-
肝硬化心肌病(cirrhotic cardiomyopathy,CCM) 是在排除其他心脏病的情况下,由于肝硬化导致患者心肌舒缩功能发生障碍的心脏疾病[1]。其特征是心脏在应激时出现收缩反应迟钝和/或心脏舒张功能障碍以及电生理异常。然而在静息状态下,CCM 未出现因外周血管舒张导致的心功能障碍,反而表现出心输出量正常或增加[2]。在肝硬化的终末期阶段,门静脉高压、全身炎症反应综合征、营养不良和循环代谢物[如胆汁酸(bile acid,BA)和血管活性物质等]会带来血流动力学改变和心脏结构、功能、代谢的改变。与不伴有心血管系统功能障碍的肝硬化患者相比,CCM 患者更容易出现心律失常、校准 QT间期(corrected QT,QTc)延长、儿茶酚胺抵抗、低血容量或失血性休克后继发的血流动力学不稳定,使其整体病死率增加。
-
1 CCM的诊断标准
-
2005 年在蒙特利尔召开的世界胃肠病学大会上制定了关于 CCM 最初的诊断标准[3]。诊断指标包括心脏在静息和应激状态下的收缩和舒张功能、心室扩大的程度、心脏电生理指标以及脑钠肽 (brain natriuretic peptide,BNP)等生物标志物的含量。此后,医学影像技术进一步发展,可以检测静息状态下的心功能,如舒张和收缩指数[4]。因此在 2020 年,肝硬化心肌病联盟(Cirrhotic Cardiomyopa-thy Consortium,CCC)重新定义了CCM的诊断标准[4]。新的标准仅基于静息状态下超声心动图与组织多普勒成像等检测到的心功能指标。尽管新标准已经问世两年多,但到目前为止,只有 Razpotnik 等[5] 系统地比较了蒙特利尔标准和 CCC 标准。他们发现蒙特利尔标准(67.2%)和 CCC 标准(55.7%)检测 CCM的总体患病率相似。尽管如此,2020年的CCC 标准仍然存在一些问题。例如,CCM可表现为射血分数降低的心衰(heart failure with reduced ejection fraction,HFrEF)或射血分数保留的心衰(heart failure with preserved ejection fraction,HFpEF)。部分患者心脏超声结果提示心脏射血分数降低,心脏泵血功能减弱,产生典型的心衰症状和体征。而大多数 CCM患者则表现为HFpEF,尽管射血分数在正常范围内,但在机体处于应激状态或心脏负荷增加时则会出现心衰表现。然而,无论新旧标准,所有心脏收缩指数都是在静息状态下检测到的,但大多数患者在静息状态下不会出现心功能不全的表现,因此它们不能反映患者在应激状态下的心功能表现。
-
2 发病机制
-
随着临床医生以及科学家对CCM 这一疾病的关注增多,既往综述对于CCM发病机制的概括显得过于笼统。Desai 等[6] 曾指出肝功能不全导致的循环BA水平升高及门静脉高压下全身慢性炎症反应导致CCM的发病。肝功能不全增加了循环系统中 BA等血管活性因子的含量,使得心肌细胞膜成分以及心肌细胞内的收缩蛋白等发生改变。而门静脉高压使得肠道血管充血,肠道细菌伴内毒素移位进入体循环,并导致炎症表型的“细胞因子风暴”[7]。现从这两个方面作为切入点,对近年来CCM发病机制的研究进展进行总结。
-
2.1 BA在CCM中的作用
-
BA的心脏毒性最早于1863年被发现。研究表明,静脉注射BA可以导致实验兔心率过缓,甚至发生心脏骤停[8]。同时期的研究表明,在去除心脏的支配神经后,BA诱导心动过缓的现象仍然存在,提示BA对心脏具有直接抑制作用。
-
2.1.1 BA对心肌细胞的直接抑制作用
-
BA对心脏的直接抑制作用是通过心肌细胞上表达的法尼醇X受体(farnesoid X receptor,FXR)以及 Takeda G蛋白偶联受体5(Takeda G protein-coupled receptor 5,TGR5)实现的[9]。FXR作为核受体,主要被疏水性较强的BA分子激活。近年来,Pu等[10] 提取原代大鼠的心肌细胞,证明FXR在心肌细胞中表达。他们发现鹅去氧胆酸能以浓度和时间依赖的方式降低心肌细胞活力,诱导心肌细胞凋亡,上调 Bax 蛋白,升高 Bax/Bcl-2 比值,激活 Caspase-9 及 Caspase-3 通路。随后通过线粒体通透性转换孔 (mitochondrial permeability transition pore,MPTP)分析实验发现,鹅去氧胆酸可通过激活FXR 使MPTP 活化增加,诱导心肌细胞凋亡。
-
2.1.2 BA影响心肌细胞钙离子稳态
-
胞外 Ca2+ 和存储在心肌细胞肌浆网(sarcoplas-mic reticulum,SR)的Ca2+ 共同影响着心肌细胞的舒缩。当质膜去极化时,膜内 L 型电压门控 Ca2+ 通道打开,激活 SR 内存储的 Ca2+ 释放引起心肌细胞收缩,这个过程称为 Ca2+ 诱导 Ca2+ 释放(calcium-in-duced calcium release,CICR),此过程受雷诺丁受体和受磷蛋白磷酸化的密切调控[11-12]。Miragoli 等[13] 发现牛磺胆酸显著降低了L型电压门控Ca2+ 通道蛋白的表达,使内向Ca2+ 电流峰值降低,且高浓度的牛磺胆酸具有更显著的抑制作用。这种抑制作用可以被牛磺酸去氧胆酸(一种用于治疗肝胆疾病的药物)所逆转。此外 Gregolin 等[14] 发现肝硬化大鼠 PBL(phosphorylated B cell linker protein)的 Thr17 磷酸化水平较对照组明显降低,从而影响肌/内质网钙 ATP酶2(sarco/endoplasmic reticulum calcium ATPase2,SERCA2)的激活,阻碍肌质网摄取Ca2+,最终导致心肌收缩功能障碍,表现为大鼠心肌肥厚和左室收缩功能不全。总之,CCM 时 BA 水平升高可通过影响心肌收缩活动中最重要的偶联因子Ca2+ 从而影响心肌的舒缩功能,最终导致CCM的发病。
