-
结核病是结核分枝杆菌(Mycobacterium tuberculosis,M. tb)导致的严重传染性疾病,目前仍在全球范围内广泛流行。在感染宿主的过程中,M. tb可通过进化方式逃避宿主免疫反应使之长期存活[1]。卡介苗(bacillus calmette-guerin,BCG)是目前唯一可用的M. tb疫苗,对儿童播散性结核病可发挥有效预防作用,但对成人的长期保护效应有限[2]。比较基因组学研究发现,与野生株相比,BCG丢失了100多个基因编码序列,即所谓差异区域(regions of differ-ence,RD),其包含了 16 个区域(RD1-RD16)[3]。研究表明,RD 可通过编码潜在效应蛋白在结核病发病过程中发挥重要作用[4-5]。有关RD13区Rv2647基因编码蛋白对宿主的致病性研究既往未见报道。本研究运用噬菌体介导的基因重组技术分别构建了 H37Rv的Rv2647基因敲除株(H37RvΔRv2647)和回补株(H37RvΔRv2647::Rv2647);Ms 被广泛用于表达分枝杆菌蛋白,是研究 M. tb致病机制的良好模型[6]。Rv2647基因在Ms中缺失,本研究也构建了过表达Rv2647的Ms(Ms::Rv2647);通过构建M. tb 和Ms攻击模型评估Rv2647蛋白对模型鼠的肺组织损伤效应,为深入研究该蛋白在M. tb对宿主致病性中的作用奠定基础。
-
1 材料和方法
-
1.1 材料
-
胰蛋白胨、酵母提取物、琼脂粉(北京索莱宝生物科技公司);氯化钠、甘油(上海生工生物工程有限公司);Middlebrook 7H9、Middlebrook 7H10 及 OADC(BD 公司,美国);潮霉素 B(hygromycin B, HYG)、Tween-80(Sigma 公司,美国);Trans2KPlusII DNA Marker、Trans15K DNA Marker(北京全式金生物技术有限公司);T4 DNA 连接酶、限制性内切酶 PacⅠ、Phusion High Fidelity DNA Polymerase(Thermo Scientific公司,美国);质粒提取试剂盒(北京天根生化科技有限公司);胶回收试剂盒、细菌基因组提取试剂盒(Omega 公司,美国);MaxPlaxTM Lambda 噬菌体包装提取物(Epicentre生物技术公司,美国)。
-
1.2 方法
-
1.2.1 P0004S-ΔRv2647质粒构建
-
以结核分枝杆菌H37Rv全基因组DNA为模板,根据 Rv2647 基因序列,构建 Rv2647 基因的上游序列(左臂,L)及下游序列(右臂,R),分别设计左臂上、下游引物(LFP、LRP)、右臂上、下游引物(RFP、 RRP),即 Rv2647-LFP(5′-TTTTTTTTCACAAAGTG-GACTCCCTGCCTAAGGTGCG-3′),Rv2647-LRP(5′-TTTTTTTTCACTTCGTGGCGTGTTTTCGGAGCGTT-3′),Rv2647-RFP(5′-TTTTTTTTCACAGAGTGGA-CAACGCAACCCGCAGC-3′),Rv2647-RRP(5′-TTTTTTTTCACCTTGTGCCGGACAGGCCGAGTTTG-3′)。通过聚合酶链反应扩增Rv2647。使用限制性内切酶Van91Ⅰ酶切P0004S质粒及Rv2647的左臂、右臂,连接酶切后的片段并导入DH5α感受态细胞,挑取单克隆菌落,抽提质粒并验证。
-
1.2.2 PhAE159-ΔRv2647穿梭质粒构建
-
PacⅠ酶切 P0004S-ΔRv2647 质粒和 PhAE159 质粒并连接。使用噬菌体包装试剂盒构建 PhAE159-Rv2647穿梭质粒。转化HB101感受态细胞,挑取单克隆菌落抽提质粒并验证。
-
1.2.3 筛选噬菌斑
-
PhAE159-ΔRv2647穿梭质粒电转入Ms感受态细胞(电击参数:电压 2.5 kV,电阻 1 000 Ω,电容 25 μF),加入Middlebrook 7H(9 HYG,75 μg/mL),37℃ 培养过夜后,菌液与适量 top agar 混匀并铺于 Mid-dlebrook 7H10(HYG,75 μg/mL),30℃培养2~3 d 后筛选噬菌斑。
-
1.2.4 噬菌体扩增
-
适量高滴度噬菌体裂解液与生长至对数期的分枝杆菌(MP buffer 预先洗涤)混匀,37℃孵育过夜,离心弃上清,加入适量 Middlebrook 7H9(HYG, 75 μg/mL),37℃孵育过夜,离心弃上清液,收集菌体涂布于Middlebrook 7H10(HYG,75 μg/mL),37℃ 培养28~42 d。
-
1.2.5 Rv2647基因敲除株(H37RvΔRv2647)的构建
-
高滴度噬菌体感染 H37Rv 后,涂布于 Middle-brook 7H10(HYG,75 μg/mL),37℃培养28 d后,挑取单克隆接种于 Middlebrook 7H9(HYG,75 μg/mL), 37℃培养28 d后,提取基因组,PCR验证(图1)。
-
1.2.6 Rv2647基因回补株(H37RvΔRv2647::Rv2647) 的构建
