en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

李仲,E-mail: lizhong@njmu.edu.cn

中图分类号:R575

文献标识码:A

文章编号:1007-4368(2024)11-1510-07

DOI:10.7655/NYDXBNSN240674

参考文献 1
HORN P,TACKE F.Metabolic reprogramming in liver fi-brosis[J].Cell Metab,2024,36(7):1439-1455
参考文献 2
TREFTS E,GANNON M,WASSERMAN D H.The liver[J].Curr Biol,2017,27(21):1147-1151
参考文献 3
周子欣,杨旭乐,张许,等.去泛素化酶YOD1调控肝脏脂代谢的初步研究[J].南京医科大学学报(自然科学版),2021,41(12):1735-1740
参考文献 4
LAZARUS J V,MARK H E,ANSTEE Q M,et al.Advanc-ing the global public health agenda for NAFLD:a consen-sus statement[J].Nat Rev Gastroenterol Hepatol,2022,19(1):60-78
参考文献 5
ZHOU J H,ZHOU F,WANG W X,et al.Epidemiological features of NAFLD from 1999 to 2018 in China[J].Hepa-tology,2020,71(5):1851-1864
参考文献 6
WATT M J,MIOTTO P M,DE NARDO W,et al.The liv-er as an endocrine organ-linking NAFLD and insulin re-sistance[J].Endocr Rev,2019,40(5):1367-1393
参考文献 7
GRABNER G F,XIE H,SCHWEIGER M,et al.Lipoly-sis:cellular mechanisms for lipid mobilization from fat stores[J].Nat Metab,2021,3(11):1445-1465
参考文献 8
LA SALA L,CARLINI V,CONTE C,et al.Metabolic dis-orders affecting the liver and heart:therapeutic efficacy of miRNA-based therapies?[J].Pharmacol Res,2024,201:107083
参考文献 9
SHANG R,LEE S,SENAVIRATHNE G,et al.microR-NAs in action:biogenesis,function and regulation[J].Nat Rev Genet,2023,24(12):816-833
参考文献 10
DELUCAS M,SANCHEZ J,PALOU A,et al.The impact of diet on miRNA regulation and its implications for health:a systematic review[J].Nutrients,2024,16(6):770
参考文献 11
GUTBROD M J,MARTIENSSEN R A.Conserved chromo-somal functions of RNA interference[J].Nat Rev Genet,2020,21(5):311-331
参考文献 12
MEDLEY J C,PANZADE G,ZINOVYEVA A Y.MicroRNA strand selection:unwinding the rules[J].Wiley Interdis-cip Rev RNA,2021,12(3):e1627
参考文献 13
CUI Y,QI Y,DING L,et al.miRNA dosage control in de-velopment and human disease[J].Trends Cell Biol,2024,34(1):31-47
参考文献 14
ZHANG C,WANG P,LI Y Q,et al.Role of microRNAs in the development of hepatocellular carcinoma in nonal-coholic fatty liver disease[J].Anat Rec,2019,302(2):193-200
参考文献 15
HOCHREUTER M Y,DALL M,TREEBAK J T,et al.Mi-croRNAs in non-alcoholic fatty liver disease:progress and perspectives[J].Mol Metab,2022,65:101581
参考文献 16
TORRES J L,NOVO-VELEIRO I,MANZANEDO L,et al.Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease[J].World J Gastro-enterol,2018,24(36):4104-4118
参考文献 17
GJORGJIEVA M,SOBOLEWSKI C,DOLICKA D,et al.miRNAs and NAFLD:from pathophysiology to therapy[J].Gut,2019,68(11):2065-2079
参考文献 18
FANG Z,DOU G,WANG L.MicroRNAs in the pathogen-esis of nonalcoholic fatty liver disease[J].Int J Biol Sci,2021,17(7):1851-1863
参考文献 19
WANG X,HE Y,MACKOWIAK B,et al.MicroRNAs as regulators,biomarkers and therapeutic targets in liver dis-eases[J].Gut,2021,70(4):784-795
参考文献 20
LI S J,CHEN X,ZHANG H J,et al.Differential expres-sion of microRNAs in mouse liver under aberrant energy metabolic status[J].J Lipid Res,2009,50(9):1756-1765
参考文献 21
侯天禄,陈天阳,成扬.MiR-199a-3p对脂肪变性的肝细胞TG含量及Sp1表达的影响[J].胃肠病学和肝病学杂志,2019,28(6):660-663
参考文献 22
GOLABI P,OWRANGI S,YOUNOSSI Z M.Global per-spective on nonalcoholic fatty liver disease and nonalco-holic steatohepatitis-prevalence,clinical impact,eco-nomic implications and management strategies[J].Ali-ment Pharmacol Ther,2024,59(Suppl 1):S1-S9
参考文献 23
TARGHER G,TILG H,BYRNE C D.Non-alcoholic fatty liver disease:a multisystem disease requiring a multidisci-plinary and holistic approach[J].Lancet Gastroenterol Hepatol,2021,6(7):578-588
参考文献 24
POWELL E E,WONG V W,RINELLA M.Non-alcoholic fatty liver disease[J].Lancet,2021,397(10290):2212-2224
参考文献 25
ESLAM M,NEWSOME P N,SARIN S K,et al.A new def-inition for metabolic dysfunction-associated fatty liver dis-ease:an international expert consensus statement[J].J Hepatol,2020,73(1):202-209
参考文献 26
ESLAM M,SANYAL A J,GEORGE J.MAFLD:a consen-sus-driven proposed nomenclature for metabolic associat-ed fatty liver disease[J].Gastroenterology,2020,158(7):1999-2014
参考文献 27
VESPOLI C,MOHAMED I A,NASSER K M,et al.Meta-bolic-associated fatty liver disease in childhood and ado-lescence[J].Endocrinol Metab Clin North Am,2023,52(3):417-430
参考文献 28
胡默然,吴周璐,赵晨曦,等.神经节苷脂GM3在非酒精性脂肪肝炎小鼠肝脏中的表达变化[J].南京医科大学学报(自然科学版),2022,42(2):153-159
参考文献 29
ESLAM M,EL-SERAG H B,FRANCQUE S,et al.Meta-bolic(dysfunction)-associated fatty liver disease in indi-viduals of normal weight[J].Nat Rev Gastroenterol Hepa-tol,2022,19(10):638-651
参考文献 30
WANG X Y,GUO M,WANG Q,et al.The patatin-like phospholipase domain containing protein 7 facilitates VLDL secretion by modulating ApoE stability[J].Hepa-tology,2020,72(5):1569-1585
参考文献 31
HAO J W,WANG J,GUO H L,et al.CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocy-tosis[J].Nat Commun,2020,11(1):4765
参考文献 32
GLATZ J,HEATHER L C,LUIKEN J.CD36 as a gate-keeper of myocardial lipid metabolism and therapeutic tar-get for metabolic disease[J].Physiol Rev,2024,104(2):727-764
参考文献 33
ZHAO L,ZHANG C,LUO X X,et al.CD36 palmitoylation disrupts free fatty acid metabolism and promotes tissue in-flammation in non-alcoholic steatohepatitis[J].J Hepatol,2018,69(3):705-717
目录contents