-
2.1.3 BA参与肌球蛋白亚型转换
-
肌球蛋白重链(myosin heavy chain,MHC)作为心脏的“分子马达”,在心肌收缩中起着重要作用。其在哺乳动物心肌中存在β-MHC和α-MHC两种亚型。α-MHC具有较高的水解ATP的活性,因而有快速收缩的性能,而β-MHC 则相反。 Honar 等[15] 发现,在大鼠CCM模型中,BA升高可介导α-MHC向β-MHC 的转变,从而影响心肌的收缩功能。此外, Sheikh等[16] 发现BA与乙酰胆碱分子的表面结构相似,BA可通过刺激M2-毒蕈碱受体抑制心肌细胞内 cAMP的产生,从而影响心肌细胞的收缩。
-
2.1.4 BA介导心肌能量底物转换
-
脂肪酸氧化是静息时心肌收缩活动所需 ATP 的主要来源。应激时,氧化底物会变为葡萄糖来适应机体的需要。即便在生理剂量下,BA也会导致线粒体呼吸比和膜电位下降,导致线粒体膜通透性增加并诱导线粒体肿胀和死亡[17]。Desai 等[6] 在以 FXR 和小异二聚体配体(small heterodimer partner, SHP)基因双敲除小鼠构建的CCM模型中发现BA可介导能量底物从脂肪酸到葡萄糖的改变,从而导致心肌收缩功能障碍。进一步研究表明,BA可通过抑制过氧化物酶体增殖因子激活受体γ辅助激活因子1-α (peroxisome proliferator actived receptor gamma coacti-vator 1-α,Pgc1α)下调心肌细胞中脂肪酸氧化关键酶基因的表达,这一作用通过在心肌细胞中过度表达 Pgc1α而逆转,并以此提出“胆心(cholecardio)”的概念来描述这种BA与心脏相互作用的现象。
-
2.1.5 BA破坏生物膜稳定性
-
所有维持心脏正常功能的受体和离子通道,如肾上腺素能受体(adrenergic receptor,AR)、大麻素 (cannabinoid,CB)受体、L 型钙通道等,均嵌入由磷脂双分子层组成的心肌细胞膜中。细胞质膜化学成分的改变会影响嵌入其中的蛋白质功能及其下游信号通路的转导。Koshy等[18] 发现,在肝硬化大鼠中,循环BA水平的升高使心肌细胞膜的胆固醇-磷脂比增加,质膜结构刚性增加,流动性减低。β-AR的功能因此受到影响,进而影响其下游cAMP的生成,导致心脏收缩功能障碍。除此以外,心肌细胞膜流动性的改变也被证明会影响质膜上离子通道的功能,使内向的Ca2+ 和Na2+ 电流降低,外向K+ 电流升高,延长心室肌细胞复极过程,最终导致QTc延长。
-
2.2 慢性炎症反应在CCM中的作用
-
肝硬化导致的门静脉高压带来一系列腹腔内改变,包括肠系膜缺血、肠道屏障功能受损伴肠通透性增加和腹腔内细菌滋生。随着黏膜防御受损和肠道通透性增加,细菌和病原体相关分子模式 (pathogen-associated molecular pattern,PAMP)从肠道迁移到肠外器官,随后激活免疫系统导致炎症细胞因子和血管扩张剂的释放。这些介质加重内脏血管舒张,加剧恶性循环[19]。这些改变最终导致全身慢性炎症反应,从而参与CCM的发病机制。
-
2.2.1 免疫细胞浸润增加
-
单核巨噬细胞等免疫细胞浸润被证明在心肌舒缩功能障碍的发生中起着重要作用[20]。Gaskari 等[21] 发现,在肝硬化时,心肌对单核细胞的募集显著增加,炎症反应加剧使心肌功能受损。他们还发现从肝硬化大鼠心脏组织中分离的单核细胞对心肌细胞收缩力的抑制程度大于对照组。此外,用氯化钆减少单核细胞浸润能显著改善肝硬化大鼠的心脏收缩功能,并使心血管系统恢复对失血等应激状态的反应[21]。
-
2.2.2 炎症因子诱导心肌功能障碍
-
半乳糖凝集素-3 是一种单核巨噬细胞来源的促炎因子,它能介导纤维化过程,促进炎症的产生发展,加剧氧化应激并参与细胞凋亡过程[22]。在肝硬化患者以及肝纤维化动物模型的血清中,半乳糖凝集素-3的含量显著升高[23]。Yoon等[24] 发现在行胆管结扎术的CCM小鼠心脏中,Ⅰ类胶原与Ⅲ类胶原的比值显著增加。当给予半乳糖凝集素-3 抑制剂 N-lac后,胆管结扎组小鼠心脏中Ⅰ类胶原合成显著减少,Ⅰ、Ⅲ类胶原比值趋于恢复正常,提示半乳糖凝集素-3可能参与诱导CCM的心肌纤维化。此外,房颤是肝硬化患者肝移植围术期最常见的心律失常,其总体患病率为6.6%~14.2%[25]。尽管相关研究支持血清高半乳糖凝集素-3浓度与房颤发生有关[25-27],但是目前仍没有在任一动物模型中探讨其具体机制,仍需进一步研究。半乳糖凝集素-3已被证明与HF-pEF的发生发展有关[28],而CCM导致的最常见的心衰类型正是HFpEF,进一步提示半乳糖凝集素-3可能参与CCM的发病机制。
-