-
PCR 扩增 Rv2647 基因,限制性内切酶 EcoRⅠ和HindⅢ 酶切Rv2647质粒和pMV361质粒,连接酶切产物,并将重组质粒导入DH5α感受态细胞,挑取单克隆测序验证 pMV361-Rv2647 质粒。取适量 pMV361-Rv2647质粒电转化H37RvΔRv2647感受态菌株,于Middlebrook 7H10(HYG,75 μg/mL,卡那霉素,30 μg/mL)培养28 d后,挑取单克隆接种于Middle-brook 7H9 液体培养基(HYG,75 μg/mL,卡那霉素, 30 μg/mL),37℃培养28 d后,收集菌体并进行PCR 验证(图2)。
-
图1 M. tb的Rv2647基因敲除株构建示意图
-
Figure1 Schematic diagram of Rv2647-deleted strain of M. tb
-
1.2.7 过表达 Rv2647 的耻垢分枝杆菌(Ms:: Rv2647)的构建
-
PCR 扩增 Rv2647 基因,回收目的 DNA 片段与线性化的双酶切pMV261质粒(EcoRI 和HindⅢ)重组并转化 DH5α感受态细胞,挑取单克隆测序验证 pMV261-Rv2647 质粒。取适量 pMV261-Rv2647 质粒电转至Ms感受态细胞,涂布于7H10 固体培养基 (卡那霉素,30 μg/mL),37℃培养 3~4 d,挑取单克隆接种至 7H9 液体培养基(卡那霉素,30 μg/mL), 37℃培养3~4 d,收集菌体,PCR验证。
-
1.2.8 Rv2647 蛋白对肺组织病理损伤效应的体内研究
-
分别用H37Rv、H37RvΔRv2647和H37RvΔRv2647::Rv2647(2×106 CFU/只)以及Ms和Ms::Rv2647(1× 107 CFU/只)气管攻击C57BL/6小鼠[7-8],腹腔注射三溴乙醇麻醉小鼠并固定于操作台,充分消毒后切开颈部皮肤,钝性分离气管旁肌肉组织,暴露气管,使用 1 mL注射器通过气管注射上述菌液,注射结束后立即竖直放置小鼠,轻轻摇晃,缝合颈部皮肤后再次消毒。监测模型鼠 30 d(H37Rv、H37RvΔRv2647 及 H37RvΔRv2647::Rv2647)和 7 d(Ms 和 Ms::Rv2647)的存活情况,分别于 30 d 和 7 d 后,颈椎脱臼法处死模型鼠,无菌条件下取出模型鼠肺组织,无菌 PBS 漂洗后匀浆,梯度稀释后涂布于 Middle-brook 7H10,分别于培养 28 d 和 5 d 后进行菌落计数,评估模型鼠肺组织细菌负荷。肺组织固定于 4%多聚甲醛,常规脱水后石蜡包埋,5 μm 连续切片。二甲苯脱蜡后利用梯度酒精水化,苏木精染色后流水冲洗,用 1%盐酸乙醇进行分化,伊红复染,流水冲洗,梯度酒精脱水,二甲苯透明,树脂封片,镜下观察,使用Image-Pro Plus软件进行肺组织炎症评分,评估肺组织病理损伤程度[9-10]。
-
图2 M. tb的Rv2647基因回补株构建示意图
-
Figure2 Schematic diagram of Rv2647-complementary strain of M. tb
-
1.3 统计学方法
-
采用Graphpad prism 9.0进行统计分析,数据表示为均值±标准差()。两组间差异比较采用独立样本t检验。多组间差异分析采用单因素方差分析。P <0.05为差异有统计学意义。
-
2 结果
-
2.1 PCR扩增Rv2647基因左、右臂DNA片段
-
使用高保真DNA聚合酶扩增H37Rv的Rv2647 基因左臂 DNA 片段(698 bp),右臂 DNA 片段 (835 bp),PCR可见明显条带(图3)。
-
2.2 构建H37RvΔRv2647
-
酶切并回收Rv2647基因左、右臂PCR产物,与Van91Ⅰ酶切的质粒 p0004S 转化 DH5α感受态细胞。筛选阳性克隆子并测序。PacⅠ酶切并回收,与 PacⅠ酶切的质粒 phAE159 连接、包装并转化 HB101感受态细胞,筛选阳性噬菌粒并电转化感受态Ms,涂板,培养3 d后筛选噬菌斑,扩增制备高滴度噬菌体并感染H37Rv,涂板,37℃培养28 d后,挑取单克隆,接种于 Middlebrook 7H9,37℃培养 28 d 后,提取基因组,PCR验证。以H37RvΔRv2647基因组为模板,可见大小约960 bp和1 190 bp的DNA片段。以 H37Rv 基因组为模板,未见目的 DNA 片段 (图4)。
-
图3 PCR扩增Rv2647基因左、右臂片段
-
Figure3 The left and right arm fragments of Rv2647 gene were amplified by PCR
-
图4 PCR验证H37RvΔRv2647
-
Figure4 Verification of H37RvΔRv2647 by PCR
-
2.3 构建H37RvΔRv2647::Rv2647
-