    摘要

    目的:探究不同营养状态下miR-199a-5p在肝脏中的表达水平,以及其对肝细胞甘油三酯(triglyceride,TAG)含量的影响及其潜在机制。方法:RT-qPCR检测高脂饮食小鼠肝脏组织中miR-199a-5p的表达;分别使用miR-199a-5p模拟物、抑制剂、阴性对照和pcDH-CD36-flag质粒转染Hepa1-6和AML12细胞,通过RT-qPCR和Western blot检测脂代谢相关标志物表达变化,采用试剂盒检测TAG含量;通过miRDB(microRNA Target Prediction Database)预测miR-199a-5p的靶基因并通过双荧光素酶报告实验进行验证。结果:高脂饮食和饥饿状态下C57BL/6J小鼠肝脏中miR-199a-5p的表达水平升高;过表达miR-199a-5p 能够降低肝细胞内TAG,而miR-199a-5p抑制剂会增加细胞内TAG含量;miR-199a-5p通过作用于脂肪酸转位酶CD36基因的 3′非翻译区(3′ untranslated region,3′ UTR)降低其蛋白表达。结论:在肝脏脂质积累过程中,miR-199a-5p的表达水平增加,并且miR-199a-5p可能通过靶向CD36降低肝细胞内TAG含量。

    Abstract

    Objective:To investigate the expression levels of miR-199a-5p in the liver under various nutritional conditions and its effects on hepatic triacylglyceride(TAG)content,as well as the underlying mechanisms. Methods:RT -qPCR was used to detect the expression levels of miR-199a-5p in liver tissues of high fat diet mice. Hepa1-6 and AML12 cells were transfected with miR-199a-5p mimics,inhibitors,negative controls and pcDH-CD36-flag plasmid,respectively. The changes in biomarker expression related to lipid metabolism were detected by RT-qPCR and Western blot,and TAG content was detected by kit. The target gene of miR-199a-5p was predicted by microRNA Target Prediction Database(miRDB)and verified by the dual luciferase reporting assay. Results:The expression levels of miR-199a-5p in the liver of C57BL/6J mice were elevated under high-fat diet and fasting conditions. Overexpression of miR-199a -5p reduced TAG levels in hepatocytes,while inhibition of miR-199a -5p increased intracellular TAG content. miR-199a-5p decreased the protein expression of the fatty acid translocase CD36 by interacting with its 3′ untranslated region (3′ UTR). Conclusion:The expression level of miR -199a -5p increases during hepatic lipid accumulation,and miR -199a -5p may reduce TAG content in hepatocytes by targeting CD36.

