en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

马翔,E-mail: sxmaxiang@126.com;

覃莲菊,E-mail: ljqin@njmu.edu.cn

中图分类号:R321.1

文献标识码:A

文章编号:1007-4368(2024)12-1621-09

DOI:10.7655/NYDXBNSN240530

参考文献 1
LI G,GU J,ZHOU X,et al.Mitochondrial stress response gene Clpp deficiency impairs oocyte competence and de-teriorate cyclophosphamide-induced ovarian damage in young mice[J].Front Endocrinol(Lausanne),2023,14:1122012
参考文献 2
EMADI A,JONES R J,BRODSKY R A.Cyclophospha-mide and cancer:golden anniversary[J].Nat Rev Clin Oncol,2009,6(11):638-647
参考文献 3
HASANAH Y I F,HARAHAP Y,PURWANTO D J.Phe-notyping study of cyclophosphamide 4-hydroxylation in Malay cancer patients[J].Drug Des Devel Ther,2021,15:305-313
参考文献 4
ZHU F,GAO J,ZENG F,et al.Hyperoside protects against cyclophosphamide induced ovarian damage and reduced fertility by suppressing HIF-1alpha/BNIP3-medi-ated autophagy[J].Biomed Pharmacother,2022,156:113743
参考文献 5
LUAN Y,EDMONDS M E,WOODRUFF T K,et al.Inhibitors of apoptosis protect the ovarian reserve from cyclophosphamide[J].J Endocrinol,2019,240(2):243-256
参考文献 6
NIE Z,ZHANG L,CHEN W,et al.The protective effects of pretreatment with resveratrol in cyclophosphamide-in-duced rat ovarian granulosa cell injury:in vitro study[J].Reprod Toxicol,2020,95:66-74
参考文献 7
COX L,LIU J H.Primary ovarian insufficiency:an upda-te[J].Jnt J Wonen’s Health,2014,20(6):235-243
参考文献 8
MULDER R L,FONT-GONZALEZ A,HUDSON M M,et al.Fertility preservation for female patients with child-hood,adolescent,and young adult cancer:recommenda-tions from the PanCareLIFE consortium and the interna-tional late effects of childhood cancer guideline harmoni-zation group[J].Lancet Oncol,2021,22(2):e45-e56
参考文献 9
MASSAROTTI C,KOHLHEPP F,LIPERIS G,et al.#ESHREjc report:is OTO-IVM the future fertility preser-vation alternative for urgent cancer patients?[J].Hum Reprod,2021,36(9):2631-2633
参考文献 10
VUONG L N,PHAM T D,HO T M,et al.Outcomes of clinical in vitro maturation programs for treating infertility in hyper responders:a systematic review[J].Fertil Steril,2023,119(4):540-549
参考文献 11
刘力.儿童狼疮性肾炎治疗中环磷酰胺药物代谢的临床研究[D].天津医科大学,2017
参考文献 12
SCHATTEN H,SUN Q Y,PRATHER R.The impact of mitochondrial function/dysfunction on IVF and new treat-ment possibilities for infertility[J].Reprod Biol Endocrinol,2014,12:111
参考文献 13
JEELANI R,CHATZICHARALAMPOUS C,KOHAN-GHADR H R,et al.Acrolein,a commonly found environ-mental toxin,causes oocyte mitochondrial dysfunction and negatively affects embryo development[J].Free Radic Res,2018,52(9):929-938
参考文献 14
ZHANG J,WANG Y,LIU X,et al.Expression and poten-tial role of microRNA-29b in mouse early embryo develop-ment[J].Cell Physiol Biochem,2015,35(3):1178-1187
参考文献 15
WEI Y,WANG J,QU R,et al.Genetic mechanisms of fer-tilization failure and early embryonic arrest:a comprehen-sive review[J].Hum Reprod Update,2024,30(1):48-80
参考文献 16
XU X,WANG S S,ZHANG L,et al.Methylmercury in-duced ferroptosis by interference of iron homeostasis and glutathione metabolism in CTX cells[J].Environ Pollut,2023,335:122278
参考文献 17
LUO Z B,YANG L H,HAN S Z,et al.Cyclophosphamide reduces gene transcriptional activity and embryo in vitro development by inhibiting NF-κB expression through decreasing AcH4K12[J].Chem Biol Interact,2024,387:110806
参考文献 18
VAN DER REEST J,NARDINI CECCHINO G,HAIGIS M C,et al.Mitochondria:their relevance during oocyte ageing[J].Ageing Res Rev,2021,70:101378
参考文献 19
HUGHES A L,SZCZUREK A T,KELLEY J R,et al.A CpG island-encoded mechanism protects genes from premature transcription termination[J].Nature communi-cations,2023,14(1):726
参考文献 20
UYSAL F,AKKOYUNLU G,OZTURK S.Dynamic ex-pression of DNA methyltransferases(DNMTs)in oocytes and early embryos[J].Biochimie,2015,116:103-113
参考文献 21
CHEN Z,ZHANG Y.Role of mammalian DNA methyl-transferases in development[J].Annu Rev Biochem,2020,89:135-158
参考文献 22
DI EMIDIO G,D’AURORA M,PLACIDI M,et al.Pre-conceptional maternal exposure to cyclophosphamide results in modifications of DNA methylation in F1 and F2 mouse oocytes:evidence for transgenerational effects[J].Epigenetics,2019,14(11):1057-1064
参考文献 23
ECKERSLEY-MASLIN M A,ALDA-CATALINAS C,REIK W.Dynamics of the epigenetic landscape during the maternal-to-zygotic transition[J].Nat Rev Mol Cell Biol,2018,19(7):436-450
参考文献 24
YANG W,MA Y,JIN J,et al.Cyclophosphamide expo-sure causes long-term detrimental effect of oocytes devel-opmental competence through affecting the epigenetic modification and maternal factors’transcription during oocyte growth[J].Front Cell Dev Biol,2021,9:682060
参考文献 25
DING C,LU J,LI J,et al.RNA-methyltransferase Nsun5 controls the maternal-to-zygotic transition by regulating maternal mRNA stability[J].Clin Transl Med,2022,12(12):e1137
参考文献 26
WILKINSON A L,ZORZAN I,RUGG-GUNN P J.Epigen-etic regulation of early human embryo development[J].Cell Stem Cell,2023,30(12):1569-1584
参考文献 27
LI L,GUO F,GAO Y,et al.Single-cell multi-omics sequencing of human early embryos[J].Nat Cell Biol,2018,20(7):847-858
目录contents

