en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

程鹏,E-mail: cphh@sohu.com

中图分类号:R587.1;R683

文献标识码:A

文章编号:1007-4368(2024)10-1441-07

DOI:10.7655/NYDXBNSN240408

参考文献 1
ELLER ⁃VAINICHER C,CAIROLI E,GRASSI G,et al.Pathophysiology and management of type 2 diabetes mellitus bone fragility[J].J Diabetes Res,2020,2020:7608964
参考文献 2
EMANUELSSON F,AFZAL S,JØRGENSEN N R,et al.Hyperglycaemia,diabetes and risk of fragility fractures:observational and Mendelian randomisation studies[J].Diabetologia,2024,67(2):301-311
参考文献 3
焦璇,刘婷婷,黄勤.糖尿病骨病的发病机制与骨折风险预测的研究进展[J].医学综述,2019,25(20):4074-4079
参考文献 4
胡治勇,崔龙,董晓颖,等.糖尿病患者骨质疏松评估、危险因素及相关机制的研究进展[J].重庆医学,2020,49(4):660-664
参考文献 5
SHEU A,WHITE C P,CENTER J R.Bone metabolism in diabetes:a clinician’s guide to understanding the bone-glucose interplay[J].Diabetologia,2024,67(8):1493-1506
参考文献 6
DHALIWAL R,CIBULA D,GHOSH C,et al.Bone quality assessment in type 2 diabetes mellitus[J].Osteoporos Int,2014,25(7):1969-1973
参考文献 7
MARTINIAKOVA M,BIRO R,PENZES N,et al.Links among obesity,type 2 diabetes mellitus,and osteoporosis:bone as a target[J].Int J Mol Sci,2024,25(9):4827
参考文献 8
HUANG G,CHEN X,CHEN Y,et al.Causal relationship between type 2 diabetes mellitus and bone mineral density:a Mendelian randomization study in an East Asian population[J].Osteoporos Int.2023,34(10):1719-1727
参考文献 9
PATERNI S,OKOYE C,CALABRESE A M,et al.Prognostic value of glycated hemoglobin in frail older diabetic patients with hip fracture[J].Front Endocrinol,2021,12:770400
参考文献 10
VINTHER D,THOMSEN R W,FURNES O,et al.Impact of diabetes on the risk of subsequent fractures in 92,600 patients with an incident hip fracture:a Danish nationwide cohort study 2004 ⁃ 2018[J].Bone,2024,184:117104
参考文献 11
NAPOLI N,SCHWARTZ A V,SCHAFER A L,et al.Vertebral fracture risk in diabetic elderly men:the MrOS study[J].J Bone Miner Res,2018,33(1):63-69
参考文献 12
STARUP⁃LINDE J,HYGUM K,HARSLØF T,et al.Indications of increased vertebral fracture risk in patients with type 2 diabetes[J].J Bone Miner Res,2018,33(1):182
参考文献 13
KOROMANI F,GHATAN S,VAN HOEK M,et al.Type 2 diabetes mellitus and vertebral fracture risk[J].Curr Osteoporos Rep,2021,19(1):50-57
参考文献 14
GAO Y,CHAI F.Risk of non ⁃vertebral fractures in men with type 2 diabetes:a systematic review and meta⁃analysis of cohort studies[J].Exp Gerontol,2021,150:111378
参考文献 15
ZHANG S C,MAKEBEH T,MESINOVIC J,et al.Epidemiology of fractures in adults of African ancestry with diabetes mellitus:a systematic review and meta⁃analysis[J].Bone,2024,185:117133
参考文献 16
MCCLOSKEY E,TAN A T H,SCHINI M.Update on fracture risk assessment in osteoporosis[J].Curr Opin Endo⁃crinol Diabetes Obes,2024,31(4):141-148
参考文献 17
ZHAO P P,SHENG Z F,XU L,et al.Deciphering the complex relationship between type 2 diabetes and fracture risk with both genetic and observational evidence[J].Elife,2024,12:RP89281
参考文献 18
ECKHARDT B A,ROWSEY J L,THICKE B S,et al.Accelerated osteocyte senescence and skeletal fragility in mice with type 2 diabetes[J].JCI Insight,2020,5(9):e135236
参考文献 19
SAMELSON E J,DEMISSIE S,CUPPLES L A,et al.Diabetes and deficits in cortical bone density,microarchitec⁃ture,and bone size:Framingham HR-pQCT study[J].J Bone Miner Res,2018,33(1):54-62
参考文献 20
CIROVIC A,SCHMIDT F N,VUJACIC M,et al.Lower microhardness along with less heterogeneous mineralization in the femoral neck of individuals with type 2 diabetes mellitus indicates higher fracture risk[J].JBMR Plus,2024,8(3):ziae005
参考文献 21
DRESNER⁃POLLAK R.Skeletal fragility in adult people living with type 1 diabetes[J].Endocr Pract,2024,30(6):592-597
参考文献 22
柴家超,杨卫芳,扈艳雯,等.SGLT2i对2型糖尿病患者骨代谢影响的研究进展[J].中国骨质疏松杂志,2023,29(12):1866-1872
参考文献 23
MARTINIAKOVA M,BIRO R,KOVACOVA V,et al.Current knowledge of bone⁃derived factor osteocalcin:its role in the management and treatment of diabetes mellitus,osteoporosis,osteopetrosis and inflammatory joint diseases[J].J Mol Med,2024,102(4):435-452
参考文献 24
ONODERA T,KIM D S,YE R S,et al.Protective roles of adiponectin and molecular signatures of HNF4α and PPARα as downstream targets of adiponectin in pancreatic β cells[J].Mol Metab,2023,78:101821
参考文献 25
DIEGEL C R,HANN S,AYTURK U M,et al.An osteo⁃calcin⁃deficient mouse strain without endocrine abnormalities[J].PLoS Genet,2020,16(5):e1008361
参考文献 26
GKASTARIS K,GOULIS D G,POTOUPNIS M,et al.Obesity,osteoporosis and bone metabolism[J].J Muscu⁃loskelet Neuronal Interact,2020,20(3):372-381
参考文献 27
PIÑAR⁃GUTIERREZ A,GARCÍA⁃FONTANA C,GARCÍA⁃FONTANA B,et al.Obesity and bone health:a complex relationship[J].Int J Mol Sci,2022,23(15):8303
参考文献 28
王盼,吴科锋,崔燎.不同阶段2型糖尿病诱发骨质疏松症的致病机制研究进展[J].中国骨质疏松杂志,2020,26(4):619-624
参考文献 29
WU H Z,BALLANTYNE C M.Metabolic inflammation and insulin resistance in obesity[J].Circ Res,2020,126(11):1549-1564
参考文献 30
LAND LAIL H,FERESIN R G,HICKS D,et al.Berries as a treatment for obesity⁃induced inflammation:evidence from preclinical models[J].Nutrients,2021,13(2):334
参考文献 31
SUTHON S,PERKINS R S,BRYJA V,et al.WNT5B in physiology and disease[J].Front Cell Dev Biol,2021,9:667581
参考文献 32
朱笑笑,王丽华.糖尿病与骨质疏松的相关研究进展[J].糖尿病新世界,2023,26(10):195-198
参考文献 33
KO D S,KIM Y H,GOH T S,et al.Altered physiology of mesenchymal stem cells in the pathogenesis of adolescent idiopathic scoliosis[J].World J Clin Cases,2020,8(11):2102-2110
参考文献 34
REID I R,BALDOCK P A,CORNISH J.Effects of leptin on the skeleton[J].Endocr Rev,2018,39(6):938-959
参考文献 35
JIAO Y,SUN J,LI Y M,et al.Association between adiposity and bone mineral density in adults:insights from a national survey analysis[J].Nutrients,2023,15(15):3492
参考文献 36
VILACA T,EVANS A,GOSSIEL F,et al.Fat,adipo⁃kines,bone structure and bone regulatory factors associations in obesity[J].Eur J Endocrinol,2022,187(6):743-750
参考文献 37
LEE S,KIM J H,JEON Y K,et al.Effect of adipokine and ghrelin levels on BMD and fracture risk:an updated systematic review and meta-analysis[J].Front Endocrinol,2023,14:1044039
参考文献 38
GRUNEISEN E,KREMER R,DUQUE G.Fat as a friend or foe of the bone[J].Curr Osteoporos Rep,2024,22(2):245-256
参考文献 39
WIKAREK A,GRABARCZYK M,KLIMEK K,et al.Effect of drugs used in pharmacotherapy of type 2 diabetes on bone density and risk of bone fractures[J].Medicina,2024,60(3):393
参考文献 40
FULZELE K,RIDDLE R C,DIGIROLAMO D J,et al.Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition[J].Cell,2022,185(4):746
参考文献 41