另一种与CCM 患者心肌功能障有关的炎症因子是肿瘤坏死因子(tumor necrosis factor,TNF)-α。半乳糖凝集素-3 能以剂量和时间依赖的方式刺激树突状细胞产生 TNF-α[29]。Yang 等[30] 发现在肝硬化小鼠血清中,TNF-α的含量显著增加,激活下游 p38MAPK和NFκB-iNOS 通路参与心肌的炎症反应并加剧氧化应激,从而参与CCM的发生发展。除此以外,白细胞介素(interleukin,IL)-1β和IL-6也被证明与肝硬化大鼠心肌功能障碍有关[31]。
-
2.2.3 AR功能障碍
-
心肌β-AR的激活可以活化腺苷酸环化酶,产生 cAMP,cAMP作为第2信使刺激蛋白激酶A,进而激活下游介质诱导心肌细胞收缩。在肝硬化的终末期,全身慢性炎症反应使周围血管扩张,从而激活肾素-血管紧张素-醛固酮系统。这一系统的激活使心脏β-AR受到持续刺激,最终导致受体的脱敏和功能障碍。Liu等[7] 发现与假手术对照组相比,行胆管结扎术的大鼠需要更高剂量的异丙肾上腺素才能使基础心率提高 50 次/min。他们推测这是心肌中β-AR密度降低以及异丙肾上腺素与β-AR的解离常数异常升高导致的,亚型分析发现主要是β1-AR的密度降低导致了肝硬化心脏中总体β-AR 密度下调。然而,β-AR 与相应激动剂的亲和力并没有改变。尽管其中的机制尚不清楚,但目前存在两种假设,一种是Xiong等[32] 提出的过度驱动理论,他们发现在肝硬化患者中,长时间的血管扩张激活交感神经系统从而持续刺激β-AR,交感神经系统的长期慢性超负荷状态逐渐导致心脏β-AR的降低。另一种假设则是存在抗β-AR的抗体[33]。
-
2.2.4 内源性CB水平升高
-
CB是心肌细胞上CB受体的内源性配体,CB受体有CB1和CB2两个亚型。研究表明,慢性炎症反应使 CB 在肝硬化大鼠心脏的局部含量显著增加[34]。 CB1受体的激活与炎症的发生发展、活性氧的产生密切相关。它可以通过非Gi/o蛋白依赖途径抑制腺苷酸环化酶,减少下游cAMP的产生,继而产生心脏负性肌力效应。还可以通过激活p38-JNK-MAPK通路诱导心肌细胞凋亡。相反,CB2受体的激活在控制组织炎症、抑制过氧化物的生成、保护总体心脏功能方面发挥着重要作用[35]。总体来说,内源性CB含量的升高抑制CCM患者的心肌收缩力[21]。Matayas 等[34] 从接受胆管结扎手术的肝硬化小鼠中提取心肌细胞并对CB1受体表达量进行定量分析,发现肝硬化小鼠心肌细胞中CB1表达显著上调,并发现肝硬化大鼠心肌CB2水平上调后可显著降低其血清TNF-α水平,帮助改善心肌炎症反应并减少组织氧化应激,提示内源性CB的增加参与了CCM的发病机制。
-
2.2.5 心脏电生理异常
-
在心肌细胞中,缝隙连接蛋白 CX43(connexin 43)扮演着重要角色,其对心脏的正常功能和稳定的心律起着关键作用。CX43形成的缝隙连接通道允许离子(如钠离子、钙离子和钾离子)在心肌细胞之间进行快速传递,这是心脏肌肉收缩的基础,使得心脏能够以协调的方式收缩和放松,从而保持正常的心脏节律。Mohammed等[36] 发现在以四氯化碳诱导的大鼠CCM模型中,慢性炎症反应使循环炎症因子TNF-α等增加。TNF-α以剂量和时间依赖的方式直接抑制 CX43 的表达,并使其侧化、内化增加,导致心肌细胞间传导差异性增加,QTc延长,导致心功能不全。而当给予CX43的特异性抑制肽Gap26 后,CX43的表达恢复,同时心肌氧化应激及炎症得到控制。尽管心肌损伤标志物并没有降低,但紊乱的 QTc得到了一定程度的恢复,且CCM大鼠心功能得到了一定程度的改善。
-
3 小结与展望
-
在肝硬化患者中,CCM 的总体发病率高达 50%,严重影响了患者的预后及生存率,是一种容易被人们忽视的肝硬化并发症。尽管目前对于 CCM 的发病机制了解仍不充分,但目前的研究发现,在肝功能不全与门静脉高压的共同作用下,多种介质在其中发挥着作用。这些介质能够破坏Ca2+ 稳态,使相关受体脱敏,影响细胞质膜流动性,破坏离子通道的功能,并介导心脏的能量底物转变等。这些机制最终导致了CCM患者的心肌舒缩功能障碍,引起心功能不全。然而,目前除进行肝移植以外, CCM没有较好的治疗方法,对其潜在发病机制的挖掘或许能为CCM的治疗找到新的方法。
-
参考文献
-
[1] CHAHAL D,LIU H Q,SHAMATUTU C,et al.Review ar-ticle:comprehensive analysis of cirrhotic cardiomyopa-thy[J].Aliment Pharmacol Ther,2021,53(9):985-998
-
[2] KAUR H,PREMKUMAR M.Diagnosis and management of cirrhotic cardiomyopathy[J].J Clin Exp Hepatol,2022,12(1):186-199
-
[3] LIU H Q,JAYAKUMAR S,TRABOULSI M,et al.Cirrhotic cardiomyopathy:implications for liver transplantation[J].Liver Transpl,2017,23(6):826-835
-