    摘要

    目的:探究环磷酰胺活性代谢物4-羟基环磷酰胺(4-hydroxycyclophosphamide,4-HC)对卵母细胞质量的影响及机制。方法:将小鼠生发泡(germinal vesicle,GV)期卵丘卵母细胞复合体(cumulus-oocyte complex,COC)随机分为8组,空白对照组不做处理,溶剂对照组中添加与实验组相同浓度溶剂DMSO,实验组中分别加入终浓度为0.3、1.0、3.0、10.0、30.0、100.0 μmol/L 的4-HC,观察各组COC在体外培养后的第一极体排出率、二细胞率、囊胚率,最终确定实验组最佳浓度。检测1 μmol/L浓度下卵母细胞内活性氧水平、线粒体膜电位水平、还原型谷胱甘肽水平等以评估卵母细胞质量。RT-qPCR、免疫荧光等检测 4-HC对卵母细胞DNMT3A表达的影响。结果:随着4-HC浓度的增加,各组卵母细胞2-细胞率相当或略有下降,实验组卵母细胞受精后囊胚率随4-HC浓度增加而降低(P < 0.05)。1 μmol/L 4-HC下,小鼠卵母细胞线粒体膜电位下降、细胞内超氧化物阴离子含量上升、还原型谷胱甘肽含量下降(P均< 0.05)且囊胚形成率下降(0.809 ±0.087 vs. 0.566±0.175,P < 0.05),RT-qPCR及免疫荧光结果显示卵母细胞DNMT3A表达增加(P < 0.05)。结论:4-HC会引发卵母细胞发生氧化应激,线粒体损伤,导致其发育潜能降低,并对卵母细胞表观遗传产生影响。

    Abstract

    Objective:This study investigated the effect and mechanism of 4-hydroxycyclophosphamide(4-HC),the active metabolite of cyclophosphamide(CTX),on oocyte quality. Methods:Mouse cumulus-oocyte complexes(COCs)in the germinal vesicle(GV)stage were randomly divided into eight groups. The blank control group received no treatment,while the solvent control group was treated with DMSO at the same concentration as the experimental group. The experimental groups were exposed to 4-HC at concentrations of 0.3,1.0,3.0,10.0,30.0,and 100.0 μmol/L. The in vitro matured oocytes were observed for the first polar body discharge rate,2-cell rate,and blastocyst rate. The 1 μmol/L concentration group was further evaluated for reactive oxygen species(ROS)levels, mitochondrial membrane potential(MMP),and reduced glutathione(GSH)content to assess oocyte quality and explore the mechanism. RT-qPCR and immunofluorescence were used to detect the effect of 4-HC on DNMT3A expression in oocytes. Results:With increasing 4-HC concentration,the 2-cell rate of oocytes remained similar or slightly decreased,while the blastocyst rate decreased significantly (P < 0.05). Treatment with 1 μmol/L 4-HC reduced mitochondrial membrane potential,increased intracellular superoxide anion content,and decreased reduced glutathione content(all P < 0.05). Additionally,the blastocyst formation rate(0.809±0.087 vs. 0.566± 0.175,P < 0.05)was significantly reduced. PCR and immunofluorescence results showed increased DNMT3A expression in oocytes (P < 0.05). Conclusion:4-HC induces oxidative stress and mitochondrial damage in oocytes,impairing their developmental potential and affecting oocyte epigenetics.