ZHANG Z D,REN H,WANG W X,et al.IGF ⁃ 1R/β ⁃ catenin signaling axis is involved in type 2 diabetic osteoporosis[J].J Zhejiang Univ Sci B,2019,20(10):838-848
参考文献 42
GREERE D I I,GRIGORESCU F,MANDA D,et al.Insulin resistance and pathogenesis of postmenopausal osteoporosis[J].Acta Endocrinol,2023,19(3):349-363
参考文献 43
SRIVASTAVA R K,SAPRA L,MISHRA P K.Osteome⁃tabolism:metabolic alterations in bone pathologies[J].Cells,2022,11(23):3943
参考文献 44
TANIOS M,BRICKMAN B,CAGE E,et al.Diabetes and impaired fracture healing:a narrative review of recent literature[J].Curr Osteoporos Rep,2022,20(5):229-239
参考文献 45
BILOTTA F L,ARCIDIACONO B,MESSINEO S,et al.Insulin and osteocalcin:further evidence for a mutual crosstalk[J].Endocrine,2018,59(3):622-632
参考文献 46
CONTE C,EPSTEIN S,NAPOLI N.Insulin resistance and bone:a biological partnership[J].Acta Diabetol,2018,55(4):305-314
参考文献 47
WEBER D R,LONG F X,ZEMEL B S,et al.Glycemic control and bone in diabetes[J].Curr Osteoporos Rep,2022,20(6):379-388
参考文献 48
FORNARI R,MAROCCO C,FRANCOMANO D,et al.Insulin growth factor ⁃1 correlates with higher bone mineral density and lower inflammation status in obese adult subjects[J].Eat Weight Disord,2018,23(3):375-381
参考文献 49
杨蕾,付勤.2型糖尿病性骨质疏松骨质量改变研究[J].中华骨质疏松和骨矿盐疾病杂志,2019,12(1):100-108
参考文献 50
YEN B L,WANG L T,WANG H H,et al.Excess glucose alone depress young mesenchymal stromal/stem cell osteogenesis and mitochondria activity within hours/days via NAD+/SIRT1 axis[J].J Biomed Sci,2024,31(1):49
参考文献 51
ZHANG Z W,HUANG Q X,ZHAO D Q,et al.The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications[J].Front Endocrinol,2023,14:1112363
参考文献 52
施奕万,王华军,郑小飞.2 型糖尿病骨折风险及相关机制研究进展[J].中国骨科临床与基础研究杂志,2020,12(5):304-311
参考文献 53
LUO M,ZHAO Z H,YI J R.Osteogenesis of bone marrow mesenchymal stem cell in hyperglycemia[J].Front Endo⁃crinol,2023,14:1150068
参考文献 54
LIU S S,FANG X,WEN X,et al.How mesenchymal stem cells transform into adipocytes:overview of the current understanding of adipogenic differentiation[J].World J Stem Cells,2024,16(3):245-256
参考文献 55
黎才琛,张辉,廖静,等.硫化氢调控血糖代谢的研究进展[J].广州医科大学学报,2016,44(6):81-84
参考文献 56
王振虎,崔燎,林思恩,等.糖代谢对骨骼细胞的影响[J].中国骨质疏松杂志,2022,28(11):1625-1628
参考文献 57
YE X S,JIANG J J,YANG J,et al.Specnuezhenide suppresses diabetes⁃induced bone loss by inhibiting RANKL⁃induced osteoclastogenesis[J].Acta Biochim Biophys Sin,2022,54(8):1080-1089
参考文献 58
MEDEIROS C,WALLACE J M.High glucose ⁃induced inhibition of osteoblast like MC3T3 ⁃ E1 differentiation promotes mitochondrial perturbations[J].PLoS One,2022,17(6):e0270001
参考文献 59
SINGH S,SARMA D K,VERMA V,et al.From cells to environment:exploring the interplay between factors shaping bone health and disease[J].Medicina,2023,59(9):1546
参考文献 60
李晓宇,冯正平.糖尿病性骨质疏松发病机制的研究进展[J].中国骨质疏松杂志,2014,20(5):580-583
参考文献 61
SROGA G E,STEPHEN S J,WANG B W,et al.Techniques for advanced glycation end product measurements for diabetic bone disease:pitfalls and future directions[J].Curr Opin Endocrinol Diabetes Obes,2022,29(4):333-342
参考文献 62
方语,李凯伟,罗静,等.糖尿病性骨质疏松症发病机制研究进展[J].四川生理科学杂志,2022,44(7):1310-1313
参考文献 63
DHALIWAL R,EWING S K,VASHISHTH D,et al.Greater carboxy-methyl ⁃lysine is associated with increased fracture risk in type 2 diabetes[J].J Bone Miner Res,2022,37(2):265-272
参考文献 64
CAVATI G,PIRROTTA F,MERLOTTI D,et al.Role of advanced glycation end-products and oxidative stress in type ⁃2⁃ diabetes ⁃induced bone fragility and implications on fracture risk stratification[J].Antioxidants,2023,12(4):928
参考文献 65
MARCUCCI G,DOMAZETOVIC V,NEDIANI C,et al.Oxidative stress and natural antioxidants in osteoporosis:novel preventive and therapeutic approaches[J].Antioxidants,2023,12(2):373
参考文献 66
LI M S,ZHAO Z H,YI J R.Biomaterials designed to modulate reactive oxygen species for enhanced bone regeneration in diabetic conditions[J].J Funct Biomater,2024,15(8):220
参考文献 67
GUTOWSKA K,CZAJKOWSKI K,KURYŁOWICZ A.Receptor for the advanced glycation end products(RAGE)pathway in adipose tissue metabolism[J].Int J Mol Sci,2023,24(13):10982
参考文献 68
FORTE Y S,RENOVATO⁃MARTINS M,BARJA⁃FIDAL-GO C.Cellular and molecular mechanisms associating obesity to bone loss[J].Cells,2023,12(4):521
参考文献 69
LEKKALA S,TAYLOR E A,HUNT H B,et al.Effects of diabetes on bone material properties[J].Curr Osteoporos Rep,2019,17(6):455-464
参考文献 70
SHENG N,XING F,WANG J,et al.Recent progress in bone-repair strategies in diabetic conditions[J].Mater Today Bio,2023,23:100835
参考文献 71
WEDELL-NEERGAARD A S,LANG LEHRSKOV L,CHRISTENSEN R H,et al.Exercise⁃induced changes in visceral adipose tissue mass are regulated by IL⁃6 signaling:a randomized controlled trial[J].Cell Metab,2019,29(4):844-855.e3
参考文献 72
HE B R,YIN X H,HAO D J,et al.Blockade of IL⁃6 alleviates bone loss induced by modeled microgravity in mice[J].Can J Physiol Pharmacol,2020,98(10):678-683
参考文献 73
SANGUINETI R,MONACELLI F,PARODI A,et al.Vitamins D3 and K2 may partially counterbalance the detrimental effects of pentosidine in ex vivo human osteoblasts[J].J Biol Regul Homeost Agents,2016,30(3):713-726
参考文献 74
KITAURA H,OGAWA S,OHORI F,et al.Effects of incretin-related diabetes drugs on bone formation and bone resorption[J].Int J Mol Sci,2021,22(12):6578
参考文献 75
NAUCK M.Incretin therapies:highlighting common features and differences in the modes of action of glucagon⁃like peptide⁃1 receptor agonists and dipeptidyl peptidase⁃4 inhibitors[J].Diabetes Obes Metab,2016,18(3):203-216
参考文献 76
STEGEN S,VAN GASTEL N,CARMELIET G.Bringing new life to damaged bone:the importance of angiogenesis in bone repair and regeneration[J].Bone,2015,70:19-27
参考文献 77
MAURICIO D,GRATACÒS M,FRANCH⁃NADAL J.Diabetic microvascular disease in nonclassical beds:the hidden impact beyond the retina,the kidney,and the peripheral nerves[J].Cardiovasc Diabetol,2023,22(1):314
参考文献 78
STABLEY J N,PRISBY R D,BEHNKE B J,et al.Type 2 diabetes alters bone and marrow blood flow and vascular control mechanisms in the ZDF rat[J].J Endocrinol,2015,225(1):47-58
参考文献 79
ALMUTLAQ N,NEYMAN A,DIMEGLIO L A.Are diabetes microvascular complications risk factors for fragility fracture?[J].Curr Opin Endocrinol Diabetes Obes,2021,28(4):354-359
参考文献 80
SAADI M S S,DAS R,MULLATH ULLAS A,et al.Impact of different anti-hyperglycaemic treatments on bone turnover markers and bone mineral density in type 2 diabetes mellitus patients:a systematic review and meta⁃analysis[J].Int J Mol Sci,2024,25(14):7988
参考文献 81
熊雪松,余显霞.2型糖尿病与骨质疏松症相关性研究进展[J].中国骨质疏松杂志,2017,23(1):130-135
目录contents