    关键词

    miR-199a-5p肝脏甘油三酯CD36

    Keywords

    miR-199a-5plivertriacylglycerideCD36

  • 肝脏是体内脂代谢调控的重要器官,通过脂肪酸摄取、合成、氧化以及极低密度脂蛋白(very low density lipoprotein,VLDL)的分泌维持机体脂代谢稳态[1-3]。非酒精性脂肪肝病(non-alcohol fatty liver dis-ease,NAFLD)是以肝细胞内脂肪过度沉积为主要特征的临床病理综合征,是机体代谢紊乱的肝脏表现[4-5]。在饥饿状态下,脂肪组织会进行脂肪动员,产生大量游离脂肪酸进入血液循环并经由肝脏吸收,造成肝细胞内脂质积累[6-7]

  • 微小非编码RNA(microRNA,miRNA)是指长度在19~22 nt的内源性RNA,能够作为基因表达的转录后调控因子发挥重要作用[8-10]。在体内,前体 miRNA首先在Drosha酶的作用下被剪切,形成长度约70 nt的前体核苷酸分子,并通过核孔复合物运输至细胞质中。在细胞质中,Dicer酶对前体核苷酸分子进行切割形成成熟的 miRNA 分子[11]。成熟的 miRNA可以被组装到RNA诱导的沉默复合物(RNA-induced silencing complex,RISC)中[12]。在miRNA的种子序列的引导下,RISC被引导至靶向基因的3′非翻译区(3′ untranslated region,3′ UTR)并沉默该 mRNA的翻译[11]。miRNA与靶基因mRNA结合后抑制其翻译,从而发挥转录后调控作用[13]

  • miRNA在肝脏脂质代谢和NAFLD发展阶段中发挥重要作用,涉及脂质代谢调节、胰岛素抵抗等方面[14-15]。研究表明,多种 miRNA 的表达失调与 NAFLD 的发生密切相关,其中包括 miRNA-103、 miRNA-21 等表达水平增加,miRNA-122、miRNA-375 等呈现下调趋势[16-18]。此外,miRNA 作为生物标志物,能够用于评估NAFLD的进展,为临床干预提供重要的参考依据[19]

  • 已有研究表明,miR-199a-3p和miR-199a-5p在瘦素缺陷型ob/ob小鼠肝脏中的表达水平升高[20]。侯天禄等[21] 研究发现,miR-199a-3p的过表达可以降低肝细胞内甘油三酯(triacylglyceride,TAG)含量以及脂肪酸合酶(fatty acid synthesis,FAS)和固醇调节元件结合蛋白 1(sterol-regulatory element binding protein 1,SREBP1)的表达水平,而使用miR-199a-3p 抑制剂则会增加肝细胞内 TAG 含量以及 FAS 和 SREBP1的表达水平。miR-199a-5p在肝脏脂质代谢的作用和机制目前还不明确。本研究探究不同营养状态下小鼠肝脏中miR-199a-5p的表达水平,并在肝细胞中初步探索miR-199a-5p在肝细胞脂质代谢中的作用和机制。

  • 1 材料和方法

  • 1.1 材料

  • 1.1.1 动物

  • 从南京医科大学实验动物中心购买 4 周龄 C57BL/6J 小鼠,在 SPF 环境中普通饮食/高脂饮食 (每组 6 只)喂养 15 周;本研究动物实验符合 3R 原则,并经南京医科大学实验动物伦理委员会批准 (编号:1601170-5)。

  • 1.1.2 试剂

  • Hepal-6 细胞、AML12 细胞、质粒 pcDH-CD36-flag获赠于复旦大学赵同金课题组。DMEM高糖细胞培养基、胎牛血清、Trizol(Gibco 公司,美国)、 miRNA 加尾法逆转录试剂盒(南京诺唯赞生物)、 miR-199a-5p-类似物(广州锐博生物)、Lipo2000 (Thermo Fisher 公司,美国)、Tubulin 抗体(Protein-tech 公司,美国)、脂肪酸转位酶(fatty acid translo-case,CD36)抗体(Abcam公司,英国)、FAS以及脂肪甘油三酯脂肪酶(adipose triglyceride lipase,ATGL) 抗体(Cell Signaling Technology公司,美国)。

  • 1.2 方法

  • 1.2.1 miRNA提取及相对定量水平检测

  • 切取50 mg小鼠肝脏组织加入1 mL Trizol并匀浆;细胞样本用PBS冲洗2次,加入1 mL Trizol冰上裂解10 min,转移至1.5 mL无菌无酶的EP管中,使用氯仿抽提 RNA,并用异丙醇沉淀过夜收集总 RNA,NanaDrop微量核酸测定仪进行浓度测定。

  • 使用加尾法对总RNA中miRNA进行逆转录以获得cDNA。按照cDNA 1 mL,SYBR 5 mL,上、下游引物(1 mmol/L)各 2 mL,配制 RT-qPCR 体系,使用罗氏Light Cycler 480Ⅱ进行RT-qPCR反应,反应程序为:95℃ 5 min,95℃ 15 s,60℃ 1 min,35个循环, 95℃ 10 s,60℃ 3 min,40℃ 2 min。采用2-ΔΔCt法计算目的基因相对U6核小体的相对表达水平。miR-199a-5p和U6核小体引物如下:miR-199a-5p上游引物:5′-GCCCAGTGTTCAGACTACCTGTTC-3′,U6 核小体上游引物:5′-CTCGCTTCGGCAGCACA-3′,下游通用引物Poly T序列由逆转录试剂盒提供。

  • 1.2.2 油红O染色

  • C57BL/6J小鼠高脂喂养15周后,戊巴比妥钠麻醉后取血处死,取出肝脏进行称重。组织冰冻切片后中性甲醛固定5~10 min,清洗后加入配制好的油红O工作液染色10 min;清洗后加入苏木素染液染核1 min;超纯水清洗后显微镜观察染色结果。