[4] IZZY M,VANWAGNER L B,LIN G,et al.Redefining cir-rhotic cardiomyopathy for the modern era[J].Hepatology,2020,71(1):334-345
-
[5] RAZPOTNIK M,BOTA S,WIMMER P,et al.The preva-lence of cirrhotic cardiomyopathy according to different diagnostic criteria[J].Liver Int,2021,41(5):1058-1069
-
[6] DESAI M S,MATHUR B,EBLIMIT Z,et al.Bile acid ex-cess induces cardiomyopathy and metabolic dysfunctions in the heart[J].Hepatology,2017,65(1):189-201
-
[7] LIU H Q,NGUYEN H H,YOON K T,et al.Pathogenic mechanisms underlying cirrhotic cardiomyopathy[J].Front Netw Physiol,2022,2:849253
-
[8] DESAI M S,PENNY D J.Bile acids induce arrhythmias:old metabolite,new tricks[J].Heart,2013,99(22):1629-1630
-
[9] FIORUCCI S,DISTRUTTI E,CARINO A,et al.Bile acids and their receptors in metabolic disorders[J].Prog Lipid Res,2021,82:101094
-
[10] PU J,YUAN A C,SHAN P R,et al.Cardiomyocyte-ex-pressed farnesoid-X-receptor is a novel apoptosis media-tor and contributes to myocardial ischaemia/reperfusion injury[J].Eur Heart J,2013,34(24):1834-1845
-
[11] EISNER D A,CALDWELL J L,KISTAMÁS K,et al.Cal-cium and excitation-contraction coupling in the heart[J].Circ Res,2017,121(2):181-195
-
[12] EISNER D A,CALDWELL J L,TRAFFORD A W,et al.The control of diastolic calcium in the heart:basic mecha-nisms and functional implications[J].Circ Res,2020,126(3):395-412
-
[13] MIRAGOLI M,KADIR S H,SHEPPARD M N,et al.A protective antiarrhythmic role of ursodeoxycholic acid in an in vitro rat model of the cholestatic fetal heart[J].Hep-atology,2011,54(4):1282-1292
-
[14] GREGOLIN C S,NASCIMENTO M D,BORGES DE SOU-ZA S L,et al.Myocardial dysfunction in cirrhotic cardio-myopathy is associated with alterations of phospholamban phosphorylation and IL-6 levels[J].Arch Med Res,2021,52(3):284-293
-
[15] HONAR H,LIU H Q,ZHANG M L,et al.Impaired myo-sin isoform shift and calcium transients contribute to cel-lular pathogenesis of rat cirrhotic cardiomyopathy[J].Liv-er Int,2020,40(11):2808-2819
-
[16] SHEIKH A K S H,MIRAGOLI M,ABU-HAYYEH S,et al.Bile acid-induced arrhythmia is mediated by muscarin-ic M2 receptors in neonatal rat cardiomyocytes[J].PLoS One,2010,5(3):e9689
-
[17] FERREIRA M,COXITO P M,SARDÃO V A,et al.Bile acids are toxic for isolated cardiac mitochondria:a possi-ble cause for hepatic-derived cardiomyopathies?[J].Car-diovasc Toxicol,2005,5(1):63-73