    摘要

    2型糖尿病(type 2 diabetes mellitus,T2DM)是以高血糖、胰岛素抵抗为特征的代谢性疾病,易导致多个系统出现并发症,如神经病变、肾病、视网膜病变和骨病等。骨质疏松性骨折具有高发病率、高病死率和高医疗资源消耗的特点,是重大公共卫生问题。与非糖尿病患者相比,T2DM患者发生脆性骨折的风险增加,尽管患者可能表现为骨密度正常或增加,但骨质量受损是该人群骨脆性增加的主要原因。T2DM患者骨脆性增加的机制很复杂,受到多种因素影响,如肥胖、高血糖、胰岛素抵抗、氧化应激、微血管并发症和晚期糖基化终产物的积累等,这些因素可能导致骨代谢、结构和强度的改变。其他因素如低血糖和随之而来的跌倒倾向增加,以及某些抗糖药物对骨骼和矿物质代谢的直接影响,可能导致该人群的骨折风险增加。文章对这些影响因素的作用机制进行简单综述。

    Abstract

    Type 2 diabetes mellitus(T2DM)is a metabolic disorder characterized by hyperglycemia and insulin resistance,often leading to complications in multiple systems,including neuropathy,nephropathy,retinopathy,and bone diseases. Osteoporotic fractures are particularly concerning public health issues due to their high incidence,significant fatality rate,and substantial consumption of medical resources. Compared to nondiabetic individuals,patients with T2DM have an elevated risk of fragility fractures. Despite often having normal or increased bone density,the primary cause of this increased fracture risk is impaired bone mass. The mechanisms underlying increased bone fragility in T2DM patients are complex and multifactorial,involving obesity, hyperglycemia,insulin resistance,oxidative stress,microvascular complications,and the accumulation of advanced glycation end products. These factors can lead to alterations in bone metabolism,structure,and strength. Additionally,other factors,such as hypoglycemia and the associated increased risk of falls,as well as the direct effects of certain antidiabetic medications on bone and mineral metabolism,may further contribute to the heightened fracture risk in this population. This review provides a concise overview of the mechanisms by which these factors influence bone fragility in patients with T2DM.

  • 由于人口老龄化进程加快,骨质疏松症和2型糖尿病(type2 diabetes mellitus,T2DM)的患病率和死亡率在全世界范围内不断上升。脆性骨折被认为是T2DM的并发症之一[1],与非T2DM患者比较, T2DM患者的骨折风险大[2]、术后并发症增多、住院时间延长、住院病死率增加、行走能力和身体功能的恢复减慢、疼痛和抑郁的发生率增加、养老院永久居住的可能性更大[3]。现有数据表明,T2DM患者常见腕部和足部骨折,约1/3的T2DM绝经后女性存在椎体骨折。理解T2DM中骨脆性增加的机制,对预防和治疗糖尿病性骨质疏松有重要意义。慢性高血糖、肥胖、高胰岛素血症、晚期糖基化终产物 (advanced glycation end product,AGE)的积累、炎症因子、氧化应激释放的脂肪因子以及微血管并发症是T2DM骨脆性增加的主要机制。降糖药物对骨代谢也有不同程度的影响。文章旨在探讨T2DM相关骨脆性增加的病理生理机制。

  • 1 T2DM患者的骨折风险

  • 许多研究发现,T2DM患者的骨密度(bone min⁃ eral density,BMD)高于同龄非糖尿病人群[4]。在高体重指数(body mass index,BMI)和高糖化血红蛋白 (glycated hemoglobin,HbA1c)水平的年轻男性中, BMD 的增加更为明显[5]。脊柱BMD 增加需考虑弥漫性特发性骨骼肥厚症,常见于糖尿病患者,>50岁患者中女性发生率为 15%和男性发生率为 25%。 T2DM患者骨折发生率随着年龄的增长而增加[6-7]。既往前瞻性分析中,较低的 BMD与股骨颈和全髋关节骨折风险增加相关[8],接受胰岛素治疗及血糖控制不良(HbA1c水平高)的患者髋部骨折风险进一步增加[9-12]。T2DM患者腕部、足部、椎体骨折较健康人多见[13-14]。BMD 可预测 T2DM 患者骨折风险。在 BMD T 评分和年龄相同的人群中,T2DM患者的骨折风险更高[15]。骨折风险评估工具(fracture risk as⁃ sessment tool,FRAX)评分在预测T2DM患者髋部和非脊柱骨折风险方面仅部分有效[16]

  • T2DM患者骨折风险增加还与低血糖事件和跌倒相关[17]。既往研究证明,接受降糖药物和胰岛素治疗的患者易发生低血糖事件,出现视力减退、周围神经病变、慢性步态和/或平衡障碍[18] 的患者,跌倒风险增加,导致骨折风险增加。骨脆性多源于骨矿物质量减少,还可见骨微结构改变,最终导致骨材料本身的内在特性改变。目前研究结果表明皮质孔隙度增加、横截面积减少是T2DM骨微结构的显著特征[19-20]

  • 2 T2DM骨脆性增加的细胞和分子机制

  • 骨骼在人的一生中不断重塑,以确保结构的完整性,协调成骨细胞、骨细胞以及破骨细胞的活动,维持骨吸收、骨形成的动态平衡。糖尿病患者骨脆性增加的机制复杂,由多个因素相互作用所致。1型糖尿病(type1 diabetes mellitus,T1DM)患者因β细胞衰竭和胰岛素生长因子1(insulin⁃like growth factor 1, IGF1)水平降低,影响成骨细胞的功能,导致年轻时骨量峰值低[21]。相反,T2DM 在疾病晚期损害骨骼健康,由于胰岛素缺乏、葡萄糖毒性、AGE 积累、脂肪源性因子(包括促炎细胞因子和脂肪因子)、Wnt 通路抑制以及微血管疾病都损害骨细胞功能、骨转换和胶原蛋白特性[22],各因素之间可相互增强或抵消。肥胖和高胰岛素血症是疾病早期的主要驱动因素,疾病晚期,衰老、AGE积累和微血管疾病成为关注重点。

  • 成骨细胞分泌的骨钙素是骨形成的标志, T2DM患者骨钙素水平显著降低[23]。脂联素是脂肪细胞分泌的胰岛素增敏激素,有益于胰岛素分泌和 β细胞的分化[24]。研究证实,在体外添加未羧化骨钙素可增加胰腺β细胞增殖、β细胞和脂肪细胞中胰岛素和脂联素的表达,而缺乏骨钙素的小鼠常出现高血糖、葡萄糖耐受不良、胰腺β细胞增殖减少、胰岛素抵抗等现象[25]。目前,关于改善骨钙素水平能否改善葡萄糖代谢的研究有限。

  • 2.1 肥胖

  • 肥胖是T2DM 的典型病征之一,肥胖和骨骼健康的关系复杂,肥胖患者骨骼机械负荷大,刺激骨骼形成,BMD 增高,BMI 增加对髋部骨折有保护作用[26]。减震脂肪可保护骨盆,但高体重人群跌倒风险高,会增加骨折风险[27]。内脏脂肪组织刺激炎症因子和脂肪因子分泌,抑制成骨细胞分化[28],白细胞介素(interleukin,IL)⁃6、IL ⁃11 和肿瘤坏死因子 (tumor necrosis factor,TNF)⁃α激活 RANKL/RANK/ OPG通路,刺激破骨细胞分化和骨吸收,引起骨质流失。目前,脂肪低度炎症状态被称为代谢性炎症[29],胰岛素信号通路活性降低被认为是肥胖和胰岛素抵抗时发生低度炎症的主要机制[30],如 NF ⁃κB、 SOCS蛋白、TLR、JNK和Wnt通路。Wnt3a抑制胰岛素刺激的酪氨酸磷酸化和胰岛素受体,减少脂肪组织中葡萄糖转运,降低胰岛素敏感性[31]

  • 肥胖可以通过改变骨髓微环境对骨骼产生影响。成骨细胞和骨髓脂肪细胞来自间充质干细胞 (mesenchymal stem cell,MSC)[32]。肥胖促进骨髓 MSC 向脂肪细胞分化,造成骨髓脂肪细胞增加,成骨细胞数量减少,使骨转换减少,引发骨质疏松[33]

  • 过度肥胖会使脂肪因子分泌增加。脂肪因子在骨细胞中的作用复杂,其中,瘦素是一种多肽激素,主要由脂肪组织分泌,通过下丘脑和交感神经系统、改变体重以及其他激素(如垂体)间接影响骨骼。体外研究表明,瘦素可激活 RANKL/RANK/ OPG通路,诱导MSC向成骨细胞分化[34]。而过高的瘦素水平会刺激下丘脑神经元产生抑制因子,抑制骨代谢[35]。瘦素缺乏小鼠的BMD、股骨长度、骨小梁体积及骨矿含量均低于正常小鼠[36]。有研究表明,骨质疏松症患者瘦素水平低于骨量正常者,而脂联素水平高于骨量正常者[37]。脂联素可促进成骨细胞分化,抑制破骨细胞生成。在骨质减少患者中,脂联素诱导IL⁃6的产生,导致骨量减少[38]