  • 1.2.3 肝细胞转染及细胞内TAG含量检测

  • 使用添加 10%胎牛血清、100 U/mL 青霉素、 100 μg/mL 链霉素的 DMEM 高糖培养基于 37℃, 5% CO2 的环境中培养 Hepa1-6 细胞和 AML12 细胞。待10 cm皿中细胞融合度达到90%时,用0.25% 胰酶(含 EDTA)消化细胞,六孔板的每个孔中接种 2×105 个细胞,贴壁 16 h 后使用 Lipo2000 试剂转染pcDH-CD36-flag 质粒、miR-199a-5p-mimic 或 NC-mimic,其终浓度为50 nmol/L。转染8 h后更换含有 300 μmol/L油酸(oleic acid,OA)的无血清培养基处理24 h。使用普利莱组织细胞TAG检测试剂盒,对 Hepa1-6细胞内TAG含量进行检测,并使用蛋白浓度对结果进行校正。

  • 1.2.4 双荧光素酶报告基因

  • 对 CD36 mRNA 的 3′ UTR 区域进行 PCR 扩增,使用同源重组的方法将扩增得到的目的片段插入 PGL3质粒的Luciferase序列的下游;将该质粒以及表达海肾荧光素酶的pRL-TK质粒共转入Hepa1-6细胞,并使用miR-199a-5p-mimic或NC-mimic转染24 h 后收集细胞;使用双荧光素酶报告基因检测试剂盒检测萤火虫荧光并用海肾荧光作为内参进行校正。

  • 1.2.5 RNA提取及相对定量水平检测

  • 12 孔板细胞每孔加入 0.5 mL Trizol 裂解液,充分裂解后转移至离心管中。按照氯仿∶Trizol=1∶5的体积加入氯仿,剧烈震荡15 s后,室温静止10 min。 4℃ 12 000 r/min 离心 30 min。转移上层水相至新的离心管中,加入相等体积的异丙醇沉淀 RNA,上下颠倒混匀,室温静止5 min。4℃ 12 000 r/min,离心 10 min。弃上清。加入 1 mL 75%乙醇溶液。 4℃ 10 000 r/min,离心5 min。弃上清,相同转速继续离心 2 min,吸去剩余 75%乙醇溶液,室温晾干。根据沉淀量,加入适量DEPC水溶解RNA。RNA溶液可放入-80℃冰箱保存。枪头及离心管均为无菌无酶。内参和目的基因引物序列见表1。

  • 1.2.6 蛋白质提取和免疫印迹(Western blot)实验

  • 细胞处理后,先用 PBS 清洗 2 遍,加入适量的 RIPA裂解液,刮板快速刮下细胞,将裂解液收集于干净的1.5 mL离心管中,冰上裂解10~30 min,随后 4℃ 12 000 r/min 离心 20 min,将上清移至新的 1.5 mL离心管中,吸取适量蛋白液进行BCA蛋白浓度的检测。加入相应体积的5×上样缓冲液,混匀后 95℃金属浴10 min,使蛋白完全变性。

  • 蛋白经凝胶电泳后,250 mA、120 min 转移至 PVDF 膜,5%脱脂牛奶室温封闭 1 h 后加入相应一抗:Tubulin(1∶1 000)、FAS(1∶1 000)、CD36 (1∶1 000)、ATGL(1∶1 000),4℃孵育过夜;次日 TBST清洗3次后加入二抗(1∶10 000)常温孵育1 h; TBST清洗3次后加入ECL显影液曝光,通过Image J 软件计算组蛋白灰度值,利用内参蛋白灰度值进行校正(即对照组蛋白表达值为1),得出各组蛋白的相对表达量。

  • 表1 RT-qPCR引物序列

  • Table1 RT-qPCR primer sequences

  • 1.3 统计学方法

  • 所有数据在 Graphpad Prism 7.0 软件进行统计学分析和作图,结果以均数±标准误(x-±sx-)表示。两组间比较采用两独立样本t检验,P <0.05为差异有统计学意义。

  • 2 结果

  • 2.1 不同营养状态下肝脏中miR-199a-5p的表达水平

  • 为寻找与肝脏脂质代谢相关的 miRNA,利用 ob/ob 小鼠的肝脏 miRNA 数据库 GEO13840 进行分析,发现miR-199a-5p在ob/ob小鼠肝脏中表达水平显著升高,提示 miR-199a-5p 可能在肝脏脂质代谢中发挥重要作用(图1A)。

  • 为探讨miR-199a-5p在肝脏中的表达水平是否与肝脏脂肪积累的状态有关,首先建立高脂饮食诱导NAFLD的小鼠模型,肝脏油红O染色结果提示,高脂饮食诱导的脂肪肝模型构建成功(图1B)。随后,RT-qPCR检测了19周龄小鼠肝脏中miR-199a-5p 的表达水平。结果显示,与正常饮食组小鼠相比,高脂饮食喂养的小鼠肝脏中miR-199a-5p表达水平显著增加(图1C)。此外,饥饿状态下,正常饮食组小鼠肝脏中的miR-199a-5p的表达水平也显著增加 (图1D),提示在肝脏脂质积累过程中miR-199a-5p 表达水平升高,可能参与调控肝脏脂质代谢。