PCR扩增Rv2647基因左、右臂并回收,与EcoRⅠ 和HindⅢ双酶切的pMV361质粒重组并转化DH5α 感受态细胞,挑取单克隆测序验证pMV361-Rv2647质粒。pMV361-Rv2647质粒电转化H37RvΔRv2647 感受态菌株,涂板,37℃培养28 d后,挑取单克隆接种于 Middlebrook 7H9,37℃培养 28 d 后,收集菌体提取基因组,PCR 验证,可见大小约 675 bp 的条带 (图5)。
-
图5 PCR验证H37RvΔRv2647::Rv2647
-
Figure5 Verification of H37RvΔRv2647::Rv2647 by PCR
-
2.4 构建Ms::Rv2647
-
PCR扩增Rv2647基因,与pMV261质粒重组并转化 DH5α感受态细胞,挑取 pMV261-Rv2647 质粒电转化Ms感受态细胞,涂板培养,挑取单克隆接种至 7H9 液体培养基,37℃培养 3~4 d,收集菌体,提取基因组,PCR 验证,电转成功的菌体基因组可见大小约675 bp的条带(图6)。
-
图6 PCR验证Ms::Rv2647
-
Figure6 Verification of Ms::Rv2647 by PCR
-
2.5 Rv2647蛋白对模型鼠生存率的影响
-
分别用H37Rv、H37RvΔRv2647及H37RvΔRv2647::Rv2647经气管攻击C57BL/6小鼠(2×106 CFU/只),感染后 30 d 内连续监测模型鼠存活情况,结果示 H37RvΔRv2647组模型鼠的30 d存活率为100.00%,高于H37Rv组(83.33%)和H37RvΔRv2647::Rv2647组 (83.33%)(图7A);用Ms和Ms::Rv2647经气管攻击C57BL/6 小鼠(1×107 CFU/只),感染后 7 d 内连续监测模型鼠存活情况,结果示Ms组模型鼠的7 d存活率为100.00%,高于Ms::Rv2647组(83.33%)(图7B)。
-
图7 模型鼠生存曲线
-
Figure7 Survival curve of model mice
-
2.6 Rv2647蛋白抑制模型鼠对M. tb的清除
-
分别取感染H37Rv、H37RvΔRv2647、H37RvΔRv 2647::Rv2647以及Ms、Ms::Rv2647的模型鼠肺组织,匀浆后梯度稀释并涂布于 Middlebrook 7H10, 37℃ 静置培养,进行菌落计数。结果显示 H37RvΔRv2647 组模型鼠肺组织细菌负荷(lgCFU) 为(3.40±0.18),显著低于 H37Rv 组(3.86±0.15,P <0.001)和 H37RvΔRv2647::Rv2647 组(3.80 ± 0.16, P <0.01,图8A);Ms组模型鼠肺组织细菌负荷(lgC-FU)为(2.53±0.16),显著低于Ms::Rv2647组(2.81± 0.13,P <0.01,图8B)。
-
2.7 Rv2647蛋白加重模型鼠肺组织病理损伤
-
分别取感染 H37Rv、H37RvΔRv2647、H37Rv ΔRv2647::Rv2647 以及 Ms、Ms::Rv2647 的模型鼠的肺组织进行HE染色,H37RvΔRv2647组模型鼠肺组织结构相对完整,肺泡腔结构较清晰,少量炎性细胞浸润,炎症面积为(4.37±3.06)%;H37Rv 组和 H37RvΔRv2647::Rv2647组模型鼠肺组织结构破坏明显,肺泡腔塌陷,肺泡间隔增厚或破坏,大量炎性细胞浸润,炎症面积[H37Rv:(62.76 ± 14.24)%,P <0.001;H37RvΔRv2 647::Rv2 647:(67.37±0.45)%, P <0.001]均显著高于H37RvΔRv2647组(图9)。同样地,Ms组模型鼠肺组织结构较完整,肺泡腔结构相对清晰,炎症面积为(5.71±1.29)%;Ms::Rv2647 组模型鼠肺组织结构破坏明显,肺泡间隔破坏,炎症面积为(33.13±13.84)%(P <0.05,图10)。
-
图8 模型鼠肺组织细菌负荷
-
Figure8 Lung bacterial load of model mice
-
3 讨论
-
结核病是除新冠肺炎外全球第一大因单一病原感染导致的致死性传染病[11]。目前,BCG的预防效果不佳,且多耐药菌株及泛耐药菌株的流行进一步加剧了结核病的防治形势。因此,迫切需要深入研究 M. tb的关键致病机制以开发新型疫苗与药物。大量研究表明,M. tb的RD区含有众多毒力因子及特异性抗原,在结核病的发生发展中发挥重要作用[12-16]。
-
Rv2647基因位于RD13区,该区域共包含16个阅读框(Rv2645-Rv2660c)。研究显示,该区Rv2645 基因编码的假想蛋白,可诱导强烈的抗M. tb特异性 IFN-γ应答,与 BCG 联合可显著增强免疫保护效应[17];另有研究发现,Rv2654c和Rv2659c分别编码噬菌体蛋白和噬菌体整合酶,可诱导结核病特异性的T细胞应答,显著提高结核病诊断的特异性和敏感性[18-19];此外,Rv2660c编码的相关蛋白,在M. tb 潜伏感染状态下表达显著上调,可通过 TLR2 介导 TNF-α、IFN-γ等炎症因子的分泌,利于M. tb潜伏感染[20]。Rv2647基因编码蛋白在M. tb感染及致病中的作用尚不清楚。