  • 化疗作为治疗恶性肿瘤的常用手段,有导致卵巢功能不全和不孕的风险[1]。环磷酰胺(cyclophos-phamide,CTX)是临床常用的烷化剂型化疗药物,广泛应用于包括儿童血液系统肿瘤在内的多种恶性肿瘤和系统性红斑狼疮等自身免疫性疾病的治疗中。在体内CTX通过肝脏细胞色素p450(cytochrome P450,CYP450)转化为 4-羟基环磷酰胺(4-hydroxy-cyclophosphamide,4-HC)[2]。4-HC作为CTX在体内的主要活性物质[3],可用于体外CTX细胞损伤模型的制备[4],该种造模方法被证明可以在体外造成培养卵泡的缺失[5],颗粒细胞的凋亡[6] 等 CTX 体内作用相似表型。

  • 有研究报道,CTX可导致40%女性发生早发性卵巢功能不全(premature ovarian insufficiency,POI)[7],严重影响女性生育力。基于此,越来越多的青春期前女性在化疗前采用卵巢组织冷冻进行生育力保存[8]。然而如何提高生育力保存的效率,特别是对经历过化疗的患者,成为临床近年来讨论的热点和焦点问题。随着技术的不断进步,卵巢组织冷冻的同时进行未成熟卵巢组织卵母细胞体外成熟(ovarian tissue oocyte-in vitro maturation,OTO-IVM) 技术,已在许多紧急抗癌治疗患者中得到了越来越广泛的临床应用[9]。研究数据显示,IVM联合IVF获得的活产率与常规控制性促排卵进行IVF助孕的活产率相当[10],因此,OTO-IVM 有望成为化疗人群生育力保存的有效候选方案。本研究通过在体外培养过程中直接添加4-HC,模拟CTX化疗,探究其对卵母细胞发育潜能的影响,并探索CTX作用的可能潜在靶点,为女性生育力保护和提高IVM-IVF的活产率提供坚实的理论基础。

  • 1 材料和方法

  • 1.1 材料

  • 孕马血清促性腺激素(pregnant mare serum go-nadotropin,PMSG,宁波第二激素厂);4-HC(Cayman 公司,德国);IVM液、透明质酸酶、TYH液、HTF液、 KSOM液、M2培养液(南京爱贝生物有限公司);4% 多聚甲醛固定液、封闭液、聚乙烯醇、活性氧(reactive oxygen species,ROS)检测试剂盒、JC-1 增强型线粒体膜电位检测试剂盒(上海碧云天公司);Triton X-100(BioFroxx公司,德国);PBS缓冲液(武汉塞维尔公司);Dapi-Fluoromount-G 抗荧光淬灭封片剂 (SouthernBiotech 公司,美国);LCA-FITC、还原型谷胱甘肽(glutathione,GSH)荧光探针(Invitrogen公司,美国);DNMT3A(Thermo公司,美国);Micro RNA Kit (QIAGEN公司,德国)、High-Capacity cDNA Reverse Transcription Kit(Thermo公司,美国);QIAGEN Micro RNA kit(QIAGEN 公司,美国)ChamQ SYBR qPCR Master Mix(南京诺维赞公司)。

  • 1.2 方法

  • 1.2.1 小鼠饲养

  • 实验采用3~6周青春期前期C57/B6J小鼠。所有小鼠均购于南京医科大学实验动物基地生产部。小鼠在 22℃下保持 12 h/12 h 的暗-光循环,自由进食饮水。动物实验方案由南京医科大学动物伦理委员会批准(实验伦理号:IACUC-2202033),遵循3R原则。

  • 1.2.2 卵母细胞获取和体外成熟

  • 下午4:00-5:00,小鼠腹腔内注射PMSG10 U/只。 46~48 h后取卵巢生发泡期(germinal vesicle,GV)卵丘卵母细胞复合体(cumulus oocyte complex, COC),随机分组,于 IVM 培养液中加入 4-HC 储存液(10 mg4-HC加入341 μL溶剂DMSO中,配制成 100 mmol/L的储存液,分装并充入惰性气体,-80℃保存),根据培养微滴内 4-HC 浓度分为空白对照组 (Mock)、溶剂对照组(Ctrl)、0.3 μmol/L 4-HC 组、 1.0 μmol/L 4-HC组、3.0 μmol/L 4-HC组、10.0 μmol/L 4-HC组、30.0 μmol/L 4-HC组和100.0μmol/L4-HC组。用 100.0 μL 枪头迅速轻柔吹吸 5 下,混合均匀后放置 37℃、5% CO2培养箱培养 14~16 h(空白对照组为 IVM 培养液,溶剂对照组为 DMSO 1∶1 000 稀释液),然后使用透明质酸酶脱去颗粒细胞,在显微镜下观察卵母细胞第一极体排出情况,以第一极体排出作为卵母细胞核成熟的表征。收集减数第二次分裂中期(metaphaseⅡ,MⅡ)卵母细胞用于后续实验。每组使用 20~30 枚卵母细胞,实验至少重复3次。

  • 1.2.3 观察测量卵丘颗粒细胞扩张

  • 上述1.2.2方法培养14~16 h后,4倍显微镜下拍摄观察卵丘颗粒细胞扩张,并使用Image J测量成熟 COC长轴直径与短轴直径,取平均值作为卵丘颗粒细胞扩散直径。