  • 2.2 胰岛素抵抗

  • 胰岛素在骨代谢中发挥重要作用。体内和体外研究表明,胰岛素促进骨骼合成代谢[39]。胰岛素与成骨细胞、破骨细胞表面胰岛素受体(insulin receptor, IR)结合,激活胰岛素受体酪氨酸激酶,聚集并磷酸化各种底物对接蛋白[40],例如胰岛素受体底物 (insulin receptor substrate,IRS)蛋白家族,特异性激活下游 PI3K/AKT 通路,促进成骨细胞增殖和分化[41-42],诱导破骨细胞形成,增加骨吸收[43-44]。胰岛素抵抗的病理生理学机制复杂,主要是肝脏和骨骼肌中异位脂质积累以及脂肪细胞功能障碍。Bilotta 等[45] 研究显示,胰岛素抵抗在成骨分化过程中可能与骨钙素基因启动子活性降低相关,骨钙素是由成骨细胞合成的骨特异性蛋白,对骨代谢具有调节作用,T2DM患者血清骨钙素水平降低、骨脆性增加与长期高血糖状态及胰岛素分泌异常相关。在T2DM 疾病早期,胰岛素敏感性降低,胰腺β细胞分泌能力增加,高胰岛素血症进一步发展[46]。高胰岛素血症的合成代谢作用、肥胖机械刺激、慢性炎症和脂肪因子可增加BMD[47]。其他参与葡萄糖代谢调节的激素,如胰高血糖素样肽键 1(glucagon⁃like peptide1,GLP⁃1)能够提高胰岛细胞内胰岛素RNA的转录活性,提高胰岛素的合成量,增加胰岛素储备, T2DM 患者的 GLP⁃1 明显下降,胰岛素抵抗指数升高[48-49]

  • 2.3 高血糖

  • 高血糖可以通过多种方式影响骨骼健康。高血糖可引起渗透性利尿,增加尿钙排泄,影响甲状旁腺激素和维生素D轴,促进甲状旁腺激素分泌,从而增加骨吸收[50-51]。体外研究表明,糖尿病大鼠骨形态发生蛋白⁃2、骨钙素和骨桥蛋白表达水平下降,表明骨形成受到抑制[52]。高血糖可上调核转录因子过氧化物酶体增殖物激活受体γ(peroxisome proliferator⁃ activated receptor gamma,PPARγ),影响骨髓MSC分化,表现为成骨分化减少,成脂分化增多[53-54],从而抑制成骨细胞成熟。硫化氢是一种新型气体信号分子和细胞保护剂,现已证明,成骨细胞中存在内源性硫化氢,在骨折愈合过程中,硫化氢可以降低局部炎性细胞浸润并抑制成骨细胞中的氧化应激,促进骨折愈合,而在高血糖状态下,组织中硫化氢水平降低,成骨细胞活性减弱[55]。当机体长期处于高糖状态,会导致 ROS 增加,通过 Wnt 通路使成骨细胞分化减少,凋亡增加。骨细胞衰老和凋亡加速,会使骨骼机械感知和振荡剪切应力受损,脆性增加。高血糖对破骨细胞影响尚不完全清楚,体外研究表明,降低葡萄糖浓度可减少破骨细胞的骨吸收[56]。在破骨分化过程中,大量线粒体在破骨细胞中产生,导致细胞对铁的需求增加,从而引起转铁蛋白受体表达上调,促进铁摄取,而高血糖诱导破骨细胞分化的同时会触发破骨细胞铁死亡,破坏成骨与破骨之间的平衡[57]

  • 高血糖也可通过改变细胞外基质对骨骼健康产生负面影响,骨弹性、韧性和强度与胶原蛋白交联类型相关[58]。慢性高血糖可使胶原蛋白周转率降低,大量Ⅰ型胶原累积,导致骨骼的生物力学发生变化[59]

  • 2.4 AGE

  • 蛋白质、脂肪及核酸的氨基和还原糖在生理环境中发生非酶催化反应,可生成AGE,被不同类型细胞上的 AGE 受体(advanced glycation end product receptor,RAGE)特异性识别,产生IL⁃1、IL⁃6、TNF⁃α、脂联素,增加破骨细胞活性,骨吸收增加,还可通过丝裂原活化蛋白激酶和胞质途径促进成骨细胞凋亡,降低骨形成[60]。在T2DM患者中,高血糖、氧化应激水平增加,促进了AGE的亚群糖基氧化终产物的形成。其中与骨组织相关的是羧甲基赖氨酸 (carboxymethyl lysine,CML)和戊糖素(pentosidine, PEN),这两种AGE是早期糖基化产物,PEN还是评估糖化导致的骨折风险的金标准[61]。在一项研究中,尿PEN的产生与T2DM中骨折风险增加相关,血清PEN水平与椎体骨折相关[62]。另一项研究中,尿 PEN和血清CML在T2DM队列中与临床骨折发生风险显著相关[63]

  • AGE在骨骼中积累,成骨细胞和破骨细胞表达 RAGE。AGE⁃RAGE 通过炎症、氧化应激以及细胞内途径的激活而介导组织损伤发生,包括PI3K/AKT 和JAK/STAT。在骨细胞方面,AGE⁃RAGE可促进成骨细胞分化和凋亡,上调RANKL,破骨细胞生成增加,骨矿化受损。AGE⁃RAGE可使 TGF⁃β表达和分泌增加,抑制Wnt/β⁃cathenin、PI3K和ERK等信号通路,减少成骨细胞分化和矿化[64]。AGE 对 T2DM 患者骨质量的影响仍需更大规模研究来证实。

  • 2.5 炎性细胞因子

  • T2DM被认为是慢性低度炎症的状态[21]。糖尿病微环境可见IL⁃1、TNF⁃α和IL⁃6等炎症因子显著增加,诱导ROS的产生与积累[65],ROS水平升高可通过RANK/RANKL/NF⁃κB信号通路直接抑制成骨分化,刺激成脂分化,也可通过 ROS/MAPK 信号通路调节破骨细胞分化和活性[66]。TGF⁃β是诱导 IL⁃17 生成的关键因子,高浓度的TGF⁃β与IL⁃6、IL⁃21联合使IL⁃23受体表达上调,促进IL⁃17的生成,IL⁃17 可促进破骨细胞合成、抑制成骨细胞分化。TGF⁃β 也可直接抑制Th1、Th2,导致TNF⁃α生成减少,减弱对破骨细胞的抑制作用,最终影响骨重塑[67]。TNF⁃α 及其受体家族成员是细胞凋亡的主要起始因子。 TNF⁃α可激活转录因子 NF⁃κB,促进细胞凋亡[68]。在糖尿病小鼠中,TNF⁃α抑制剂可减少软骨细胞凋亡[69]。 TNF⁃α升高还影响葡萄糖代谢,增加脂肪酸的释放,抑制胰岛素信号转导[70]。IL⁃6是内脏脂肪组织分泌的主要细胞因子,在肥胖和T2DM患者中,其血浆浓度显著升高[71]。IL⁃6可磷酸化IRS中的丝氨酸残基,阻断胰岛素信号转导[72]。IL⁃6也可通过激活成骨细胞中的JAK2和RANKL的表达,来增加破骨细胞分化[73]

  • 一些抗炎药在糖尿病骨病的修复中有一定作用。如肠促胰岛素相关药物通过抑制炎症、调节骨吸收和骨形成来促进糖尿病的骨修复[74],肠促胰岛素的疗法已成为治疗 T2DM 的重要药物,如 GLP⁃1 受体激动剂和二肽基肽酶⁃4(dipeptidyl peptidase⁃4, DPP⁃4)抑制剂[75]

  • 2.6 微血管并发症

  • 糖尿病的长期并发症极具破坏性,其医疗费用占糖尿病相关医疗费用的60%~70%。糖尿病性骨病被认为是微血管并发症之一。血管系统为骨微环境提供必需的氧气、营养物质和矿物质[76],清除组织代谢副产物。糖尿病进展可导致血管收缩,阻碍骨骼血液供应,骨形成和吸收不平衡,骨质减少和皮质孔隙增加,糖尿病患者的骨骼变化与血管低灌注有关,且糖尿病微血管病变会引起糖尿病骨病[77]。T2DM对骨微血管系统的影响较难直接检测,现有证据表明T2DM患者衰老加速或微血管病变都会增加骨脆性[78]。T2DM患者的微血管并发症还与跌倒倾向增加有关,与没有微血管疾病的糖尿病患者相比,糖尿病骨病患者的骨脆性增加,跌倒风险也增加[79]