  • 2.2 miR-199a-5p调节肝细胞中脂质水平

  • 为探究 miR-199a-5p 在肝脏脂质代谢中的作用,分别在 Hepa1-6 和 AML12 细胞中过表达 miR-199a-5p(miR-199a-5p-mimic),并对 miR-199a-5p 的过表达效率进行验证(图2A、B)。肝细胞经过 300 μmol/L OA 处理24 h后,miR-199a-5p过表达的 Hepa1-6 细胞和 AML12 细胞内 TAG 含量均显著降低(图2C、D),而使用miR-199a-5p抑制剂处理后,细胞内 TAG 含量增加差异均有统计学意义(图2E、 F)。以上结果提示miR-199a-5p可能通过调节肝细胞中TAG含量来影响肝脏脂质代谢过程。

  • 2.3 miR-199a-5p靶向CD36

  • 为深入探讨miR-199a-5p对肝细胞内TAG含量的影响机制,通过 miRDB 网站预测了 miR-199a-5p 的靶基因,发现CD36 mRNA的3′ UTR区域包含2个 miR-199a-5p的靶向位点,这可能导致其表达水平下降(图3A)。为验证 miR-199a-5p 是否靶向 CD36 mRNA 的 3′ UTR 区域并影响其蛋白质翻译,将 CD36 mRNA的3′ UTR克隆后通过同源重组的方法插入PGL3质粒的下游(图3B)。随后在Hepa1-6细胞中共转该质粒与表达海肾荧光素的对照质粒 (NC-mimic)以及miR-199a-5p-mimic,24 h后检测萤火虫荧光素以及海肾荧光素的强度。结果显示,过表达miR-199a-5p组的萤火虫荧光素水平显著降低 (图3C)。提示,miR-199a-5p的过表达降低了CD36 mRNA的翻译水平。

  • 图1 不同营养状态下小鼠肝脏中miR-199a-5p的表达水平

  • Figure1 Expression levels of miR-199a-5p in mice liver tissues under different nutritional status

  • 图2 miR-199a-5p调节Hepa1-6和AML12细胞中脂质水平

  • Figure2 miR-199a-5p regulated lipid levels in Hepa1-6 and AML12 cells

  • 为进一步验证 miR-199a-5p 是否通过 CD36 调节细胞内脂质含量,在Hepa1-6细胞中同时过表达 miR-199a-5p和CD36,RT-qPCR验证miR-199a-5p和 CD36过表达效率(图3D)。结果显示,CD36的过表达抵消了miR-199a-5p过表达引起的细胞内TAG含量降低(图3E)。以上结果说明,miR-199a-5p可能通过靶向抑制 CD36 mRNA 的翻译,进而影响肝细胞内TAG含量。

  • 图3 miR-199a-5p靶向CD36 mRNA的3′ UTR区域降低其表达水平

  • Figure3 miR-199a-5p targeted the 3′ UTR region of CD36 mRNA to reduce its expression level

  • 2.4 miR-199a-5p降低CD36的蛋白水平

  • 为深入理解miR-199a-5p在肝细胞脂质代谢中的作用,进一步探索了miR-199a-5p过表达引起的肝细胞内TAG含量增加是否与脂代谢相关基因的转录水平有关,以及miR-199a-5p是否直接调控CD36蛋白水平。在Hepa1-6细胞中过表达miR-199a-5p,检测脂肪酸合成、氧化和摄取等关键基因的转录水平。结果显示,miR-199a-5p 的过表达并未对这些关键基因的转录水平产生影响(图4A)。随后,检测了脂代谢相关蛋白的表达水平,发现miR-199a-5p 的过表达导致脂肪酸转运蛋白 CD36 的表达水平显著下降(图4B、C)。以上结果提示,miR-199a-5p 的过表达降低了 CD36 的蛋白水平,减少肝细胞对脂肪酸的摄取。

  • 3 讨论

  • NAFLD 是指除酒精以及其他损肝因素外,造成的以肝脏脂质过度累积为主要特征的临床病理综合征[22-24]。2020 年 Jacob George 基于过去 20 年的相关研究,提出了NAFLD更准确的命名:代谢相关性脂肪肝病(metabolic associated fatty liver dis-ease,MAFLD)[25]。MAFLD 对 NAFLD 的定义做了进一步的明确,将肝脏脂肪变性同时伴随机体肥胖、T2DM 以及代谢失调 3 种特征之一的患者归于 MAFLD[25-26]。随着生活水平的提高,MAFLD 在全球范围内的患病率逐年提高[27-28]。并且由于缺乏直接的治疗药物,针对 MAFLD 发生、发展的研究格外重要[29-30]

  • CD36 作为脂肪酸转运蛋白,在棕榈酰化修饰后定位于细胞膜上,负责脂肪酸的转运[31-32]。阮雄中教授团队发现,在 NAFLD 患者肝脏中 CD36 的表达水平显著增加,且在小鼠肝细胞中特异性过表达 CD36 可以导致小鼠肝脏的脂质积累加重,证实 CD36 在早期 NAFLD 形成过程中发挥重要作用[33]