  • 1.2.4 体外胚胎培养

  • 处死 C57/B6J 雄鼠,取附睾尾部并划开输精管,使精子在 TYH 液中获能 60 min。将卵母体外成熟的 COC 在 HTF 液中清洗 3 次后置于新的液滴中,加入已获能精子共培养受精 4~6 h。在 KSOM 培养液中清洗卵母细胞并在新鲜的液滴中继续培养。受精后 12 h 能观察到双原核的细胞作为受精卵。在胚胎发育至二细胞期(受精后 24~30 h)和囊胚期(受精后 96~100 h)进行拍照观察。以上培养均在 37℃、5%CO2 培养箱中完成,每组使用 20~30 枚卵母细胞,实验至少重复 3 次。

  • 1.2.5 卵母细胞免疫荧光

  • 卵母细胞脱颗粒后清洗 3 次,随后在 4% 多聚甲醛中室温固定 30 min,在添加了 0.5%聚乙烯醇 (polyvinyl alcohol,PVA)的 PBS 溶液中清洗 3 次后移入 0.5% Triton X-100 中室温破膜 20 min。0.5% PVA清洗3次后使用封闭液室温封闭1 h。将卵母细胞移入相应的一抗中4℃过夜,0.5% PVA清洗3次后避光室温孵育二抗 1 h。0.5% PVA 清洗 3 次后使用 DAPI 染细胞核,封片。共聚焦显微镜下进行拍照观察,使用 Image J 软件进行共定位及半定量分析。每组使用15~30枚卵母细胞,实验至少重复 3次。

  • 1.2.6 ROS、还原型(GSH)和线粒体膜电位测定

  • 使用DHE、还原型GSH探针和JC-1检测MⅡ期卵母细胞ROS、GSH和线粒体膜电位水平。将卵母细胞分别与 DHE 和 JC-1 工作液在 37℃、5%CO2培养箱中孵育 30 min,然后使用 M2 培养液清洗 3 次后置于共聚焦皿中。使用Nikon Eclipse Ti共聚焦显微镜检测荧光强度。每种指标每组使用 10~15 枚卵母细胞,实验至少重复3次。

  • 1.2.8 RNA提取及RT-qPCR

  • 使用 QIAGEN Micro RNA Kit 提取卵母细胞总 RNA,提取的RNA立刻冰上加入High-capacity tran-scription Kit逆转录试剂25℃ 10 min、37℃ 120 min、 85℃ 5 min将RNA逆转录为cDNA。各组基因表达通过实时荧光定量 PCR 仪进行扩增检测,条件为 95℃预变性 5 min、PCR 反应为 95℃ 15 s、65℃ 1 min共40个循环,熔解曲线为65~95℃每隔0.5℃ 进行信号检测绘制。各组基因表达差异采用2-ΔΔCT 相对定量法进行分析。本实验引物序列见表1。

  • 表1 引物序列表

  • Table1 Primer sequences

  • 1.3 统计学方法

  • 所有统计学结果均采用GraphPad Prism 8进行分析,数据均以均数±标准差(x-±s)表示,两组间比较采用独立样本 t 检验,多组间比较采用单因素方差分析,P <0.05为差异有统计学意义。

  • 2 结果

  • 2.1 不同浓度4-HC对卵母细胞发育潜能的影响

  • 为探究4-HC对卵母细胞的直接作用及其机制,基于先前4-HC相关研究[4],本研究设定了4-HC浓度梯度:0.3、1.0、3.0、10.0、30.0、100.0 μmol/L,将GV 期COC取出后,直接在培养基中添加上述不同浓度的4-HC,结果发现,随着 4-HC 浓度的增加,卵母细胞的二细胞率及囊胚率呈下降趋势(图1A、B),这提示 4-HC 会损害卵母细胞的发育潜能。基于 1.0 μmol/L 浓度组的囊胚率与溶剂对照组相比已显著降低(0.809±0.050 vs. 0.565±0.101,P <0.05,图1C),且该浓度与CTX化疗患者血清中的药物浓度相当[11],故后续将此浓度用于实验组进行进一步探究。

  • 2.2 1.0 μmol/L 4-HC 作用下卵母细胞体外成熟及囊胚发育情况

  • 与溶剂对照组相比,1.0 μmol/L 4-HC作用下GV 期 COC 体外成熟后扩散程度降低(152.200±26.780 vs.132.600±23.130,P <0.05,图2A、B),第一极体排出率下降(0.804±0.053 vs. 0.653 ± 0.074,P <0.05,图2A、C),囊胚形成率下降(0.809±0.087 vs. 0.566± 0.175,P <0.05)。这些结果提示1.0 μmol/L 4-HC作用下GV期COC体外成熟后成熟率下降,进而影响卵母细胞胚胎发育,造成囊胚形成率降低。

  • 2.3 4-HC作用下卵母细胞发生氧化应激

  • GSH 与DHE 染色结果显示1.0 μmol/L 4-HC 使体外培养至 MⅡ期的 COC 中卵母细胞内 GSH 含量降低(图3A、B),超氧化物阴离子含量升高(图3A、 C),提示1.0 μmol/L 4-HC影响下卵母细胞发生氧化应激。