  • 3 降糖药物对T2DM骨代谢的影响

  • 部分新型降糖药物对骨质疏松有一定保护作用,如DPP⁃4抑制剂可提高GLP⁃1水平,而GLP⁃1能诱导成骨细胞分化并抑制破骨细胞活性[80]。钠⁃葡萄糖协同转运蛋白⁃2(sodium⁃glucose cotransporter⁃2, SGLT⁃2)抑制剂包括恩格列净、达格列净和卡格列净,可通过抑制 SGLT⁃2,促进肾脏对葡萄糖的排泄,达到降糖的目的,同时其也可增加肾小管对磷的重吸收,使血磷升高,刺激甲状旁腺激素分泌,造成骨吸收增加,但与骨折风险增加无显著关联,该类药物的安全性还需进一步研究[80]。噻唑烷二酮类药物(thiazolidinedione,TZD)可激活 PPARγ,降低胰岛素抵抗程度并改善β细胞对葡萄糖水平改变的反应。TZD也可以诱导成脂分化,通过改变骨形成和脂肪生成之间的平衡影响 MSC 分化方向,使骨髓中脂肪细胞增多,成骨细胞数量减少,导致不可逆的骨质流失[81]。故TZD应避免用于有骨质疏松症风险的患者。在使用降糖药物的同时,还需考虑其对骨代谢的作用,充分权衡是否加用其他抗骨质疏松药物或采取相应的预防措施。

  • 4 小结与展望

  • 多数 T2DM 患者 BMD 较高,但骨折风险却增加。首先,肥胖、胰岛素抵抗、高血糖、微血管并发症、炎症和AGE是主要影响因素,对骨骼机械性能产生不利影响,骨脆性增加,而BMD测量和基于临床风险因素的评估很难准确体现这些影响。其次,骨骼外因素,如虚弱、肌肉无力、外源性胰岛素治疗、降糖药物应用、血糖控制和糖尿病患病时间,亦是糖尿病骨折相关危险因素。识别独立危险因素,进一步阐明 T2DM 中骨脆性增加的病理生理学机制,将骨骼和代谢健康联系起来,为扩展现有骨靶向治疗框架提供理论依据。

  • 参考文献

    • [1] ELLER ⁃VAINICHER C,CAIROLI E,GRASSI G,et al.Pathophysiology and management of type 2 diabetes mellitus bone fragility[J].J Diabetes Res,2020,2020:7608964

    • [2] EMANUELSSON F,AFZAL S,JØRGENSEN N R,et al.Hyperglycaemia,diabetes and risk of fragility fractures:observational and Mendelian randomisation studies[J].Diabetologia,2024,67(2):301-311

    • [3] 焦璇,刘婷婷,黄勤.糖尿病骨病的发病机制与骨折风险预测的研究进展[J].医学综述,2019,25(20):4074-4079

    • [4] 胡治勇,崔龙,董晓颖,等.糖尿病患者骨质疏松评估、危险因素及相关机制的研究进展[J].重庆医学,2020,49(4):660-664

    • [5] SHEU A,WHITE C P,CENTER J R.Bone metabolism in diabetes:a clinician’s guide to understanding the bone-glucose interplay[J].Diabetologia,2024,67(8):1493-1506

    • [6] DHALIWAL R,CIBULA D,GHOSH C,et al.Bone quality assessment in type 2 diabetes mellitus[J].Osteoporos Int,2014,25(7):1969-1973

    • [7] MARTINIAKOVA M,BIRO R,PENZES N,et al.Links among obesity,type 2 diabetes mellitus,and osteoporosis:bone as a target[J].Int J Mol Sci,2024,25(9):4827

    • [8] HUANG G,CHEN X,CHEN Y,et al.Causal relationship between type 2 diabetes mellitus and bone mineral density:a Mendelian randomization study in an East Asian population[J].Osteoporos Int.2023,34(10):1719-1727

    • [9] PATERNI S,OKOYE C,CALABRESE A M,et al.Prognostic value of glycated hemoglobin in frail older diabetic patients with hip fracture[J].Front Endocrinol,2021,12:770400

    • [10] VINTHER D,THOMSEN R W,FURNES O,et al.Impact of diabetes on the risk of subsequent fractures in 92,600 patients with an incident hip fracture:a Danish nationwide cohort study 2004 ⁃ 2018[J].Bone,2024,184:117104

    • [11] NAPOLI N,SCHWARTZ A V,SCHAFER A L,et al.Vertebral fracture risk in diabetic elderly men:the MrOS study[J].J Bone Miner Res,2018,33(1):63-69

    • [12] STARUP⁃LINDE J,HYGUM K,HARSLØF T,et al.Indications of increased vertebral fracture risk in patients with type 2 diabetes[J].J Bone Miner Res,2018,33(1):182

    • [13] KOROMANI F,GHATAN S,VAN HOEK M,et al.Type 2 diabetes mellitus and vertebral fracture risk[J].Curr Osteoporos Rep,2021,19(1):50-57

    • [14] GAO Y,CHAI F.Risk of non ⁃vertebral fractures in men with type 2 diabetes:a systematic review and meta⁃analysis of cohort studies[J].Exp Gerontol,2021,150:111378

    • [15] ZHANG S C,MAKEBEH T,MESINOVIC J,et al.Epidemiology of fractures in adults of African ancestry with diabetes mellitus:a systematic review and meta⁃analysis[J].Bone,2024,185:117133

    • [16] MCCLOSKEY E,TAN A T H,SCHINI M.Update on fracture risk assessment in osteoporosis[J].Curr Opin Endo⁃crinol Diabetes Obes,2024,31(4):141-148

    • [17] ZHAO P P,SHENG Z F,XU L,et al.Deciphering the complex relationship between type 2 diabetes and fracture risk with both genetic and observational evidence[J].Elife,2024,12:RP89281

    • [18] ECKHARDT B A,ROWSEY J L,THICKE B S,et al.Accelerated osteocyte senescence and skeletal fragility in mice with type 2 diabetes[J].JCI Insight,2020,5(9):e135236

    • [19] SAMELSON E J,DEMISSIE S,CUPPLES L A,et al.Diabetes and deficits in cortical bone density,microarchitec⁃ture,and bone size:Framingham HR-pQCT study[J].J Bone Miner Res,2018,33(1):54-62

    • [20] CIROVIC A,SCHMIDT F N,VUJACIC M,et al.Lower microhardness along with less heterogeneous mineralization in the femoral neck of individuals with type 2 diabetes mellitus indicates higher fracture risk[J].JBMR Plus,2024,8(3):ziae005

    • [21] DRESNER⁃POLLAK R.Skeletal fragility in adult people living with type 1 diabetes[J].Endocr Pract,2024,30(6):592-597

    • [22] 柴家超,杨卫芳,扈艳雯,等.SGLT2i对2型糖尿病患者骨代谢影响的研究进展[J].中国骨质疏松杂志,2023,29(12):1866-1872

    • [23] MARTINIAKOVA M,BIRO R,KOVACOVA V,et al.Current knowledge of bone⁃derived factor osteocalcin:its role in the management and treatment of diabetes mellitus,osteoporosis,osteopetrosis and inflammatory joint diseases[J].J Mol Med,2024,102(4):435-452

    • [24] ONODERA T,KIM D S,YE R S,et al.Protective roles of adiponectin and molecular signatures of HNF4α and PPARα as downstream targets of adiponectin in pancreatic β cells[J].Mol Metab,2023,78:101821

    • [25] DIEGEL C R,HANN S,AYTURK U M,et al.An osteo⁃calcin⁃deficient mouse strain without endocrine abnormalities[J].PLoS Genet,2020,16(5):e1008361

    • [26] GKASTARIS K,GOULIS D G,POTOUPNIS M,et al.Obesity,osteoporosis and bone metabolism[J].J Muscu⁃loskelet Neuronal Interact,2020,20(3):372-381

    • [27] PIÑAR⁃GUTIERREZ A,GARCÍA⁃FONTANA C,GARCÍA⁃FONTANA B,et al.Obesity and bone health:a complex relationship[J].Int J Mol Sci,2022,23(15):8303

    • [28] 王盼,吴科锋,崔燎.不同阶段2型糖尿病诱发骨质疏松症的致病机制研究进展[J].中国骨质疏松杂志,2020,26(4):619-624

    • [29] WU H Z,BALLANTYNE C M.Metabolic inflammation and insulin resistance in obesity[J].Circ Res,2020,126(11):1549-1564

    • [30] LAND LAIL H,FERESIN R G,HICKS D,et al.Berries as a treatment for obesity⁃induced inflammation:evidence from preclinical models[J].Nutrients,2021,13(2):334

    • [31] SUTHON S,PERKINS R S,BRYJA V,et al.WNT5B in physiology and disease[J].Front Cell Dev Biol,2021,9:667581

    • [32] 朱笑笑,王丽华.糖尿病与骨质疏松的相关研究进展[J].糖尿病新世界,2023,26(10):195-198

    • [33] KO D S,KIM Y H,GOH T S,et al.Altered physiology of mesenchymal stem cells in the pathogenesis of adolescent idiopathic scoliosis[J].World J Clin Cases,2020,8(11):2102-2110

    • [34] REID I R,BALDOCK P A,CORNISH J.Effects of leptin on the skeleton[J].Endocr Rev,2018,39(6):938-959

    • [35] JIAO Y,SUN J,LI Y M,et al.Association between adiposity and bone mineral density in adults:insights from a national survey analysis[J].Nutrients,2023,15(15):3492

