesis of arrhythmogenic right ventricular cardiomyopathy[J].Front Cardiovasc Med,2022,9:900810

    • [37] VANCHERI F,LONGO G,VANCHERI S,et al.Coronary microvascular dysfunction[J].J Clin Med,2020,9(9):2880

    • [38] SCHÄFER S,ZERNECKE A.CD8+ T cells in atherosclerosis[J].Cells,2020,10(1):37

    • [39] CHOWDHURY R R,D’ADDABBO J,HUANG X X,et al.Human coronary plaque T cells are clonal and cross⁃react to virus and self[J].Circ Res,2022,130(10):1510-1530

    • [40] COCHAIN C,KOCH M,CHAUDHARI S M,et al.CD8+ T cells regulate monopoiesis and circulating Ly6C-high monocyte levels in atherosclerosis in mice[J].Circ Res,2015,117(3):244-253

    • [41] CHENG X,LIAO Y H,GE H X,et al.TH1/TH2 functional imbalance after acute myocardial infarction:coronary arterial inflammation or myocardial inflammation[J].J Clin Immunol,2005,25(3):246-253

    • [42] BANSAL S S,ISMAHIL M A,GOEL M,et al.Activated T lymphocytes are essential drivers of pathological remodeling in ischemic heart failure[J].Circ Heart Fail,2017,10(3):e003688

    • [43] VARDA⁃BLOOM N,LEOR J,OHAD D G,et al.Cytotoxic T lymphocytes are activated following myocardial infarction and can recognize and kill healthy myocytes in vitro[J].J Mol Cell Cardiol,2000,32(12):2141-2149

    • [44] LU M,QIN X L,YAO J G,et al.Th17/Treg imbalance modulates rat myocardial fibrosis and heart failure by regulating LOX expression[J].Acta Physiol,2020,230(3):e13537

    • [45] ZHONG Z Q,ZHANG H L,XU T,et al.Identification and verification of immune⁃related biomarkers and immune infiltration in diabetic heart failure[J].Front Cardiovasc Med,2022,9:931066

    • [46] CAO X J,LI Y F,GUO Y Q,et al.Thymopentin improves cardiac function in older patients with chronic heart failure[J].Anatol J Cardiol,2017,17(1):24-30

    • [47] SEEGER T,HAFFEZ F,FISCHER A,et al.Immunose⁃nescence-associated microRNAs in age and heart failure[J].Eur J Heart Fail,2013,15(4):385-393

    • [48] COCHAIN C,VAFADARNEJAD E,ARAMPATZI P,et al.Single ⁃cell RNA ⁃seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis[J].Circ Res,2018,122(12):1661-1674

    • [49] GAO S G,WU Z J,ARNOLD B,et al.Single⁃cell RNA sequencing coupled to TCR profiling of large granular lymphocyte leukemia T cells[J].Nat Commun,2022,13(1):1982

    • [50] RAO M,WANG X L,GUO G R,et al.Resolving the intertwining of inflammation and fibrosis in human heart failure at single⁃cell level[J].Basic Res Cardiol,2021,116(1):55

    • [51] MARTINI E,KUNDERFRANCO P,PEANO C,et al.Single-cell sequencing of mouse heart immune infiltrate in pressure overload⁃driven heart failure reveals extent of immune activation[J].Circulation,2019,140(25):2089-2107

    • [52] DELGOBO M,WEIß E,ASHOUR D,et al.Myocardial milieu favors local differentiation of regulatory T cells[J].Circ Res,2023,132(5):565-582

    • [53] RURIK J G,TOMBÁCZ I,YADEGARI A,et al.CAR T cells produced in vivo to treat cardiac injury[J].Science,2022,375(6576):91-96

    • [54] HUANG Y T,ZHANG K,LIU M,et al.An herbal preparation ameliorates heart failure with preserved ejection fraction by alleviating microvascular endothelial inflammation and activating NO-cGMP ⁃ PKG pathway[J].Phytomedicine,2021,91:153633

    • [55] MAHMOOD S S,RIEDELL P A,FELDMAN S,et al.Biomarkers and cardiovascular outcomes in chimeric antigen receptor T⁃cell therapy recipients[J].Eur Heart J,2023,44(22):2029-2042

    • [56] AGHAJANIAN H,KIMURA T,RURIK J G,et al.Targeting cardiac fibrosis with engineered T cells[J].Nature,2019,573(7774):430-433