  • 2.4 4-HC导致卵母细胞线粒体功能下降

  • 线粒体在卵母细胞功能中起着至关重要的作用,线粒体功能受损将严重影响卵母细胞发育,造成卵母细胞质量受损[12]。本课题组对培养至MⅡ期COC 中的卵母细胞进行了JC-1染色,结果显示,与溶剂对照组相比,1.0 μmol/L 4-HC使MⅡ期卵母细胞线粒体膜电位下降(图4A、B),这与既往一些相关研究结果相一致[13],并进一步说明4-HC作用下卵母细胞质量下降。

  • 图1 不同浓度4-HC对体外成熟卵母细胞受精及囊胚形成的影响

  • Figure1 Effects of different concentrations of 4-HC on the fertilization and subsequent blastocyst formation of IVM oocytes

  • 2.5 卵丘细胞、受精卵、二细胞胚胎中Dnmt3a表达情况

  • 既往研究显示,在小鼠早期胚胎中,Dnmt3a的表达增加将导致其整体5-甲基胞嘧啶(5-methylcytosine, 5mC)水平升高并进而引发小鼠胚胎发育阻滞[14]。由于卵母细胞在GV期停止转录,本课题组将从GV 期培养至 MⅡ期的 COC 中的原代颗粒细胞收集起来,并检测了这些颗粒细胞中Dnmt3a的表达水平,并检测了 2 个原核(2 pronuclear,2PN)期受精卵及二细胞胚胎中 Dnmt3a 表达水平。结果显示,与溶剂对照组相比,1.0 μmol/L 4-HC 作用下 Dnmt3a 的 mRNA水平在颗粒细胞、受精卵及二细胞胚胎中均显著表达升高(图5),这提示 4-HC 可能通过上调卵母细胞中 DNMT3A 表达引发小鼠早期胚胎发育阻滞。

  • 图2 1.0 μmol/L 4-HC作用下COC体外成熟培养结果

  • Figure2 In vitro maturationresults of COC treated with 1.0 μmol/L 4-HC

  • 图3 1.0 μmol/L 4-HC作用下MⅡ期卵母细胞氧化应激水平

  • Figure3 Oxidative stress levels in MⅡoocytes treated with 1.0 μmol/L 4-HC

  • 图4 1.0 μmol/L 4-HC作用下MⅡ期卵母细胞线粒体膜电位

  • Figure4 Mitochondrial membrane potential in MⅡoocytes treated with 1.0 μmol/L 4-HC

  • 图5 1.0 μmol/L 4-HC作用下颗粒细胞、2PN期受精卵及2-细胞胚胎中Dnmt3a表达水平

  • Figure5 Relative mRNA expression levels of Dnmt3a in cumulus cells,2PN,and 2-cell embryos under 1.0 μmol/L 4-HC treatment

  • 2.6 MⅡ期卵母细胞中DNMT3A表达情况

  • 通过 DNMT3A 免疫荧光染色的方式对体外培养至MⅡ期的COC中卵母细胞DNMT3A表达情况进行了检测。结果同样也显示,与溶剂对照组相比, 1.0 μmol/L 4-HC作用下MⅡ期卵母细胞中DNMT3A 表达上升(图6A)。

  • 3 讨论

  • 在卵母细胞中,ROS 的主要来源是线粒体电子呼吸链上的电子泄漏[15],正常状态下,卵母细胞的抗氧化体系能够有效抵御自身产生的ROS,从而维持氧化-抗氧化体系的平衡。既往研究发现, CTX 在代谢过程中,其活性代谢产物通过醇脱氢酶 (alcoholdehydrogenase,ADH)、醛脱氢酶(aldehyde dehydrogenase,ALDH)和谷胱甘肽 S-转移酶(gluta-thione S-transferases,GST)等酶的作用,利用GSH作为辅因子解毒为无活性代谢物。与先前的一些研究结果相一致[16],本研究结果显示,CTX 的活性代谢产物 4-HC 可引发卵母细胞内 GSH 含量消耗和ROS 含量上升,从而削弱抗氧化能力,导致氧化应激的发生。进一步的线粒体膜电位检测实验发现, 4-HC还可引发卵母细胞线粒体膜电位的下降,这提示4-HC诱导的氧化应激可能已造成线粒体损伤,而受损的线粒体会进一步导致ROS泄漏[17],形成恶性循环,最终影响卵母细胞的能量生成,降低其后续发育潜能[18]

  • 图6 1.0 μmol/L 4-HC作用下MⅡ期卵母细胞DNMT3A表达水平

  • Figure6 DNMT3A expression levels in MⅡ-stage oocytes treated with 1.0 μmol/L 4-HC