-
基因编辑技术是研究M. tb基因功能的有效手段。目前,应用于M. tb的基因敲除技术主要有依赖于同源重组的基因敲除技术和不依赖于同源重组的基因沉默技术。其中,噬菌体介导的同源重组技术可显著提高转染效率及同源重组效率而被广泛应用。本研究采用具有高DNA传递效率的含温敏型噬菌体元件的穿梭质粒 phAE159,构建了 phAE159-ΔRv2647 噬菌粒,在 Ms 内扩增后导入 H37Rv,获得 H37RvΔRv2647,并进一步构建 H37RvΔRv2647::Rv2647和Ms::Rv2647,为深入研究Rv2647基因的功能奠定了基础。
-
图9 感染M. tb后模型鼠肺组织损伤
-
Figure9 Lung injury of model mice infected with M. tb
-
图10 感染Ms后模型鼠肺组织损伤
-
Figure10 Lung injury of model mice infected with Ms
-
本研究中分别以 H37Rv、H37RvΔRv2647、 H37RvΔRv2647::Rv2647、Ms 及 Ms::Rv2647 经气管攻击C57BL/6小鼠,H37RvΔRv2647组模型鼠30 d 生存率高于 H37Rv 组和 H37RvΔRv2647::Rv2647 组;Ms组模型鼠7 d生存率也高于Ms::Rv2647组; H37RvΔRv2647组模型鼠的肺组织细菌负荷和肺组织病理损伤程度均显著低于 H37Rv 组和 H37RvΔRv2647::Rv2647 组;同样地,Ms 组模型鼠的肺组织细菌负荷和肺组织病理损伤程度亦显著低于 Ms::Rv2647 组。本研究提示,Rv2647 蛋白在 M. tb 感染的致病过程中可能通过削弱模型鼠对 M. tb的清除效应而加重了肺组织的病理损伤,其具体致病机制值得进一步探究。
-
本研究成功构建了M. tb的Rv2647基因敲除株 (H37RvΔRv2647)和回补株(H37RvΔRv2647:: Rv2647)以及过表达 Rv2647 的 Ms(Ms::Rv2647); 初步探明了 Rv2647 蛋白可能通过抑制模型鼠对 M. tb的清除,加重肺组织病理损伤。
-
参考文献
-
[1] CHANDRA P,GRIGSBY S J,PHILIPS J A.Immune eva-sion and provocation by Mycobacterium tuberculosis[J].Nat Rev Microbiol,2022,20(12):750-766
-
[2] FATIMA S,KUMARI A,DAS G,et al.Tuberculosis vac-cine:a journey from BCG to present[J].Life Sci,2020,252:117594
-
[3] BEHR M A,WILSON M A,GILL W P,et al.Comparative genomics of BCG vaccines by whole-genome DNA micro-array[J].Science,1999,284(5419):1520-1523
-
[4] YANG W,LIU M,YU X,et al.Mycobacterium tuberculosis Rv1515c antigen enhances survival of M.smegmatis with-in macrophages by disrupting the host defense[J].Microb Pathog,2021,153:104778
-
[5] BESPIATYKH D,BESPYATYKH J,MOKROUSOV I,et al.A comprehensive map of Mycobacterium tuberculosis comphlex regions of difference[J].mSphere,2021,6(4):e0053521
-
[6] BASHIRI G,BAKER E N.Production of recombinant pro-teins in Mycobacterium smegmatis for structural and func-tional studies[J].Protein Sci,2015,24(1):1-10
-
[7] YAO J,DU X R,CHEN S X,et al.Rv2346c enhances my-cobacterial survival within macrophages by inhibiting TNF-α and IL-6 production via the p38/miRNA/NF-κB path-way[J].Emerg Microbes Infect,2018,7(1):158
-