-
[18] KOSHY A N,GOW P J,TESTRO A,et al.Relationship between QT interval prolongation and structural abnormali-ties in cirrhotic cardiomyopathy:a change in the current paradigm[J].Am J Transplant,2021,21(6):2240-2245
-
[19] LIU H Q,RYU D,HWANG S,et al.Therapies for cirrhotic cardiomyopathy:current perspectives and future possibili-ties[J].Int J Mol Sci,2024,25(11):5849
-
[20] ABBADI D,LAROUMANIE F,BIZOU M,et al.Local pro-duction of tenascin-C acts as a trigger for monocyte/macro-phage recruitment that provokes cardiac dysfunction[J].Cardiovasc Res,2018,114(1):123-137
-
[21] GASKARI S A,LIU H Q,D’MELLO C,et al.Blunted car-diac response to hemorrhage in cirrhotic rats is mediated by local macrophage-released endocannabinoids[J].J Hepatol,2015,62(6):1272-1277
-
[22] LIU H Q,HWANG S Y,LEE S S.Role of galectin in car-diovascular conditions including cirrhotic cardiomyopa-thy[J].Pharmaceuticals,2023,16(7):978
-
[23] ABU-ELSAAD N M,ELKASHEF W F.Modified citrus pectin stops progression of liver fibrosis by inhibiting ga-lectin-3 and inducing apoptosis of stellate cells[J].Can J Physiol Pharmacol,2016,94(5):554-562
-
[24] YOON K T,LIU H Q,ZHANG J,et al.Galectin-3 inhibits cardiac contractility via a tumor necrosis factor alpha-de-pendent mechanism in cirrhotic rats[J].Clin Mol Hepa-tol,2022,28(2):232-241
-
[25] ERDEM K,KURTOGLU E,OC M,et al.The plasma ga-lectin-3 level has high specificity and sensitivity for pre-dicting postoperative atrial fibrillation after coronary ar-tery bypass surgery[J].Eur Rev Med Pharmacol Sci,2022,26(24):9072-9078
-
[26] VANDENBERK B,ALTIERI M H,LIU H Q,et al.Re-view article:diagnosis,pathophysiology and management of atrial fibrillation in cirrhosis and portal hypertension[J].Aliment Pharmacol Ther,2023,57(3):290-303
-
[27] RUAN Z B,GAO R F,WANG F,et al.Circulating galec-tin-3 and aldosterone for predicting atrial fibrillation re-currence after radiofrequency catheter ablation[J].Car-diovasc Ther,2022,2022:6993904
-
[28] YOON K T,LIU H Q,LEE S S.Cirrhotic cardiomyopa-thy[J].Curr Gastroenterol Rep,2020,22(9):45
-
[29] SCHROEDER J T,ADEOSUN A A,BIENEMAN A P.Epithelial cell-associated galectin-3 activates human den-dritic cell subtypes for pro-inflammatory cytokines[J].Front Immunol,2020,11:524826
-