  • 多细胞生物从受精卵发育而来,依赖于组织和细胞特异性转录程序的时空调控,其中 DNA 甲基化过程是重要机制之一。DNA 甲基化指的是甲基 (—CH3)基团与胞嘧啶(C)嘧啶环的5-碳原子形成共价键的过程,通常发生在鸟嘌呤(G)核苷酸与胞嘧啶核苷酸以磷酸键相连的胞嘧啶嘧啶环上,称为 CpG 岛[19]。CpG 岛多位于基因的启动子和外显子区域,因而 DNA 甲基化可以通过影响启动子的读取来调控 DNA 转录。在未甲基化的胞嘧啶中添加甲基称为从头甲基化,由 DNMT3 家族酶催化,包括 DNMT3A、DNMT3B、DNMT3C 和 DNMT3L[20]。 DNMT3A 和 DNMT3B 是在胚胎发育中建立 DNA 甲基化的主要酶[21]。先前研究发现,CTX早期作用会导致后代卵母细胞中H19Igf2rPeg3e等印记基因的甲基化水平异常[1522-23],并下调多种转录因子[17],从而影响卵母细胞的表观遗传。一些研究还观察到,在环磷酰胺作用下,尽管仍有卵母细胞存活,但这些存活卵母细胞的表观遗传受到了影响,如 Dnmt1表达下降,并同时影响了卵母细胞受精后胚胎的发育潜能[24-25]。因此,本研究重点讨论了CTX 对卵母细胞DNA甲基化酶等表达的影响。结果显示,在 CTX 作用下,卵丘颗粒细胞、受精卵和二细胞胚胎中 Dnmt3a 表达水平升高。此外,卵母细胞的免疫荧光结果显示,4-HC 作用下,卵母细胞内 DNMT3A 蛋白表达增加,这提示,尽管部分受损的卵母细胞仍能完成受精甚至发育至囊胚阶段,但这些细胞可能已经发生了表观遗传等长期改变。

  • 此外,本研究发现,4-HC作用下卵母细胞受精后2-细胞形成率并未发生显著下降,但囊胚形成率明显降低。这提示 CTX 可能对二细胞发育至囊胚阶段所需的关键储备产生了重大影响,而人类胚胎基因组中的可访问区域的数量在二细胞到囊胚阶段之间逐渐增加[26]。相关文献表明,人类染色质可及性变化最大的区域是低甲基化区域[27],这表明低水平甲基化可能支持染色质可及性的可变性,低甲基化可能构成一种允许其他因子结合的状态,使得早期胚胎细胞具有可塑性。而本研究提示 CTX 可能通过上调卵母细胞及早期胚胎中 DNMT3A 的表达,使细胞内整体甲基化水平升高,从而降低早期胚胎细胞的可塑性,造成其发育阻滞。

  • 综上,本研究表明,4-HC可引发卵母细胞氧化应激,降低卵母细胞胚胎发育潜能并影响其表观遗传。本研究首次关注到4-HC对卵母细胞内DNMT3A 表达情况的影响。然而,尽管4-HC作用下卵母细胞内DNMT3A表达上升,但仍无法确定其酶活性是否也会发生相应改变。后续仍需观察卵母细胞整体甲基化水平,进一步验证CTX对卵母细胞各发育时期甲基化水平的具体影响。

  • 参考文献

    • [1] LI G,GU J,ZHOU X,et al.Mitochondrial stress response gene Clpp deficiency impairs oocyte competence and de-teriorate cyclophosphamide-induced ovarian damage in young mice[J].Front Endocrinol(Lausanne),2023,14:1122012

    • [2] EMADI A,JONES R J,BRODSKY R A.Cyclophospha-mide and cancer:golden anniversary[J].Nat Rev Clin Oncol,2009,6(11):638-647

    • [3] HASANAH Y I F,HARAHAP Y,PURWANTO D J.Phe-notyping study of cyclophosphamide 4-hydroxylation in Malay cancer patients[J].Drug Des Devel Ther,2021,15:305-313

    • [4] ZHU F,GAO J,ZENG F,et al.Hyperoside protects against cyclophosphamide induced ovarian damage and reduced fertility by suppressing HIF-1alpha/BNIP3-medi-ated autophagy[J].Biomed Pharmacother,2022,156:113743

    • [5] LUAN Y,EDMONDS M E,WOODRUFF T K,et al.Inhibitors of apoptosis protect the ovarian reserve from cyclophosphamide[J].J Endocrinol,2019,240(2):243-256

    • [6] NIE Z,ZHANG L,CHEN W,et al.The protective effects of pretreatment with resveratrol in cyclophosphamide-in-duced rat ovarian granulosa cell injury:in vitro study[J].Reprod Toxicol,2020,95:66-74

    • [7] COX L,LIU J H.Primary ovarian insufficiency:an upda-te[J].Jnt J Wonen’s Health,2014,20(6):235-243

    • [8] MULDER R L,FONT-GONZALEZ A,HUDSON M M,et al.Fertility preservation for female patients with child-hood,adolescent,and young adult cancer:recommenda-tions from the PanCareLIFE consortium and the interna-tional late effects of childhood cancer guideline harmoni-zation group[J].Lancet Oncol,2021,22(2):e45-e56

    • [9] MASSAROTTI C,KOHLHEPP F,LIPERIS G,et al.#ESHREjc report:is OTO-IVM the future fertility preser-vation alternative for urgent cancer patients?[J].Hum Reprod,2021,36(9):2631-2633