[8] ARORA S K,NAQVI N,ALAM A,et al.Mycobacterium smegmatis bacteria expressing Mycobacterium tuberculosis-specific Rv1954A induce macrophage activation and modulate the immune response[J].Front Cell Infect Mi-crobiol,2020,10:564565
-
[9] GONG W P,LIANG Y,MI J,et al.Peptides-based vac-cine MP3RT induced protective immunity against Myco-bacterium tuberculosis infection in a humanized mouse model[J].Front Immunol,2021,12:666290
-
[10] DU X R,XUE J P,JIANG M Z,et al.A multiepitope pep-tide,rOmp22,encapsulated in chitosan-PLGA nanoparti-cles as a candidate vaccine against acinetobacter bauman-nii infection[J].Int J Nanomedicine,2021,16:1819-1836
-
[11] ORGEUR M,SOUS C,MADACKI J,et al.Evolution and emergence of Mycobacterium tuberculosis[J].FEMS Mi-crobiol Rev,2024,48(2):fuae006
-
[12] QU Z L,ZHOU J,ZHOU Y D,et al.Mycobacterial EST12 activates a RACK1-NLRP3-gasdermin D pyroptosis-IL-1β immune pathway[J].Sci Adv,2020,6(43):eaba4733
-
[13] WANG L,WU J H,LI J,et al.Host-mediated ubiquitina-tion of a mycobacterial protein suppresses immunity[J].Nature,2020,577(7792):682-688
-
[14] MAO L R,DU J P,WANG X C,et al.Long-term immuno-genicity and in vitro prophylactic protective efficacy of M.tuberculosis fusion protein DR2 combined with liposomal adjuvant DIMQ as a boosting vaccine for BCG[J].ACS Infect Dis,2023,9(3):593-608
-
[15] AREGA A M,DHAL A K,PATTANAIK K P,et al.An immunoinformatics-based study of Myoobacterium tubercu-losis region of difference-2 uncharacterized protein(Rv1987)as a potential subunit vaccine candidate for pre-liminary ex vivo analysis[J].Appl Biochem Biotechnol,2024,196(4):2367-2395
-
[16] YI F L,HU J,ZHU X Y,et al.Transcriptional profiling of human peripheral blood mononuclear cells stimulated by Mycobacterium tuberculosis PPE57 identifies characteris-tic genes associated with type I interferon signaling[J].Front Cell Infect Microbiol,2021,11:716809
-
[17] LUO W,QU Z,ZHANG L,et al.Recombinant BCG::Rv2645 elicits enhanced protective immunity compared to BCG in vivo with induced ISGylation-related genes and Th1 and Th17 response[J].Vaccine,2018,36(21):2998-3009
-
[18] HORVATI K,BŐSZE S,GIDEON H P,et al.Population tailored modification of tuberculosis specific interferon-gamma release assay[J].J Infect,2016,72(2):179-188
-