[30] YANG Y Y,LIU H Q,NAM S W,et al.Mechanisms of TNFalpha-induced cardiac dysfunction in cholestatic bile duct-ligated mice:interaction between TNFalpha and endocannabinoids[J].J Hepatol,2010,53(2):298-306
-
[31] YU S S,SUN L,WANG H,et al.Autonomic regulation of imbalance-induced myocardial fibrosis and its mecha-nism in rats with cirrhosis[J].Exp Ther Med,2021,22(3):1040
-
[32] XIONG L,LIU Y,ZHOU M M,et al.Targeted ablation of cardiac sympathetic neurons attenuates adverse postin-farction remodelling and left ventricular dysfunction[J].Exp Physiol,2018,103(9):1221-1229
-
[33] MA L X,LIU X H,WU Q S,et al.Role of anti-beta-1-ad-renergic receptor antibodies in cardiac dysfunction in patients with cirrhotic cardiomyopathy[J].J Cardiovasc Transl Res,2022,15(2):381-390
-
[34] MATAYAS C,ERDELYI K,TROJNAR E,et al.Interplay of liver-heart inflammatory axis and cannabinoid 2 recep-tor signaling in an experimental model of hepatic cardio-myopathy[J].Hepatology,2020,71(4):1391-1407
-
[35] PACHER P,STEFFENS S,HASKÓ G,et al.Cardiovascu-lar effects of marijuana and synthetic cannabinoids:the good,the bad,and the ugly[J].Nat Rev Cardiol,2018,15(3):151-166
-
[36] MOHAMMED D,TAVANGAR S M,KHODADOOSTAN A,et al.Effects of gap 26,a connexin 43 inhibitor,on cir-rhotic cardiomyopathy in rats[J].Cureus,2024,16(4):e59053
-
摘要
肝硬化心肌病是一种在终末期肝病中出现的心肌功能障碍,它以收缩和舒张功能障碍、心脏结构改变和电生理异常为特征,是一种已知但了解不多的肝硬化并发症,其对肝硬化患者的生存和预后有不良影响。肝功能不全与门静脉高压下的全身炎症反应共同参与其发生发展。文章主要从肝功能不全导致的循环胆汁酸水平升高及门静脉高压下全身慢性炎症反应两方面对近年来肝硬化心肌病发病机制的研究进展进行综述。
Abstract
Cirrhotic cardiomyopathy is a myocardial dysfunction that occurs in end-stage liver disease,characterized by systolic and diastolic dysfunction,cardiac structural changes,and electrophysiological abnormalities. It is a known but poorly understood complication of cirrhosis,with an adverse clinical effect on the overall health,survival,and prognosis of patients with cirrhosis. Liver dysfunction and systemic inflammatory response under portal hypertension are jointly involved in its pathogenesis. This article will review the research progress on the pathogenesis of liver cirrhosis cardiomyopathy in recent years from two aspects:elevated levels of circulating bile acids caused by liver dysfunction and systemic chronic inflammatory response under portal hypertension.