    • [36] VILACA T,EVANS A,GOSSIEL F,et al.Fat,adipo⁃kines,bone structure and bone regulatory factors associations in obesity[J].Eur J Endocrinol,2022,187(6):743-750

    • [37] LEE S,KIM J H,JEON Y K,et al.Effect of adipokine and ghrelin levels on BMD and fracture risk:an updated systematic review and meta-analysis[J].Front Endocrinol,2023,14:1044039

    • [38] GRUNEISEN E,KREMER R,DUQUE G.Fat as a friend or foe of the bone[J].Curr Osteoporos Rep,2024,22(2):245-256

    • [39] WIKAREK A,GRABARCZYK M,KLIMEK K,et al.Effect of drugs used in pharmacotherapy of type 2 diabetes on bone density and risk of bone fractures[J].Medicina,2024,60(3):393

    • [40] FULZELE K,RIDDLE R C,DIGIROLAMO D J,et al.Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition[J].Cell,2022,185(4):746

    • [41] ZHANG Z D,REN H,WANG W X,et al.IGF ⁃ 1R/β ⁃ catenin signaling axis is involved in type 2 diabetic osteoporosis[J].J Zhejiang Univ Sci B,2019,20(10):838-848

    • [42] GREERE D I I,GRIGORESCU F,MANDA D,et al.Insulin resistance and pathogenesis of postmenopausal osteoporosis[J].Acta Endocrinol,2023,19(3):349-363

    • [43] SRIVASTAVA R K,SAPRA L,MISHRA P K.Osteome⁃tabolism:metabolic alterations in bone pathologies[J].Cells,2022,11(23):3943

    • [44] TANIOS M,BRICKMAN B,CAGE E,et al.Diabetes and impaired fracture healing:a narrative review of recent literature[J].Curr Osteoporos Rep,2022,20(5):229-239

    • [45] BILOTTA F L,ARCIDIACONO B,MESSINEO S,et al.Insulin and osteocalcin:further evidence for a mutual crosstalk[J].Endocrine,2018,59(3):622-632

    • [46] CONTE C,EPSTEIN S,NAPOLI N.Insulin resistance and bone:a biological partnership[J].Acta Diabetol,2018,55(4):305-314

    • [47] WEBER D R,LONG F X,ZEMEL B S,et al.Glycemic control and bone in diabetes[J].Curr Osteoporos Rep,2022,20(6):379-388

    • [48] FORNARI R,MAROCCO C,FRANCOMANO D,et al.Insulin growth factor ⁃1 correlates with higher bone mineral density and lower inflammation status in obese adult subjects[J].Eat Weight Disord,2018,23(3):375-381

    • [49] 杨蕾,付勤.2型糖尿病性骨质疏松骨质量改变研究[J].中华骨质疏松和骨矿盐疾病杂志,2019,12(1):100-108

    • [50] YEN B L,WANG L T,WANG H H,et al.Excess glucose alone depress young mesenchymal stromal/stem cell osteogenesis and mitochondria activity within hours/days via NAD+/SIRT1 axis[J].J Biomed Sci,2024,31(1):49

    • [51] ZHANG Z W,HUANG Q X,ZHAO D Q,et al.The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications[J].Front Endocrinol,2023,14:1112363

    • [52] 施奕万,王华军,郑小飞.2 型糖尿病骨折风险及相关机制研究进展[J].中国骨科临床与基础研究杂志,2020,12(5):304-311

    • [53] LUO M,ZHAO Z H,YI J R.Osteogenesis of bone marrow mesenchymal stem cell in hyperglycemia[J].Front Endo⁃crinol,2023,14:1150068

    • [54] LIU S S,FANG X,WEN X,et al.How mesenchymal stem cells transform into adipocytes:overview of the current understanding of adipogenic differentiation[J].World J Stem Cells,2024,16(3):245-256

    • [55] 黎才琛,张辉,廖静,等.硫化氢调控血糖代谢的研究进展[J].广州医科大学学报,2016,44(6):81-84

    • [56] 王振虎,崔燎,林思恩,等.糖代谢对骨骼细胞的影响[J].中国骨质疏松杂志,2022,28(11):1625-1628

    • [57] YE X S,JIANG J J,YANG J,et al.Specnuezhenide suppresses diabetes⁃induced bone loss by inhibiting RANKL⁃induced osteoclastogenesis[J].Acta Biochim Biophys Sin,2022,54(8):1080-1089

    • [58] MEDEIROS C,WALLACE J M.High glucose ⁃induced inhibition of osteoblast like MC3T3 ⁃ E1 differentiation promotes mitochondrial perturbations[J].PLoS One,2022,17(6):e0270001

    • [59] SINGH S,SARMA D K,VERMA V,et al.From cells to environment:exploring the interplay between factors shaping bone health and disease[J].Medicina,2023,59(9):1546

    • [60] 李晓宇,冯正平.糖尿病性骨质疏松发病机制的研究进展[J].中国骨质疏松杂志,2014,20(5):580-583

    • [61] SROGA G E,STEPHEN S J,WANG B W,et al.Techniques for advanced glycation end product measurements for diabetic bone disease:pitfalls and future directions[J].Curr Opin Endocrinol Diabetes Obes,2022,29(4):333-342

    • [62] 方语,李凯伟,罗静,等.糖尿病性骨质疏松症发病机制研究进展[J].四川生理科学杂志,2022,44(7):1310-1313

    • [63] DHALIWAL R,EWING S K,VASHISHTH D,et al.Greater carboxy-methyl ⁃lysine is associated with increased fracture risk in type 2 diabetes[J].J Bone Miner Res,2022,37(2):265-272

    • [64] CAVATI G,PIRROTTA F,MERLOTTI D,et al.Role of advanced glycation end-products and oxidative stress in type ⁃2⁃ diabetes ⁃induced bone fragility and implications on fracture risk stratification[J].Antioxidants,2023,12(4):928

    • [65] MARCUCCI G,DOMAZETOVIC V,NEDIANI C,et al.Oxidative stress and natural antioxidants in osteoporosis:novel preventive and therapeutic approaches[J].Antioxidants,2023,12(2):373

    • [66] LI M S,ZHAO Z H,YI J R.Biomaterials designed to modulate reactive oxygen species for enhanced bone regeneration in diabetic conditions[J].J Funct Biomater,2024,15(8):220

    • [67] GUTOWSKA K,CZAJKOWSKI K,KURYŁOWICZ A.Receptor for the advanced glycation end products(RAGE)pathway in adipose tissue metabolism[J].Int J Mol Sci,2023,24(13):10982

    • [68] FORTE Y S,RENOVATO⁃MARTINS M,BARJA⁃FIDAL-GO C.Cellular and molecular mechanisms associating obesity to bone loss[J].Cells,2023,12(4):521

    • [69] LEKKALA S,TAYLOR E A,HUNT H B,et al.Effects of diabetes on bone material properties[J].Curr Osteoporos Rep,2019,17(6):455-464

    • [70] SHENG N,XING F,WANG J,et al.Recent progress in bone-repair strategies in diabetic conditions[J].Mater Today Bio,2023,23:100835

    • [71] WEDELL-NEERGAARD A S,LANG LEHRSKOV L,CHRISTENSEN R H,et al.Exercise⁃induced changes in visceral adipose tissue mass are regulated by IL⁃6 signaling:a randomized controlled trial[J].Cell Metab,2019,29(4):844-855.e3

    • [72] HE B R,YIN X H,HAO D J,et al.Blockade of IL⁃6 alleviates bone loss induced by modeled microgravity in mice[J].Can J Physiol Pharmacol,2020,98(10):678-683

    • [73] SANGUINETI R,MONACELLI F,PARODI A,et al.Vitamins D3 and K2 may partially counterbalance the detrimental effects of pentosidine in ex vivo human osteoblasts[J].J Biol Regul Homeost Agents,2016,30(3):713-726

    • [74] KITAURA H,OGAWA S,OHORI F,et al.Effects of incretin-related diabetes drugs on bone formation and bone resorption[J].Int J Mol Sci,2021,22(12):6578

    • [75] NAUCK M.Incretin therapies:highlighting common features and differences in the modes of action of glucagon⁃like peptide⁃1 receptor agonists and dipeptidyl peptidase⁃4 inhibitors[J].Diabetes Obes Metab,2016,18(3):203-216

    • [76] STEGEN S,VAN GASTEL N,CARMELIET G.Bringing new life to damaged bone:the importance of angiogenesis in bone repair and regeneration[J].Bone,2015,70:19-27

    • [77] MAURICIO D,GRATACÒS M,FRANCH⁃NADAL J.Diabetic microvascular disease in nonclassical beds:the hidden impact beyond the retina,the kidney,and the peripheral nerves[J].Cardiovasc Diabetol,2023,22(1):314