[19] BAI X J,LIANG Y,YANG Y R,et al.Immune responses to latent tuberculosis antigen Rv2659c in Chinese popula-tions[J].J Microbiol Immunol Infect,2015,48(4):381-389
-
[20] DENG Y H,HE H Y,TANG M D.Latency-associated pro-tein Rv2660c of Mycobacterium tuberculosis augments ex-pression of proinflammatory cytokines in human macro-phages by interacting with TLR2[J].Infect Dis,2015,47(3):168-177
-
摘要
目的:通过噬菌体重组技术分别构建结核分枝杆菌Rv2647基因的敲除株和回补株以及过表达Rv2647的耻垢分枝杆菌(Mycobacterium smegmatis,Ms),评估结核分枝杆菌Rv2647蛋白对模型鼠肺组织的损伤效应。方法:构建同源交换位点并整合到结核分枝杆菌噬菌体基因组,获取噬菌粒并将其导入Ms,构建具有同源交换位点的重组噬菌体。体外扩增获得高滴度重组噬菌体并转染结核分枝杆菌(H37Rv),37 ℃静置培养 28 d,挑取单克隆进行 PCR 验证,获得 Rv2647 基因敲除株 (H37RvΔRv2647)。PCR 扩增Rv2647基因并通过无缝克隆分别将其整合到载体pMV361和pMV261多克隆位点处,获得阳性质粒后分别电转化H37RvΔRv2647和Ms,获得结核分枝杆菌回补株(H37RvΔRv2647::Rv2647)及过表达Rv2647的耻垢分枝杆菌(Ms::Rv2647)。分别以H37Rv、H37RvΔRv2647、H37RvΔRv2647::Rv2647、Ms及Ms::Rv2647的菌液经气管攻击C57BL/6小鼠,分别比较 H37Rv(30 d)与 Ms(7 d)模型鼠的存活率、肺组织细菌负荷及肺组织病理损伤程度。结果:PCR 结果显示, H37RvΔRv2647 中 Rv2647 基因缺失,而 H37RvΔRv2647::Rv2647 及 Ms::Rv2647 中 Rv2647 基因皆存在。H37RvΔRv2647、 H37Rv及H37RvΔRv2647::Rv2647组模型鼠30 d存活率分别为100.00%、83.33%及83.33%;Ms和Ms::Rv2647组模型鼠的7 d 存活率分别为100.00%和83.33%;H37RvΔRv2647组模型鼠肺组织细菌负荷(lgCFU)为(3.40±0.18),显著低于H37Rv组(3.86± 0.15,P < 0.001)和H37RvΔRv2647::Rv2647组(3.80±0.16,P < 0.01);H37RvΔRv2647组模型鼠肺组织炎症面积(%)为(4.37± 3.06),显著低于H37Rv组(62.76±14.24,P < 0.001)和H37RvΔRv2647::Rv2647组(67.37±0.45,P < 0.001);Ms组模型鼠肺组织 lgCFU为(2.53±0.16),显著低于Ms::Rv2647组(2.81±0.13,P < 0.01);Ms组模型鼠肺组织炎症面积(%)为(5.71±1.29),显著低于 Ms::Rv2647 组(33.13±13.84,P < 0.05)。结论:成功构建了结核分枝杆菌 Rv2647 基因敲除株(H37RvΔRv2647)及回补株 (H37RvΔRv2647::Rv2647)以及过表达Rv2647的耻垢分枝杆菌(Ms::Rv2647)。Rv2647蛋白可能通过抑制宿主对结核分枝杆菌的清除,加重了模型鼠肺组织病理损伤。
Abstract
Objective:To constract the Rv2647-deleted strain and Rv2647-complemented strain of Mycobacterium tuberculosis(M. tb) and Rv2647-overexpressing Mycobacterium smegmatis(Ms::Rv2647)by phage recombination technique,and to evaluate the effect of M. tb Rv2647 protein on lung injury in model mice. Methods:A homologous exchange site was constructed and integrated into the phage genomes of M. tb,producing phagemids that were introduced into Mycobacterium smegmatis(Ms)to create a recombinant phage with a homologous exchange site. High-titer