  • 图4 miR-199a-5p降低Hepa1-6细胞中CD36的蛋白表达

  • Figure4 miR-199a-5p decreased protein levels of CD36 in Hepa1-6 cells

  • 本研究发现,在 ob/ob 小鼠肝脏 miRNA 数据库 GEO13840中,miR-199a-5p在ob/ob小鼠肝脏中表达水平增加,提示该miRNA可能在肝脏能量代谢中发挥重要作用。此外,在高脂饮食和饥饿状态下,小鼠肝脏中 miR-199a-5p 的表达水平显著增加,提示在肝脏脂质积累的过程中miR-199a-5p表达水平增加。进一步研究表明,过表达 miR-199a-5p 能够降低肝细胞内TAG 含量,而抑制miR-199a-5p会增加肝细胞内TAG 含量,提示miR-199a-5p可能参与调控肝细胞内脂质水平。miRDB 的预测和双荧光素酶报告基因的实验结果显示,miR-199a-5p 靶向 CD36 mRNA 的 3′ UTR 区域抑制其翻译,降低其蛋白水平。共转染过表达miR-199a-5p和CD36后,肝细胞内 TAG 含量差异无统计学意义,说明过表达 CD36 可以抵消 miR-199a-5p 引起的细胞内 TAG 含量降低。这证实了 miR-199a-5p 通过靶向 CD36 来调节肝细胞对脂肪酸的摄取。

  • 本研究结果表明,在肝脏脂质积累过程中,miR-199a-5p的表达水平增加。miR-199a-5p表达的增加抑制了 CD36 蛋白的表达,降低了肝细胞内 TAG 含量,有助于改善肝细胞内的脂质稳态。

  • 参考文献

    • [1] HORN P,TACKE F.Metabolic reprogramming in liver fi-brosis[J].Cell Metab,2024,36(7):1439-1455

    • [2] TREFTS E,GANNON M,WASSERMAN D H.The liver[J].Curr Biol,2017,27(21):1147-1151

    • [3] 周子欣,杨旭乐,张许,等.去泛素化酶YOD1调控肝脏脂代谢的初步研究[J].南京医科大学学报(自然科学版),2021,41(12):1735-1740

    • [4] LAZARUS J V,MARK H E,ANSTEE Q M,et al.Advanc-ing the global public health agenda for NAFLD:a consen-sus statement[J].Nat Rev Gastroenterol Hepatol,2022,19(1):60-78

    • [5] ZHOU J H,ZHOU F,WANG W X,et al.Epidemiological features of NAFLD from 1999 to 2018 in China[J].Hepa-tology,2020,71(5):1851-1864

    • [6] WATT M J,MIOTTO P M,DE NARDO W,et al.The liv-er as an endocrine organ-linking NAFLD and insulin re-sistance[J].Endocr Rev,2019,40(5):1367-1393

    • [7] GRABNER G F,XIE H,SCHWEIGER M,et al.Lipoly-sis:cellular mechanisms for lipid mobilization from fat stores[J].Nat Metab,2021,3(11):1445-1465

    • [8] LA SALA L,CARLINI V,CONTE C,et al.Metabolic dis-orders affecting the liver and heart:therapeutic efficacy of miRNA-based therapies?[J].Pharmacol Res,2024,201:107083

    • [9] SHANG R,LEE S,SENAVIRATHNE G,et al.microR-NAs in action:biogenesis,function and regulation[J].Nat Rev Genet,2023,24(12):816-833

    • [10] DELUCAS M,SANCHEZ J,PALOU A,et al.The impact of diet on miRNA regulation and its implications for health:a systematic review[J].Nutrients,2024,16(6):770

    • [11] GUTBROD M J,MARTIENSSEN R A.Conserved chromo-somal functions of RNA interference[J].Nat Rev Genet,2020,21(5):311-331

    • [12] MEDLEY J C,PANZADE G,ZINOVYEVA A Y.MicroRNA strand selection:unwinding the rules[J].Wiley Interdis-cip Rev RNA,2021,12(3):e1627

    • [13] CUI Y,QI Y,DING L,et al.miRNA dosage control in de-velopment and human disease[J].Trends Cell Biol,2024,34(1):31-47

    • [14] ZHANG C,WANG P,LI Y Q,et al.Role of microRNAs in the development of hepatocellular carcinoma in nonal-coholic fatty liver disease[J].Anat Rec,2019,302(2):193-200

    • [15] HOCHREUTER M Y,DALL M,TREEBAK J T,et al.Mi-croRNAs in non-alcoholic fatty liver disease:progress and perspectives[J].Mol Metab,2022,65:101581

    • [16] TORRES J L,NOVO-VELEIRO I,MANZANEDO L,et al.Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease[J].World J Gastro-enterol,2018,24(36):4104-4118

    • [17] GJORGJIEVA M,SOBOLEWSKI C,DOLICKA D,et al.miRNAs and NAFLD:from pathophysiology to therapy[J].Gut,2019,68(11):2065-2079