    • [78] STABLEY J N,PRISBY R D,BEHNKE B J,et al.Type 2 diabetes alters bone and marrow blood flow and vascular control mechanisms in the ZDF rat[J].J Endocrinol,2015,225(1):47-58

    • [79] ALMUTLAQ N,NEYMAN A,DIMEGLIO L A.Are diabetes microvascular complications risk factors for fragility fracture?[J].Curr Opin Endocrinol Diabetes Obes,2021,28(4):354-359

    • [80] SAADI M S S,DAS R,MULLATH ULLAS A,et al.Impact of different anti-hyperglycaemic treatments on bone turnover markers and bone mineral density in type 2 diabetes mellitus patients:a systematic review and meta⁃analysis[J].Int J Mol Sci,2024,25(14):7988

    • [81] 熊雪松,余显霞.2型糖尿病与骨质疏松症相关性研究进展[J].中国骨质疏松杂志,2017,23(1):130-135

  • 参考文献

    • [1] ELLER ⁃VAINICHER C,CAIROLI E,GRASSI G,et al.Pathophysiology and management of type 2 diabetes mellitus bone fragility[J].J Diabetes Res,2020,2020:7608964

    • [2] EMANUELSSON F,AFZAL S,JØRGENSEN N R,et al.Hyperglycaemia,diabetes and risk of fragility fractures:observational and Mendelian randomisation studies[J].Diabetologia,2024,67(2):301-311

    • [3] 焦璇,刘婷婷,黄勤.糖尿病骨病的发病机制与骨折风险预测的研究进展[J].医学综述,2019,25(20):4074-4079

    • [4] 胡治勇,崔龙,董晓颖,等.糖尿病患者骨质疏松评估、危险因素及相关机制的研究进展[J].重庆医学,2020,49(4):660-664

    • [5] SHEU A,WHITE C P,CENTER J R.Bone metabolism in diabetes:a clinician’s guide to understanding the bone-glucose interplay[J].Diabetologia,2024,67(8):1493-1506

    • [6] DHALIWAL R,CIBULA D,GHOSH C,et al.Bone quality assessment in type 2 diabetes mellitus[J].Osteoporos Int,2014,25(7):1969-1973

    • [7] MARTINIAKOVA M,BIRO R,PENZES N,et al.Links among obesity,type 2 diabetes mellitus,and osteoporosis:bone as a target[J].Int J Mol Sci,2024,25(9):4827

    • [8] HUANG G,CHEN X,CHEN Y,et al.Causal relationship between type 2 diabetes mellitus and bone mineral density:a Mendelian randomization study in an East Asian population[J].Osteoporos Int.2023,34(10):1719-1727

    • [9] PATERNI S,OKOYE C,CALABRESE A M,et al.Prognostic value of glycated hemoglobin in frail older diabetic patients with hip fracture[J].Front Endocrinol,2021,12:770400

    • [10] VINTHER D,THOMSEN R W,FURNES O,et al.Impact of diabetes on the risk of subsequent fractures in 92,600 patients with an incident hip fracture:a Danish nationwide cohort study 2004 ⁃ 2018[J].Bone,2024,184:117104

    • [11] NAPOLI N,SCHWARTZ A V,SCHAFER A L,et al.Vertebral fracture risk in diabetic elderly men:the MrOS study[J].J Bone Miner Res,2018,33(1):63-69

    • [12] STARUP⁃LINDE J,HYGUM K,HARSLØF T,et al.Indications of increased vertebral fracture risk in patients with type 2 diabetes[J].J Bone Miner Res,2018,33(1):182

    • [13] KOROMANI F,GHATAN S,VAN HOEK M,et al.Type 2 diabetes mellitus and vertebral fracture risk[J].Curr Osteoporos Rep,2021,19(1):50-57

    • [14] GAO Y,CHAI F.Risk of non ⁃vertebral fractures in men with type 2 diabetes:a systematic review and meta⁃analysis of cohort studies[J].Exp Gerontol,2021,150:111378

    • [15] ZHANG S C,MAKEBEH T,MESINOVIC J,et al.Epidemiology of fractures in adults of African ancestry with diabetes mellitus:a systematic review and meta⁃analysis[J].Bone,2024,185:117133

    • [16] MCCLOSKEY E,TAN A T H,SCHINI M.Update on fracture risk assessment in osteoporosis[J].Curr Opin Endo⁃crinol Diabetes Obes,2024,31(4):141-148

    • [17] ZHAO P P,SHENG Z F,XU L,et al.Deciphering the complex relationship between type 2 diabetes and fracture risk with both genetic and observational evidence[J].Elife,2024,12:RP89281

    • [18] ECKHARDT B A,ROWSEY J L,THICKE B S,et al.Accelerated osteocyte senescence and skeletal fragility in mice with type 2 diabetes[J].JCI Insight,2020,5(9):e135236

    • [19] SAMELSON E J,DEMISSIE S,CUPPLES L A,et al.Diabetes and deficits in cortical bone density,microarchitec⁃ture,and bone size:Framingham HR-pQCT study[J].J Bone Miner Res,2018,33(1):54-62

    • [20] CIROVIC A,SCHMIDT F N,VUJACIC M,et al.Lower microhardness along with less heterogeneous mineralization in the femoral neck of individuals with type 2 diabetes mellitus indicates higher fracture risk[J].JBMR Plus,2024,8(3):ziae005

    • [21] DRESNER⁃POLLAK R.Skeletal fragility in adult people living with type 1 diabetes[J].Endocr Pract,2024,30(6):592-597

    • [22] 柴家超,杨卫芳,扈艳雯,等.SGLT2i对2型糖尿病患者骨代谢影响的研究进展[J].中国骨质疏松杂志,2023,29(12):1866-1872

    • [23] MARTINIAKOVA M,BIRO R,KOVACOVA V,et al.Current knowledge of bone⁃derived factor osteocalcin:its role in the management and treatment of diabetes mellitus,osteoporosis,osteopetrosis and inflammatory joint diseases[J].J Mol Med,2024,102(4):435-452

    • [24] ONODERA T,KIM D S,YE R S,et al.Protective roles of adiponectin and molecular signatures of HNF4α and PPARα as downstream targets of adiponectin in pancreatic β cells[J].Mol Metab,2023,78:101821

    • [25] DIEGEL C R,HANN S,AYTURK U M,et al.An osteo⁃calcin⁃deficient mouse strain without endocrine abnormalities[J].PLoS Genet,2020,16(5):e1008361

    • [26] GKASTARIS K,GOULIS D G,POTOUPNIS M,et al.Obesity,osteoporosis and bone metabolism[J].J Muscu⁃loskelet Neuronal Interact,2020,20(3):372-381

    • [27] PIÑAR⁃GUTIERREZ A,GARCÍA⁃FONTANA C,GARCÍA⁃FONTANA B,et al.Obesity and bone health:a complex relationship[J].Int J Mol Sci,2022,23(15):8303

    • [28] 王盼,吴科锋,崔燎.不同阶段2型糖尿病诱发骨质疏松症的致病机制研究进展[J].中国骨质疏松杂志,2020,26(4):619-624

    • [29] WU H Z,BALLANTYNE C M.Metabolic inflammation and insulin resistance in obesity[J].Circ Res,2020,126(11):1549-1564

    • [30] LAND LAIL H,FERESIN R G,HICKS D,et al.Berries as a treatment for obesity⁃induced inflammation:evidence from preclinical models[J].Nutrients,2021,13(2):334

    • [31] SUTHON S,PERKINS R S,BRYJA V,et al.WNT5B in physiology and disease[J].Front Cell Dev Biol,2021,9:667581

    • [32] 朱笑笑,王丽华.糖尿病与骨质疏松的相关研究进展[J].糖尿病新世界,2023,26(10):195-198

    • [33] KO D S,KIM Y H,GOH T S,et al.Altered physiology of mesenchymal stem cells in the pathogenesis of adolescent idiopathic scoliosis[J].World J Clin Cases,2020,8(11):2102-2110

    • [34] REID I R,BALDOCK P A,CORNISH J.Effects of leptin on the skeleton[J].Endocr Rev,2018,39(6):938-959

    • [35] JIAO Y,SUN J,LI Y M,et al.Association between adiposity and bone mineral density in adults:insights from a national survey analysis[J].Nutrients,2023,15(15):3492

    • [36] VILACA T,EVANS A,GOSSIEL F,et al.Fat,adipo⁃kines,bone structure and bone regulatory factors associations in obesity[J].Eur J Endocrinol,2022,187(6):743-750

    • [37] LEE S,KIM J H,JEON Y K,et al.Effect of adipokine and ghrelin levels on BMD and fracture risk:an updated systematic review and meta-analysis[J].Front Endocrinol,2023,14:1044039

    • [38] GRUNEISEN E,KREMER R,DUQUE G.Fat as a friend or foe of the bone[J].Curr Osteoporos Rep,2024,22(2):245-256

    • [39] WIKAREK A,GRABARCZYK M,KLIMEK K,et al.Effect of drugs used in pharmacotherapy of type 2 diabetes on bone density and risk of bone fractures[J].Medicina,2024,60(3):393