recombinant phages were amplified in vitro and transfected into M. tb(H37Rv),followed by static culture at 37 ℃ for 28 d. The single clone was selected and verified by PCR,yeilding the Rv2647-deleted strain (H37RvΔRv2647). The Rv2647 gene was amplified by PCR and was integrated into the multiple clone sites of vector pMV361 and pMV261 through seamless cloning to obtain the positive plasmids,which were transfected into H37RvΔRv2647 and Ms to obtain the Rv2647-complemented strain(H37RvΔRv2647::Rv2647)and Rv2647-overexpressing Ms(Ms::Rv2647),respectively. The suspension of H37Rv,H37RvΔRv2647,H37RvΔRv2647::Rv2647,Ms,and Ms::Rv2647 were used to infect C57BL/6 mice via tracheal injection. The survival rates,lung tissue bacterial load,and pathological damage of lung tissue in model mice were compared at 7 d and 30 d,respectively. Results:The PCR showed that Rv2647 gene was missing in the H37RvΔRv2647,while it was present in the H37RvΔRv2647::Rv2647 and Ms::Rv2647. The 30-day survival rates of model mice infected with H37RvΔRv2647,H37Rv,and H37RvΔRv2647::Rv2647 were 100.00%,83.33%,and 83.33%,respectively;The 7-day survival rates of model mice infected with Ms and Ms::Rv2647 were 100.00% and 83.33%,respectively. The lung bacterial load(lgCFU)of model mice in the H37RvΔRv2647 group(3.40±0.18)was significantly lower than that of the H37Rv group(3.86±0.15),P < 0.001)and the H37RvΔRv2647::Rv2647 group(3.80±0.16),P < 0.01);The inflammation area(%)in lung tissues of the H37RvΔRv2647 group(4.37±3.06)was significantly lower than that of the H37Rv group(62.76±14.24),P < 0.001)and the H37RvΔRv2647::Rv2647 group(67.37±0.45),P < 0.001). The lung bacterial load(lgCFU)of the Ms group(2.53±0.16)was significantly lower than that of the Ms::Rv2647 group(2.81±0.13), P < 0.01);The inflammation area(%)in lung tissue of the Ms group(5.71±1.29)was significantly lower than that of the Ms::Rv2647 group(33.13 ± 13.84),P < 0.05). Conclusion:The Rv2647-deleted strain(H37RvΔRv2647)and Rv2647-complementary strain (H37RvΔRv2647::Rv2647)of M. tb and Rv2647-overexpressing Ms(Ms::Rv2647)were successfully constructed. Rv2647 protein may aggravate lung injury via inhibiting host clearance of M. tb.