    • [10] VUONG L N,PHAM T D,HO T M,et al.Outcomes of clinical in vitro maturation programs for treating infertility in hyper responders:a systematic review[J].Fertil Steril,2023,119(4):540-549

    • [11] 刘力.儿童狼疮性肾炎治疗中环磷酰胺药物代谢的临床研究[D].天津医科大学,2017

    • [12] SCHATTEN H,SUN Q Y,PRATHER R.The impact of mitochondrial function/dysfunction on IVF and new treat-ment possibilities for infertility[J].Reprod Biol Endocrinol,2014,12:111

    • [13] JEELANI R,CHATZICHARALAMPOUS C,KOHAN-GHADR H R,et al.Acrolein,a commonly found environ-mental toxin,causes oocyte mitochondrial dysfunction and negatively affects embryo development[J].Free Radic Res,2018,52(9):929-938

    • [14] ZHANG J,WANG Y,LIU X,et al.Expression and poten-tial role of microRNA-29b in mouse early embryo develop-ment[J].Cell Physiol Biochem,2015,35(3):1178-1187

    • [15] WEI Y,WANG J,QU R,et al.Genetic mechanisms of fer-tilization failure and early embryonic arrest:a comprehen-sive review[J].Hum Reprod Update,2024,30(1):48-80

    • [16] XU X,WANG S S,ZHANG L,et al.Methylmercury in-duced ferroptosis by interference of iron homeostasis and glutathione metabolism in CTX cells[J].Environ Pollut,2023,335:122278

    • [17] LUO Z B,YANG L H,HAN S Z,et al.Cyclophosphamide reduces gene transcriptional activity and embryo in vitro development by inhibiting NF-κB expression through decreasing AcH4K12[J].Chem Biol Interact,2024,387:110806

    • [18] VAN DER REEST J,NARDINI CECCHINO G,HAIGIS M C,et al.Mitochondria:their relevance during oocyte ageing[J].Ageing Res Rev,2021,70:101378

    • [19] HUGHES A L,SZCZUREK A T,KELLEY J R,et al.A CpG island-encoded mechanism protects genes from premature transcription termination[J].Nature communi-cations,2023,14(1):726

    • [20] UYSAL F,AKKOYUNLU G,OZTURK S.Dynamic ex-pression of DNA methyltransferases(DNMTs)in oocytes and early embryos[J].Biochimie,2015,116:103-113

    • [21] CHEN Z,ZHANG Y.Role of mammalian DNA methyl-transferases in development[J].Annu Rev Biochem,2020,89:135-158

    • [22] DI EMIDIO G,D’AURORA M,PLACIDI M,et al.Pre-conceptional maternal exposure to cyclophosphamide results in modifications of DNA methylation in F1 and F2 mouse oocytes:evidence for transgenerational effects[J].Epigenetics,2019,14(11):1057-1064

    • [23] ECKERSLEY-MASLIN M A,ALDA-CATALINAS C,REIK W.Dynamics of the epigenetic landscape during the maternal-to-zygotic transition[J].Nat Rev Mol Cell Biol,2018,19(7):436-450

    • [24] YANG W,MA Y,JIN J,et al.Cyclophosphamide expo-sure causes long-term detrimental effect of oocytes devel-opmental competence through affecting the epigenetic modification and maternal factors’transcription during oocyte growth[J].Front Cell Dev Biol,2021,9:682060

    • [25] DING C,LU J,LI J,et al.RNA-methyltransferase Nsun5 controls the maternal-to-zygotic transition by regulating maternal mRNA stability[J].Clin Transl Med,2022,12(12):e1137

    • [26] WILKINSON A L,ZORZAN I,RUGG-GUNN P J.Epigen-etic regulation of early human embryo development[J].Cell Stem Cell,2023,30(12):1569-1584

    • [27] LI L,GUO F,GAO Y,et al.Single-cell multi-omics sequencing of human early embryos[J].Nat Cell Biol,2018,20(7):847-858

  • 参考文献

    • [1] LI G,GU J,ZHOU X,et al.Mitochondrial stress response gene Clpp deficiency impairs oocyte competence and de-teriorate cyclophosphamide-induced ovarian damage in young mice[J].Front Endocrinol(Lausanne),2023,14:1122012

    • [2] EMADI A,JONES R J,BRODSKY R A.Cyclophospha-mide and cancer:golden anniversary[J].Nat Rev Clin Oncol,2009,6(11):638-647

    • [3] HASANAH Y I F,HARAHAP Y,PURWANTO D J.Phe-notyping study of cyclophosphamide 4-hydroxylation in Malay cancer patients[J].Drug Des Devel Ther,2021,15:305-313

    • [4] ZHU F,GAO J,ZENG F,et al.Hyperoside protects against cyclophosphamide induced ovarian damage and reduced fertility by suppressing HIF-1alpha/BNIP3-medi-ated autophagy[J].Biomed Pharmacother,2022,156:113743