    • [18] FANG Z,DOU G,WANG L.MicroRNAs in the pathogen-esis of nonalcoholic fatty liver disease[J].Int J Biol Sci,2021,17(7):1851-1863

    • [19] WANG X,HE Y,MACKOWIAK B,et al.MicroRNAs as regulators,biomarkers and therapeutic targets in liver dis-eases[J].Gut,2021,70(4):784-795

    • [20] LI S J,CHEN X,ZHANG H J,et al.Differential expres-sion of microRNAs in mouse liver under aberrant energy metabolic status[J].J Lipid Res,2009,50(9):1756-1765

    • [21] 侯天禄,陈天阳,成扬.MiR-199a-3p对脂肪变性的肝细胞TG含量及Sp1表达的影响[J].胃肠病学和肝病学杂志,2019,28(6):660-663

    • [22] GOLABI P,OWRANGI S,YOUNOSSI Z M.Global per-spective on nonalcoholic fatty liver disease and nonalco-holic steatohepatitis-prevalence,clinical impact,eco-nomic implications and management strategies[J].Ali-ment Pharmacol Ther,2024,59(Suppl 1):S1-S9

    • [23] TARGHER G,TILG H,BYRNE C D.Non-alcoholic fatty liver disease:a multisystem disease requiring a multidisci-plinary and holistic approach[J].Lancet Gastroenterol Hepatol,2021,6(7):578-588

    • [24] POWELL E E,WONG V W,RINELLA M.Non-alcoholic fatty liver disease[J].Lancet,2021,397(10290):2212-2224

    • [25] ESLAM M,NEWSOME P N,SARIN S K,et al.A new def-inition for metabolic dysfunction-associated fatty liver dis-ease:an international expert consensus statement[J].J Hepatol,2020,73(1):202-209

    • [26] ESLAM M,SANYAL A J,GEORGE J.MAFLD:a consen-sus-driven proposed nomenclature for metabolic associat-ed fatty liver disease[J].Gastroenterology,2020,158(7):1999-2014

    • [27] VESPOLI C,MOHAMED I A,NASSER K M,et al.Meta-bolic-associated fatty liver disease in childhood and ado-lescence[J].Endocrinol Metab Clin North Am,2023,52(3):417-430

    • [28] 胡默然,吴周璐,赵晨曦,等.神经节苷脂GM3在非酒精性脂肪肝炎小鼠肝脏中的表达变化[J].南京医科大学学报(自然科学版),2022,42(2):153-159

    • [29] ESLAM M,EL-SERAG H B,FRANCQUE S,et al.Meta-bolic(dysfunction)-associated fatty liver disease in indi-viduals of normal weight[J].Nat Rev Gastroenterol Hepa-tol,2022,19(10):638-651

    • [30] WANG X Y,GUO M,WANG Q,et al.The patatin-like phospholipase domain containing protein 7 facilitates VLDL secretion by modulating ApoE stability[J].Hepa-tology,2020,72(5):1569-1585

    • [31] HAO J W,WANG J,GUO H L,et al.CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocy-tosis[J].Nat Commun,2020,11(1):4765

    • [32] GLATZ J,HEATHER L C,LUIKEN J.CD36 as a gate-keeper of myocardial lipid metabolism and therapeutic tar-get for metabolic disease[J].Physiol Rev,2024,104(2):727-764

    • [33] ZHAO L,ZHANG C,LUO X X,et al.CD36 palmitoylation disrupts free fatty acid metabolism and promotes tissue in-flammation in non-alcoholic steatohepatitis[J].J Hepatol,2018,69(3):705-717

  • 参考文献

    • [1] HORN P,TACKE F.Metabolic reprogramming in liver fi-brosis[J].Cell Metab,2024,36(7):1439-1455

    • [2] TREFTS E,GANNON M,WASSERMAN D H.The liver[J].Curr Biol,2017,27(21):1147-1151

    • [3] 周子欣,杨旭乐,张许,等.去泛素化酶YOD1调控肝脏脂代谢的初步研究[J].南京医科大学学报(自然科学版),2021,41(12):1735-1740

    • [4] LAZARUS J V,MARK H E,ANSTEE Q M,et al.Advanc-ing the global public health agenda for NAFLD:a consen-sus statement[J].Nat Rev Gastroenterol Hepatol,2022,19(1):60-78

    • [5] ZHOU J H,ZHOU F,WANG W X,et al.Epidemiological features of NAFLD from 1999 to 2018 in China[J].Hepa-tology,2020,71(5):1851-1864

    • [6] WATT M J,MIOTTO P M,DE NARDO W,et al.The liv-er as an endocrine organ-linking NAFLD and insulin re-sistance[J].Endocr Rev,2019,40(5):1367-1393

    • [7] GRABNER G F,XIE H,SCHWEIGER M,et al.Lipoly-sis:cellular mechanisms for lipid mobilization from fat stores[J].Nat Metab,2021,3(11):1445-1465

    • [8] LA SALA L,CARLINI V,CONTE C,et al.Metabolic dis-orders affecting the liver and heart:therapeutic efficacy of miRNA-based therapies?[J].Pharmacol Res,2024,201:107083

    • [9] SHANG R,LEE S,SENAVIRATHNE G,et al.microR-NAs in action:biogenesis,function and regulation[J].Nat Rev Genet,2023,24(12):816-833