    • [40] FULZELE K,RIDDLE R C,DIGIROLAMO D J,et al.Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition[J].Cell,2022,185(4):746

    • [41] ZHANG Z D,REN H,WANG W X,et al.IGF ⁃ 1R/β ⁃ catenin signaling axis is involved in type 2 diabetic osteoporosis[J].J Zhejiang Univ Sci B,2019,20(10):838-848

    • [42] GREERE D I I,GRIGORESCU F,MANDA D,et al.Insulin resistance and pathogenesis of postmenopausal osteoporosis[J].Acta Endocrinol,2023,19(3):349-363

    • [43] SRIVASTAVA R K,SAPRA L,MISHRA P K.Osteome⁃tabolism:metabolic alterations in bone pathologies[J].Cells,2022,11(23):3943

    • [44] TANIOS M,BRICKMAN B,CAGE E,et al.Diabetes and impaired fracture healing:a narrative review of recent literature[J].Curr Osteoporos Rep,2022,20(5):229-239

    • [45] BILOTTA F L,ARCIDIACONO B,MESSINEO S,et al.Insulin and osteocalcin:further evidence for a mutual crosstalk[J].Endocrine,2018,59(3):622-632

    • [46] CONTE C,EPSTEIN S,NAPOLI N.Insulin resistance and bone:a biological partnership[J].Acta Diabetol,2018,55(4):305-314

    • [47] WEBER D R,LONG F X,ZEMEL B S,et al.Glycemic control and bone in diabetes[J].Curr Osteoporos Rep,2022,20(6):379-388

    • [48] FORNARI R,MAROCCO C,FRANCOMANO D,et al.Insulin growth factor ⁃1 correlates with higher bone mineral density and lower inflammation status in obese adult subjects[J].Eat Weight Disord,2018,23(3):375-381

    • [49] 杨蕾,付勤.2型糖尿病性骨质疏松骨质量改变研究[J].中华骨质疏松和骨矿盐疾病杂志,2019,12(1):100-108

    • [50] YEN B L,WANG L T,WANG H H,et al.Excess glucose alone depress young mesenchymal stromal/stem cell osteogenesis and mitochondria activity within hours/days via NAD+/SIRT1 axis[J].J Biomed Sci,2024,31(1):49

    • [51] ZHANG Z W,HUANG Q X,ZHAO D Q,et al.The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications[J].Front Endocrinol,2023,14:1112363

    • [52] 施奕万,王华军,郑小飞.2 型糖尿病骨折风险及相关机制研究进展[J].中国骨科临床与基础研究杂志,2020,12(5):304-311

    • [53] LUO M,ZHAO Z H,YI J R.Osteogenesis of bone marrow mesenchymal stem cell in hyperglycemia[J].Front Endo⁃crinol,2023,14:1150068

    • [54] LIU S S,FANG X,WEN X,et al.How mesenchymal stem cells transform into adipocytes:overview of the current understanding of adipogenic differentiation[J].World J Stem Cells,2024,16(3):245-256

    • [55] 黎才琛,张辉,廖静,等.硫化氢调控血糖代谢的研究进展[J].广州医科大学学报,2016,44(6):81-84

    • [56] 王振虎,崔燎,林思恩,等.糖代谢对骨骼细胞的影响[J].中国骨质疏松杂志,2022,28(11):1625-1628

    • [57] YE X S,JIANG J J,YANG J,et al.Specnuezhenide suppresses diabetes⁃induced bone loss by inhibiting RANKL⁃induced osteoclastogenesis[J].Acta Biochim Biophys Sin,2022,54(8):1080-1089

    • [58] MEDEIROS C,WALLACE J M.High glucose ⁃induced inhibition of osteoblast like MC3T3 ⁃ E1 differentiation promotes mitochondrial perturbations[J].PLoS One,2022,17(6):e0270001

    • [59] SINGH S,SARMA D K,VERMA V,et al.From cells to environment:exploring the interplay between factors shaping bone health and disease[J].Medicina,2023,59(9):1546

    • [60] 李晓宇,冯正平.糖尿病性骨质疏松发病机制的研究进展[J].中国骨质疏松杂志,2014,20(5):580-583

    • [61] SROGA G E,STEPHEN S J,WANG B W,et al.Techniques for advanced glycation end product measurements for diabetic bone disease:pitfalls and future directions[J].Curr Opin Endocrinol Diabetes Obes,2022,29(4):333-342

    • [62] 方语,李凯伟,罗静,等.糖尿病性骨质疏松症发病机制研究进展[J].四川生理科学杂志,2022,44(7):1310-1313

    • [63] DHALIWAL R,EWING S K,VASHISHTH D,et al.Greater carboxy-methyl ⁃lysine is associated with increased fracture risk in type 2 diabetes[J].J Bone Miner Res,2022,37(2):265-272

    • [64] CAVATI G,PIRROTTA F,MERLOTTI D,et al.Role of advanced glycation end-products and oxidative stress in type ⁃2⁃ diabetes ⁃induced bone fragility and implications on fracture risk stratification[J].Antioxidants,2023,12(4):928

    • [65] MARCUCCI G,DOMAZETOVIC V,NEDIANI C,et al.Oxidative stress and natural antioxidants in osteoporosis:novel preventive and therapeutic approaches[J].Antioxidants,2023,12(2):373

    • [66] LI M S,ZHAO Z H,YI J R.Biomaterials designed to modulate reactive oxygen species for enhanced bone regeneration in diabetic conditions[J].J Funct Biomater,2024,15(8):220

    • [67] GUTOWSKA K,CZAJKOWSKI K,KURYŁOWICZ A.Receptor for the advanced glycation end products(RAGE)pathway in adipose tissue metabolism[J].Int J Mol Sci,2023,24(13):10982

    • [68] FORTE Y S,RENOVATO⁃MARTINS M,BARJA⁃FIDAL-GO C.Cellular and molecular mechanisms associating obesity to bone loss[J].Cells,2023,12(4):521

    • [69] LEKKALA S,TAYLOR E A,HUNT H B,et al.Effects of diabetes on bone material properties[J].Curr Osteoporos Rep,2019,17(6):455-464

    • [70] SHENG N,XING F,WANG J,et al.Recent progress in bone-repair strategies in diabetic conditions[J].Mater Today Bio,2023,23:100835

    • [71] WEDELL-NEERGAARD A S,LANG LEHRSKOV L,CHRISTENSEN R H,et al.Exercise⁃induced changes in visceral adipose tissue mass are regulated by IL⁃6 signaling:a randomized controlled trial[J].Cell Metab,2019,29(4):844-855.e3

    • [72] HE B R,YIN X H,HAO D J,et al.Blockade of IL⁃6 alleviates bone loss induced by modeled microgravity in mice[J].Can J Physiol Pharmacol,2020,98(10):678-683

    • [73] SANGUINETI R,MONACELLI F,PARODI A,et al.Vitamins D3 and K2 may partially counterbalance the detrimental effects of pentosidine in ex vivo human osteoblasts[J].J Biol Regul Homeost Agents,2016,30(3):713-726

    • [74] KITAURA H,OGAWA S,OHORI F,et al.Effects of incretin-related diabetes drugs on bone formation and bone resorption[J].Int J Mol Sci,2021,22(12):6578

    • [75] NAUCK M.Incretin therapies:highlighting common features and differences in the modes of action of glucagon⁃like peptide⁃1 receptor agonists and dipeptidyl peptidase⁃4 inhibitors[J].Diabetes Obes Metab,2016,18(3):203-216

    • [76] STEGEN S,VAN GASTEL N,CARMELIET G.Bringing new life to damaged bone:the importance of angiogenesis in bone repair and regeneration[J].Bone,2015,70:19-27

    • [77] MAURICIO D,GRATACÒS M,FRANCH⁃NADAL J.Diabetic microvascular disease in nonclassical beds:the hidden impact beyond the retina,the kidney,and the peripheral nerves[J].Cardiovasc Diabetol,2023,22(1):314

    • [78] STABLEY J N,PRISBY R D,BEHNKE B J,et al.Type 2 diabetes alters bone and marrow blood flow and vascular control mechanisms in the ZDF rat[J].J Endocrinol,2015,225(1):47-58

    • [79] ALMUTLAQ N,NEYMAN A,DIMEGLIO L A.Are diabetes microvascular complications risk factors for fragility fracture?[J].Curr Opin Endocrinol Diabetes Obes,2021,28(4):354-359

    • [80] SAADI M S S,DAS R,MULLATH ULLAS A,et al.Impact of different anti-hyperglycaemic treatments on bone turnover markers and bone mineral density in type 2 diabetes mellitus patients:a systematic review and meta⁃analysis[J].Int J Mol Sci,2024,25(14):7988

    • [81] 熊雪松,余显霞.2型糖尿病与骨质疏松症相关性研究进展[J].中国骨质疏松杂志,2017,23(1):130-135