    • [5] LUAN Y,EDMONDS M E,WOODRUFF T K,et al.Inhibitors of apoptosis protect the ovarian reserve from cyclophosphamide[J].J Endocrinol,2019,240(2):243-256

    • [6] NIE Z,ZHANG L,CHEN W,et al.The protective effects of pretreatment with resveratrol in cyclophosphamide-in-duced rat ovarian granulosa cell injury:in vitro study[J].Reprod Toxicol,2020,95:66-74

    • [7] COX L,LIU J H.Primary ovarian insufficiency:an upda-te[J].Jnt J Wonen’s Health,2014,20(6):235-243

    • [8] MULDER R L,FONT-GONZALEZ A,HUDSON M M,et al.Fertility preservation for female patients with child-hood,adolescent,and young adult cancer:recommenda-tions from the PanCareLIFE consortium and the interna-tional late effects of childhood cancer guideline harmoni-zation group[J].Lancet Oncol,2021,22(2):e45-e56

    • [9] MASSAROTTI C,KOHLHEPP F,LIPERIS G,et al.#ESHREjc report:is OTO-IVM the future fertility preser-vation alternative for urgent cancer patients?[J].Hum Reprod,2021,36(9):2631-2633

    • [10] VUONG L N,PHAM T D,HO T M,et al.Outcomes of clinical in vitro maturation programs for treating infertility in hyper responders:a systematic review[J].Fertil Steril,2023,119(4):540-549

    • [11] 刘力.儿童狼疮性肾炎治疗中环磷酰胺药物代谢的临床研究[D].天津医科大学,2017

    • [12] SCHATTEN H,SUN Q Y,PRATHER R.The impact of mitochondrial function/dysfunction on IVF and new treat-ment possibilities for infertility[J].Reprod Biol Endocrinol,2014,12:111

    • [13] JEELANI R,CHATZICHARALAMPOUS C,KOHAN-GHADR H R,et al.Acrolein,a commonly found environ-mental toxin,causes oocyte mitochondrial dysfunction and negatively affects embryo development[J].Free Radic Res,2018,52(9):929-938

    • [14] ZHANG J,WANG Y,LIU X,et al.Expression and poten-tial role of microRNA-29b in mouse early embryo develop-ment[J].Cell Physiol Biochem,2015,35(3):1178-1187

    • [15] WEI Y,WANG J,QU R,et al.Genetic mechanisms of fer-tilization failure and early embryonic arrest:a comprehen-sive review[J].Hum Reprod Update,2024,30(1):48-80

    • [16] XU X,WANG S S,ZHANG L,et al.Methylmercury in-duced ferroptosis by interference of iron homeostasis and glutathione metabolism in CTX cells[J].Environ Pollut,2023,335:122278

    • [17] LUO Z B,YANG L H,HAN S Z,et al.Cyclophosphamide reduces gene transcriptional activity and embryo in vitro development by inhibiting NF-κB expression through decreasing AcH4K12[J].Chem Biol Interact,2024,387:110806

    • [18] VAN DER REEST J,NARDINI CECCHINO G,HAIGIS M C,et al.Mitochondria:their relevance during oocyte ageing[J].Ageing Res Rev,2021,70:101378

    • [19] HUGHES A L,SZCZUREK A T,KELLEY J R,et al.A CpG island-encoded mechanism protects genes from premature transcription termination[J].Nature communi-cations,2023,14(1):726

    • [20] UYSAL F,AKKOYUNLU G,OZTURK S.Dynamic ex-pression of DNA methyltransferases(DNMTs)in oocytes and early embryos[J].Biochimie,2015,116:103-113

    • [21] CHEN Z,ZHANG Y.Role of mammalian DNA methyl-transferases in development[J].Annu Rev Biochem,2020,89:135-158

    • [22] DI EMIDIO G,D’AURORA M,PLACIDI M,et al.Pre-conceptional maternal exposure to cyclophosphamide results in modifications of DNA methylation in F1 and F2 mouse oocytes:evidence for transgenerational effects[J].Epigenetics,2019,14(11):1057-1064

    • [23] ECKERSLEY-MASLIN M A,ALDA-CATALINAS C,REIK W.Dynamics of the epigenetic landscape during the maternal-to-zygotic transition[J].Nat Rev Mol Cell Biol,2018,19(7):436-450

    • [24] YANG W,MA Y,JIN J,et al.Cyclophosphamide expo-sure causes long-term detrimental effect of oocytes devel-opmental competence through affecting the epigenetic modification and maternal factors’transcription during oocyte growth[J].Front Cell Dev Biol,2021,9:682060

    • [25] DING C,LU J,LI J,et al.RNA-methyltransferase Nsun5 controls the maternal-to-zygotic transition by regulating maternal mRNA stability[J].Clin Transl Med,2022,12(12):e1137

    • [26] WILKINSON A L,ZORZAN I,RUGG-GUNN P J.Epigen-etic regulation of early human embryo development[J].Cell Stem Cell,2023,30(12):1569-1584

    • [27] LI L,GUO F,GAO Y,et al.Single-cell multi-omics sequencing of human early embryos[J].Nat Cell Biol,2018,20(7):847-858