    • [10] DELUCAS M,SANCHEZ J,PALOU A,et al.The impact of diet on miRNA regulation and its implications for health:a systematic review[J].Nutrients,2024,16(6):770

    • [11] GUTBROD M J,MARTIENSSEN R A.Conserved chromo-somal functions of RNA interference[J].Nat Rev Genet,2020,21(5):311-331

    • [12] MEDLEY J C,PANZADE G,ZINOVYEVA A Y.MicroRNA strand selection:unwinding the rules[J].Wiley Interdis-cip Rev RNA,2021,12(3):e1627

    • [13] CUI Y,QI Y,DING L,et al.miRNA dosage control in de-velopment and human disease[J].Trends Cell Biol,2024,34(1):31-47

    • [14] ZHANG C,WANG P,LI Y Q,et al.Role of microRNAs in the development of hepatocellular carcinoma in nonal-coholic fatty liver disease[J].Anat Rec,2019,302(2):193-200

    • [15] HOCHREUTER M Y,DALL M,TREEBAK J T,et al.Mi-croRNAs in non-alcoholic fatty liver disease:progress and perspectives[J].Mol Metab,2022,65:101581

    • [16] TORRES J L,NOVO-VELEIRO I,MANZANEDO L,et al.Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease[J].World J Gastro-enterol,2018,24(36):4104-4118

    • [17] GJORGJIEVA M,SOBOLEWSKI C,DOLICKA D,et al.miRNAs and NAFLD:from pathophysiology to therapy[J].Gut,2019,68(11):2065-2079

    • [18] FANG Z,DOU G,WANG L.MicroRNAs in the pathogen-esis of nonalcoholic fatty liver disease[J].Int J Biol Sci,2021,17(7):1851-1863

    • [19] WANG X,HE Y,MACKOWIAK B,et al.MicroRNAs as regulators,biomarkers and therapeutic targets in liver dis-eases[J].Gut,2021,70(4):784-795

    • [20] LI S J,CHEN X,ZHANG H J,et al.Differential expres-sion of microRNAs in mouse liver under aberrant energy metabolic status[J].J Lipid Res,2009,50(9):1756-1765

    • [21] 侯天禄,陈天阳,成扬.MiR-199a-3p对脂肪变性的肝细胞TG含量及Sp1表达的影响[J].胃肠病学和肝病学杂志,2019,28(6):660-663

    • [22] GOLABI P,OWRANGI S,YOUNOSSI Z M.Global per-spective on nonalcoholic fatty liver disease and nonalco-holic steatohepatitis-prevalence,clinical impact,eco-nomic implications and management strategies[J].Ali-ment Pharmacol Ther,2024,59(Suppl 1):S1-S9

    • [23] TARGHER G,TILG H,BYRNE C D.Non-alcoholic fatty liver disease:a multisystem disease requiring a multidisci-plinary and holistic approach[J].Lancet Gastroenterol Hepatol,2021,6(7):578-588

    • [24] POWELL E E,WONG V W,RINELLA M.Non-alcoholic fatty liver disease[J].Lancet,2021,397(10290):2212-2224

    • [25] ESLAM M,NEWSOME P N,SARIN S K,et al.A new def-inition for metabolic dysfunction-associated fatty liver dis-ease:an international expert consensus statement[J].J Hepatol,2020,73(1):202-209

    • [26] ESLAM M,SANYAL A J,GEORGE J.MAFLD:a consen-sus-driven proposed nomenclature for metabolic associat-ed fatty liver disease[J].Gastroenterology,2020,158(7):1999-2014

    • [27] VESPOLI C,MOHAMED I A,NASSER K M,et al.Meta-bolic-associated fatty liver disease in childhood and ado-lescence[J].Endocrinol Metab Clin North Am,2023,52(3):417-430

    • [28] 胡默然,吴周璐,赵晨曦,等.神经节苷脂GM3在非酒精性脂肪肝炎小鼠肝脏中的表达变化[J].南京医科大学学报(自然科学版),2022,42(2):153-159

    • [29] ESLAM M,EL-SERAG H B,FRANCQUE S,et al.Meta-bolic(dysfunction)-associated fatty liver disease in indi-viduals of normal weight[J].Nat Rev Gastroenterol Hepa-tol,2022,19(10):638-651

    • [30] WANG X Y,GUO M,WANG Q,et al.The patatin-like phospholipase domain containing protein 7 facilitates VLDL secretion by modulating ApoE stability[J].Hepa-tology,2020,72(5):1569-1585

    • [31] HAO J W,WANG J,GUO H L,et al.CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocy-tosis[J].Nat Commun,2020,11(1):4765

    • [32] GLATZ J,HEATHER L C,LUIKEN J.CD36 as a gate-keeper of myocardial lipid metabolism and therapeutic tar-get for metabolic disease[J].Physiol Rev,2024,104(2):727-764

    • [33] ZHAO L,ZHANG C,LUO X X,et al.CD36 palmitoylation disrupts free fatty acid metabolism and promotes tissue in-flammation in non-alcoholic steatohepatitis[J].J Hepatol,2018,69(3):705-717